
www.it-ebooks.info

http://www.it-ebooks.info/

Camel in Action

 www.it-ebooks.info

http://www.it-ebooks.info/

 www.it-ebooks.info

http://www.it-ebooks.info/

Camel in Action

CLAUS IBSEN
JONATHAN ANSTEY

M A N N I N G
Greenwich

(74° w. long.)

 www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad Street, Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Cynthia Kane
180 Broad Street, Suite 1323 Copyeditor: Andy Carroll
Stamford, CT 06901 Cover designer: Marija Tudor

Typesetter: Gordan Salinovic

ISBN 978-1-935182-36-8
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10

 www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

 To the Apache Camel community
 May this book be a helpful companion on your journeys with Camel

 www.it-ebooks.info

http://www.it-ebooks.info/

 www.it-ebooks.info

http://www.it-ebooks.info/

vii

brief contents
PART 1 FIRST STEPS1

1 ■ Meeting Camel 3
2 ■ Routing with Camel 22

PART 2 CORE CAMEL...59
3 ■ Transforming data with Camel 61
4 ■ Using beans with Camel 93
5 ■ Error handling 120
6 ■ Testing with Camel 154
7 ■ Understanding components 188
8 ■ Enterprise integration patterns 237

PART 3 OUT IN THE WILD . ..281
9 ■ Using transactions 283

10 ■ Concurrency and scalability 315
11 ■ Developing Camel projects 359
12 ■ Management and monitoring 385
13 ■ Running and deploying Camel 410
14 ■ Bean routing and remoting 443

 www.it-ebooks.info

http://www.it-ebooks.info/

 www.it-ebooks.info

http://www.it-ebooks.info/

ix

contents
foreword xvii
foreword xix
preface xxi
acknowledgments xxiii
about this book xxv
about the cover illustration xxix
about the authors xxxi

PART 1 FIRST STEPS. ...1

1 Meeting Camel 3
1.1 Introducing Camel 4

What is Camel? 4 ■ Why use Camel? 5 ■ Getting
started 8 ■ Getting Camel 8 ■ Your first Camel ride 9

1.2 Camel’s message model 13
Message 13 ■ Exchange 14

1.3 Camel’s architecture 15
Architecture from 10,000 feet 15 ■ Camel concepts 16

1.4 Your first Camel ride, revisited 20
1.5 Summary 21

 www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSx

2 Routing with Camel 22
2.1 Introducing Rider Auto Parts 23
2.2 Understanding endpoints 24

Working with files over FTP 24 ■ Sending to a JMS queue 26

2.3 Creating routes in Java 28
Using the RouteBuilder 29 ■ The Java DSL 30

2.4 Creating routes with Spring 34
Bean injection and Spring 34 ■ The Spring DSL 37 ■ Using
Camel and Spring 40

2.5 Routing and EIPs 43
Using a content-based router 44 ■ Using message filters 49
Using multicasting 50 ■ Using recipient lists 52 ■ Using the
wireTap method 55

2.6 Summary and best practices 57

PART 2 CORE CAMEL ..59

3 Transforming data with Camel 61
3.1 Data transformation overview 62

Data transformation with Camel 62

3.2 Transforming data using EIPs and Java 63
Using the Message Translator EIP 63 ■ Using the Content
Enricher EIP 70

3.3 Transforming XML 73
Transforming XML with XSLT 73 ■ Transforming XML with
object marshaling 75

3.4 Transforming with data formats 77
Data formats provided with Camel 78 ■ Using Camel’s CSV data
format 79 ■ Using Camel’s Bindy data format 80 ■ Using
Camel’s JSON data format 83 ■ Configuring Camel data
formats 84 ■ Writing your own data format 85

3.5 Transforming with templates 86
Using Apache Velocity 87

3.6 About Camel type converters 88
How the Camel type-converter mechanism works 88 ■ Using Camel
type converters 90 ■ Writing your own type converter 90

3.7 Summary and best practices 92

 www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi

4 Using beans with Camel 93
4.1 Using beans the hard way and the easy way 94

Invoking a bean from pure Java 94 ■ Invoking a bean defined in
Spring 95 ■ Using beans the easy way 96

4.2 The Service Activator pattern 97
4.3 Camel’s bean registries 98

SimpleRegistry 100 ■ JndiRegistry 101 ■ ApplicationContext-
Registry 101 ■ OsgiServiceRegistry 102

4.4 Selecting bean methods 103
How Camel selects bean methods 104 ■ Camel’s method-selection
algorithm 105 ■ Some method-selection examples 107
Potential method-selection problems 109

4.5 Bean parameter binding 111
Binding with multiple parameters 112 ■ Binding using built-in
types 113 ■ Binding using Camel annotations 114 ■ Binding
using Camel language annotations 115

4.6 Summary and best practices 119

5 Error handling 120
5.1 Understanding error handling 121

Recoverable and irrecoverable errors 121 ■ Where Camel’s error
handling applies 123

5.2 Error handlers in Camel 124
The default error handler 125 ■ The dead letter channel error
handler 126 ■ The transaction error handler 128 ■ The no error
handler 128 ■ The logging error handler 128 ■ Features of the
error handlers 128

5.3 Using error handlers with redelivery 129
An error-handling use case 129 ■ Using redelivery 130 ■ Error
handlers and scopes 135 ■ Handling faults 137

5.4 Using exception policies 138
Understanding how onException catches exceptions 139 ■ Understanding
how onException works with redelivery 142 ■ Understanding how
onException can handle exceptions 143 ■ Custom exception
handling 146 ■ Ignoring exceptions 148 ■ Implementing an error
handler solution 149

5.5 Other error-handling features 150
Using onWhen 150 ■ Using onRedeliver 151 ■ Using
retryWhile 152

5.6 Summary and best practices 153

 www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxii

6 Testing with Camel 154
6.1 Introducing the Camel Test Kit 155

The Camel JUnit extensions 155 ■ Using the Camel Test Kit 156
Unit testing with the CamelTestSupport class 156 ■ Unit testing an
existing RouteBuilder class 159 ■ Unit testing with the SpringCamel-
TestSupport class 159 ■ Unit testing in multiple environments 161

6.2 Using the Mock component 166
Introducing the Mock component 167 ■ Unit testing with the Mock
component 167 ■ Verifying that the correct message arrived 169
Using expressions with mocks 170 ■ Testing the ordering of
messages 174 ■ Using mocks to simulate real components 175

6.3 Simulating errors 178
Simulating errors using a processor 178 ■ Simulating errors using
mocks 180 ■ Simulating errors using interceptors 180

6.4 Testing without mocks 183
Integration testing 183 ■ Using NotifyBuilder 185

6.5 Summary and best practices 187

7 Understanding components 188
7.1 Overview of Camel components 189

Manually adding components 190 ■ Autodiscovering components 190

7.2 Working with files (File and FTP components) 192
Reading and writing files with the File component 193 ■ Accessing remote
files with the FTP component 196

7.3 Asynchronous messaging (JMS component) 197
Sending and receiving messages 200 ■ Request-reply
messaging 201 ■ Message mappings 202

7.4 Web services (CXF component) 205
Configuring CXF 206 ■ Using a contract-first approach 209
Using a code-first approach 215

7.5 Networking (MINA component) 216
Using MINA for network programming 217 ■ Using custom codecs 219

7.6 Working with databases (JDBC and JPA components) 221
Accessing data with the JDBC component 221 ■ Persisting objects with the
JPA component 224

7.7 In-memory messaging (Direct, SEDA, and VM
components) 229

Synchronous messaging with the Direct component 229
Asynchronous messaging with SEDA and VM 230

 www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii

7.8 Automating tasks (Timer and Quartz components) 232
Using the Timer component 232 ■ Enterprise scheduling with
Quartz 233

7.9 Summary and best practices 235

8 Enterprise integration patterns 237
8.1 Introducing enterprise integration patterns 238

The Aggregator and Splitter EIPs 238 ■ The Routing Slip and
Dynamic Router EIPs 239 ■ The Load Balancer EIP 239

8.2 The Aggregator EIP 239
Introducing the Aggregator EIP 240 ■ Completion conditions for
the Aggregator 243 ■ Using persistence with the Aggregator 248
Using recovery with the Aggregator 251

8.3 The Splitter EIP 255
Using the Splitter 256 ■ Using beans for splitting 258 ■ Splitting
big messages 260 ■ Aggregating split messages 262 ■ When errors
occur during splitting 264

8.4 The Routing Slip EIP 266
Using the Routing Slip EIP 267 ■ Using a bean to compute the
routing slip header 267 ■ Using an Expression as the routing
slip 268 ■ Using @RoutingSlip annotation 269

8.5 The Dynamic Router EIP 270
Using the Dynamic Router 270 ■ Using the @DynamicRouter
annotation 271

8.6 The Load Balancer EIP 272
Introducing the Load Balancer EIP 272 ■ Load-balancing
strategies 274 ■ Using the failover load balancer 275 ■ Using a
custom load balancer 278

8.7 Summary and best practices 280

PART 3 OUT IN THE WILD ..281

9 Using transactions 283
9.1 Why use transactions? 284

The Rider Auto Parts partner integration application 284 ■ Setting
up the JMS broker and the database 287 ■ The story of the lost
message 288

9.2 Transaction basics 289
About Spring’s transaction support 290 ■ Adding
transactions 291 ■ Testing transactions 293

 www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxiv

9.3 The Transactional Client EIP 296
Using local transactions 297 ■ Using global transactions 298

9.4 Configuring and using transactions 301
Configuring transactions 301 ■ Using transactions with multiple
routes 303 ■ Returning a custom response when a transaction
fails 306

9.5 Compensating for unsupported transactions 309
Introducing UnitOfWork 309 ■ Using Synchronization
callbacks 310 ■ Using onCompletion 312

9.6 Summary and best practices 313

10 Concurrency and scalability 315
10.1 Introducing concurrency 316

Running the example without concurrency 318 ■ Using
concurrency 318

10.2 Using thread pools 323
Understanding thread pools in Java 323 ■ Camel thread pool
profiles 326 ■ Creating custom thread pools 328 ■ Using
ExecutorServiceStrategy 329

10.3 Using concurrency with EIPs 330
Using concurrency with the Threads EIP 331 ■ Using concurrency
with the Multicast EIP 332 ■ Using concurrency with the Wire
Tap EIP 334

10.4 Synchronicity and threading 335
Asynchronous caller using one thread 336 ■ Synchronous caller
using one thread 337 ■ Asynchronous caller using multiple
threads 339 ■ Synchronous caller using multiple threads 340
Returning an early reply to a caller 342

10.5 The concurrency client API 344
The concurrency client API in Java 344 ■ The concurrency client
API in Camel 347

10.6 The asynchronous routing engine 350
Hitting the scalability limit 350 ■ Scalability in Camel 352
Components supporting asynchronous processing 353
Asynchronous API 354 ■ Writing a custom asynchronous
component 356

10.7 Summary and best practices 358

 www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xv

11 Developing Camel projects 359
11.1 Managing projects with Maven 360

Using Camel Maven archetypes 360 ■ Camel Maven
dependencies 364 ■ Using Camel in Eclipse 366 ■ Using the
Maven Eclipse plugin 366 ■ Using the m2eclipse plugin 368

11.2 Developing custom components 371
Setting up a new Camel component 371 ■ Diving into the
implementation 373

11.3 Developing interceptors 377
Creating an InterceptStrategy 377

11.4 Using alternative languages 380
The Scala DSL 380 ■ Adding Scala routes to the CamelContext 382
Mixing Java and Scala 382

11.5 Summary and best practices 384

12 Management and monitoring 385
12.1 Monitoring Camel 386

Checking health at the network level 386 ■ Checking health at the
JVM level 388 ■ Checking health at the application level 388

12.2 Using JMX with Camel 389
Using JConsole to manage Camel 390 ■ Using JConsole to remotely
manage Camel 391

12.3 Tracking application activity 393
Using log files 393 ■ Using core logs 394 ■ Using custom
logging 394 ■ Using Tracer 398 ■ Using notifications 402

12.4 Managing Camel applications 405
Managing Camel application lifecycles 405 ■ Managing custom
Camel components 406

12.5 Summary and best practices 409

13 Running and deploying Camel 410
13.1 Starting Camel 411

How Camel starts 411 ■ Camel startup options 413 ■ Ordering
routes 416 ■ Disabling autostartup 418

13.2 Starting and stopping routes at runtime 419
Using CamelContext to start and stop routes at runtime 420
Using RoutePolicy to start and stop routes at runtime 422

 www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxvi

13.3 Shutting down Camel 424
Graceful shutdown 425

13.4 Deploying Camel 428
Embedded in a Java application 428 ■ Embedded in a web
application 430 ■ Embedded in JBoss Application Server 436

13.5 Camel and OSGi 437
Setting up Maven to generate an OSGi bundle 438 ■ Installing
and running Apache Karaf 439 ■ Deploying the example 440

13.6 Summary and best practices 441

14 Bean routing and remoting 443
14.1 Using beans for routing 444

Inventory update at Rider Auto Parts 444 ■ Receiving messages
with @Consume 445 ■ Sending messages with @Produce 448
When to use beans for routing 450

14.2 Hiding middleware 451
Introducing the starter kit 453 ■ Using Spring remoting and
Camel proxies 456

14.3 Summary and best practices 460

appendix A Simple, the expression language 461
appendix B Expressions and predicates 471
appendix C The producer and consumer templates 477
appendix D The Camel community 483
appendix E Akka and Camel 487

index 501

 www.it-ebooks.info

http://www.it-ebooks.info/

xvii

foreword
Languages are a critical aspect of software development. They give us the vocabulary
to express what a program should do. They force us to encode our requirements in
precise and non-ambiguous terms. Lastly, they enable the sharing of knowledge
between developers. No, I’m not talking about Java, Haskell, or PL/1. I’m talking
about the languages we use to communicate from human to human, from developer
to developer, or from end user to product manager. For a long time, the world of
enterprise integration (or EAI, as it was commonly known in the “dark ages of integra-
tion”) lacked such a vocabulary. Each vendor offered a proprietary solution, which
not only failed to integrate at a technical level with other vendors’ offerings, but also
used a different language to describe the main components and their functions. This
not only caused confusion, but was also a key inhibitor to creating a community of
developers that could span the vast space of enterprise integration. Each “tribe” was
essentially held hostage by the language bestowed upon them. Ironically, integration
developers were faced with the same “tower of Babel” problem that their software was
designed to solve!

 Establishing a common vocabulary that enables knowledge sharing and collabora-
tion was the key motivator for us to write Enterprise Integration Patterns (EIPs). Each
of the 65 patterns has a descriptive name, which represents the solution to a design
challenge in the integration space. Besides supporting effective communication, this
vocabulary also raises the level of abstraction at which we can describe integration
problems and solutions.

 A shared vocabulary is a big step forward, but a giant step we could not imagine at
the time was that our language would spur the development of a whole family of open

 www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORDxviii

source messaging and enterprise service bus (ESB) products. These tools embrace the
EIP vocabulary by implementing many patterns directly in the platform. With Apache
Camel, a Splitter pattern translates directly into a “split” element in the Camel DSL.
We couldn’t have wished for a more direct translation of the pattern language into an
implementation platform.

 Claus and Jon bring the saga to a grand finale by showing us how to use the Camel
pattern language to compose real-life messaging solutions. In doing so, they not only
cover fundamental concepts like routing and transformation, but also dig into often-
neglected parts of the development process, including testing, monitoring, and deploy-
ing. They find the right balance of the pattern language, Camel core concepts, and run-
ning code to help you build easy-to-understand and robust messaging solutions.

 GREGOR HOHPE

 COAUTHOR OF ENTERPRISE INTEGRATION PATTERNS

WWW.EAIPATTERNS.COM

 www.it-ebooks.info

WWW.EAIPATTERNS.COM
http://www.it-ebooks.info/

xix

foreword
I was one of the original founders of both Apache ActiveMQ (an open source high-
performance message broker) and ServiceMix (an open source ESB based on JBI and
OSGi). I found that Enterprise Integration Patterns were becoming increasingly cen-
tral to what we were doing on these projects and how we were using them; the only dif-
ference was the context and technologies with which we were using the patterns.

 There have been many libraries and frameworks over the years to help with inte-
gration. But frequently the concepts behind the Enterprise Integration Patterns get
transformed into some complex class hierarchies or objects that need to be wired
together just so, and the original intentions and patterns are often lost. The developer
is forced from then on to focus on the low-level detail and some complex class library
API, losing the bigger picture and patterns.

 Integration is hard and once you start down the path of integrating things together
the code can very easily mushroom; being able to easily comprehend, communicate,
adapt, and maintain integration solutions is vital to be able to solve integration prob-
lems efficiently in an agile way.

 So we decided it was time for a new integration framework that put the EIPs at its
core and tried to raise the abstraction level so that developers could describe declara-
tively in very concise terms what Enterprise Integration Patterns they wanted to use in
a simple domain-specific language. Using a convention over configuration approach,
developers would declaratively describe what they wanted to do, using the Enterprise
Integration Pattern language; it would be both quick and easy to get things done and

 www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORDxx

also very easy for any developer on a team (including the developer himself months
after writing the code!) to understand and adapt the code.

 There are many different places we wanted to use the EIPs; whether in a stand-
alone application, a web services stack, an enterprise message broker like Apache
ActiveMQ, or inside a full-blown ESB like Apache ServiceMix, so we wanted a light-
weight framework that was middleware agnostic that users could embed anywhere
they wanted it. We also wanted developers to focus on the Enterprise Integration Pat-
terns first and foremost and not to get lost in the weeds of different middleware APIs
and technologies.

 We also wanted developers to be able to use whatever DSL flavor they wished
(whether Java, XML, Groovy, Ruby, Scala, or whatever) and yet, at runtime, still be able
to introspect the framework and understand all of the EIPs that were being used. They
would be able to visualize the core patterns to the team at any point in the project life-
cycle, auto-document the patterns, or even support things like graphical editing of the
Enterprise Integration Patterns at design time or runtime.

 So Apache Camel was born, and since then we’ve seen the codebase, community,
and number of components, technologies, and data formats grow massively as more
and more developers have found Apache Camel an ideal way to design, implement,
and maintain the Enterprise Integration Patterns.

 In this book Claus and Jon describe the Enterprise Integration Patterns and the
concepts which underlie Apache Camel. Then they walk you through how to take the
concepts and apply them to many real-life scenarios to provide scalable and efficient
solutions that are easy to understand and quick to adapt to your integration needs. I
hope you’ll enjoy reading this book as much as I did!

 JAMES STRACHAN

 CO-FOUNDER OF APACHE ACTIVEMQ
 CAMEL, AND SERVICEMIX

 TECHNICAL DIRECTOR FUSESOURCE.COM

HTTP://MACSTRAC.BLOGSPOT.COM

 www.it-ebooks.info

HTTP://MACSTRAC.BLOGSPOT.COM
http://www.it-ebooks.info/

xxi

preface
Developers who have done integration work know what a difficult task it can be. IT sys-
tems may not have been designed to be accessible from other systems, and if they were
designed for interoperability, they may not speak the protocol you need. As a devel-
oper, you end up spending a considerable amount of time working with the plumbing
of the integration protocols to open up the IT systems to the outside world.

 In Enterprise Integration Patterns, Gregor Hohpe and Bobby Woolf gave us a standard
way to describe, document, and implement complex integration problems. Develop-
ers and architects alike can use this common language and catalog of solutions to
tackle their integration problems. But although Hohpe and Woolf gave us the theory,
the industry still needed an open source implementation of the book.

 James Strachan, Rob Davies, Guillaume Nodet, and Hiram Chirino, within the
open source communities of Apache ActiveMQ and Apache ServiceMix, brought the
idea of Camel to life. Apache Camel is essentially an implementation of the EIP book,
and in the summer of 2007 version 1.0 was released.

 Apache Camel is an integration framework whose main goal is to make integration
easier. It implements many of the EIP patterns and allows you to focus on solving busi-
ness problems, freeing you from the burden of plumbing. Using connectivity compo-
nents has never been easier, because you don’t have to implement JMS message
listeners or FTP clients, deal with converting data between protocols, or mess with the
raw details of HTTP requests. All of this is taken care of by Camel, which makes media-
tion and routing as easy as writing a few lines of Java code or XML in a Spring XML file.

 www.it-ebooks.info

http://www.it-ebooks.info/

PREFACExxii

 Apache Camel has since become very popular and today has an ever-growing com-
munity. As with many open source projects that become popular, a logical next step is
for someone to write a book about the project. Hadrian Zbarcea, the Project Manage-
ment Committee chair of the Apache Camel project, realized this, and in early 2009
he contacted Manning to discuss the need for such a book. Hadrian got in touch with
me (Claus Ibsen), inviting me in as a coauthor. It was perfect timing, as I was taking
over from James Strachan as the lead on Apache Camel. Later that year, Hadrian had
to step down as an author, but he invited Jonathan Anstey in as his replacement, to
ensure the project could continue.

 Jonathan and I are both integration specialists working for FuseSource, which is
the professional company that offers enterprise services around various Apache proj-
ects. This book is written by the people who wrote the Camel code, which ensures you
have the most updated Camel book on the market.

 Writing this book has been a very intense journey, proven by the fact that we were
able to complete the manuscript in a year. It took a long time to implement the exam-
ples and to ensure that the accompanying source code is of the highest standard. But
the result is a great source of examples that should inspire you to get the best out of
Camel, and it should be a good starting point for your Camel projects. While we were
writing this book, we were also implementing new features in Camel, which often
meant we had to go back and revise the material along the way. But we have kept up,
and this book uses the latest Camel release at the time of writing (Camel 2.5).

 We hope this book brings great value to you and helps you prosper in the Camel
community.

 CLAUS IBSEN

 www.it-ebooks.info

http://www.it-ebooks.info/

xxiii

acknowledgments
We first want to thank Cynthia Kane, our development editor at Manning, who put up
with our many missed deadlines and gave great feedback during the writing process.
We’d also like to thank our awesome copy editor, Andy Carroll, for catching an amaz-
ing number of grammatical errors in the early revisions of the book. The greater Man-
ning team deserves kudos as well; they’ve made for a very pleasant writing experience
over the past year and a half.

 Big thanks to our team of reviewers, who provided invaluable feedback during var-
ious stages of the book’s development: Bruce Snyder, Charles Moulliard, Christophe
Avare, Christopher Hunt, Domingo Suarez Torres, Doug Tillman, Fintan Bolton, Gor-
don Dickens, Gregor Hohpe, Jeroen Benckhuijsen, John S. Griffon, Kevin Jackson,
Marco Ughetti, Martin Gilday, Martin Krasser, Michael Nash, Mick Knutson, Roman
Kalukiewicz, Tijs Rademakers, and Willem Jiang.

 Special thanks to Willem Jiang for being our technical proofreader, catching those
bugs we missed, and helping improve the source code for the book.

 Thanks to Martin Krasser for contributing appendix E, which is all about using
Camel from the Akka project. We couldn’t think of a better person to write about
Camel and Akka.

 We’d also like to thank Hadrian Zbarcea for getting this book project started—who
knows when this book would have been written or by whom if he hadn’t gotten us
together!

 We’d like to thank Gregor Hohpe and James Strachan for writing the forewords to
our book. Gregor’s book, Enterprise Integration Patterns, has been one of our favorite

 www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTSxxiv

tech books for years now, so it’s an honor to have Gregor on board to write the fore-
word. Without the EIP book, Apache Camel would look a lot different than it does
today, if it existed at all.

 In our opinion, James is an inspiration to many developers out there—including
us. He has co-founded tons of successful open source projects; Camel is just one of
them. If James and the other Apache Camel co-founders had not decided to create
Camel, we wouldn’t be writing this book. So, again, thanks!

 Finally, we’d like to give a big warm thank you to the community. Without the com-
munity, the Apache Camel project wouldn’t be as successful as it is today. In fact, with-
out the success, both of us would have different kinds of jobs today, which wouldn’t
involve hacking on Camel all day along.

CLAUS

I would like to thank my beautiful wife, Christina, for her understanding of the long
hours I needed to spend during evenings and weekends working on the book. Knowing
that you would never let my hand go, that the family life is safe and secure, is exactly the
support any writer needs in taking up such a big challenge as writing a book.

 A warm thank you goes to our dog, Bambi, who patiently sleeps in my office, and occa-
sionally wakes up and politely “asks” me for a break and a walk. I must admit many of
the ideas and thoughts behind this book came to me during my walks with Bambi.

JON

I would like to thank my amazing wife, Lisa, for the patience, support, and encourage-
ment I needed throughout the writing of this book. It simply would not have hap-
pened if it wasn’t for you. To Georgia, my beautiful daughter: thank you for cheering
me up when the writing got the better of me. I love you both!

 www.it-ebooks.info

http://www.it-ebooks.info/

xxv

about this book
Apache Camel exists because integration is hard and Camel’s creators wanted to make
things easier for users. Camel’s online documentation serves as a reference for its
many features and components. In contrast, this book aims to guide readers through
these features, starting with the simple points and building up to advanced Camel
usage by the end of the book. Throughout the book, Camel’s features are put into
action in real-life scenarios.

Roadmap
The book is divided into three parts:

■ Part 1—First steps
■ Part 2—Core Camel
■ Part 3—Out in the wild

Part 1 starts off simple by introducing you to Camel’s core functionality and concepts,
and it presents some basic examples.

■ Chapter 1 introduces you to Camel and explains what Camel is and where it fits
into the bigger enterprise software picture. You’ll also learn the concepts and
terminology of Camel.

■ Chapter 2 covers Camel’s main feature, which is message routing. The Java DSL
and Spring DSL are covered as are several enterprise integration patterns
(EIPs). EIPs are basically canned solutions to integration problems.

 www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOKxxvi

Building on part 1’s foundation, part 2 covers the core features of Camel. You’ll need
many of these features when using Camel.

■ Chapter 3 explains how Camel can help you transform your data to different
formats while it’s being routed.

■ In chapter 4 we take a look at how you can use Java beans in Camel.
■ Chapter 5 covers all of Camel’s error-handling features.
■ In chapter 6 we look at the testing facilities shipped with Camel. You can use

these features for testing your own Camel applications or applications based on
other stacks.

■ Chapter 7 covers the most heavily used components among Camel’s large selec-
tion of components.

■ Chapter 8 looks in depth at five of the most complex EIPs.

In part 3 we cover the topics that are useful when you’ve gained a better understand-
ing of Camel from the earlier chapters.

■ Chapter 9 explains how you can use transactions in your Camel applications.
■ In chapter 10 we discuss how to deal with concurrency and scalability in your

Camel applications.
■ Chapter 11 explains how to create new Camel projects, which could be Camel

applications, custom components, or interceptors. This chapter doesn’t require
much additional Camel knowledge, so you could read this right after part 1.
The Scala DSL is also touched on here.

■ In chapter 12 we cover how to manage and monitor Camel applications.
Among other things, how to read the Camel logs and how to control Camel
with JMX are covered.

■ In chapter 13 we discuss the many ways to start and stop Camel. Deployment to
several of the most popular containers is also discussed.

■ Chapter 14 covers what we consider extra features of Camel: routing with beans
and using remoting to hide Camel APIs. We consider this extra because these
features do routing without using any of Camel’s DSLs and in some cases with
no Camel APIs. They take a different approach than what was discussed
throughout the book.

The appendixes at the end of the book contain useful reference material on the Sim-
ple expression language, expressions and predicates, the producer and consumer
templates, and the Camel community. Appendix E is written by Martin Krasser and
shows how to use Akka with Camel.

Who should read this book
We wrote this book primarily for developers who have found the online Camel docu-
mentation lacking and needed a guidebook that explained things in a more detailed
and organized way. Although we mainly targeted existing Camel users, Camel in Action

 www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xxvii

is a great way to start learning about Camel. Experienced engineers and architects are
also encouraged to read this book, as it explains advanced Camel concepts that you
just can’t find elsewhere. Test and Q&A engineers will find Camel and this book useful
as a means of driving tests that require communication with various transports and
APIs. System administrators, too, may find the management, monitoring, and deploy-
ment topics of great value.

 Camel’s features are focused on the enterprise business community and its needs,
but it’s also a generic and very useful integration toolkit. Any Java developer who
needs to send a message somewhere will probably find Camel and this book useful.

Code conventions
The code examples in this book are abbreviated in the interest of space. In particular,
some of the namespace declarations in the XML configurations and package imports
in Java classes have been omitted. We encourage you to use the source code when
working with the examples. The line lengths of some of the examples exceed the page
width, and in cases like these, the ➥ marker is used to indicate that a line has been
wrapped for formatting.

 All source code in listings or in text is in a fixed-width font like this to separate
it from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

Source code downloads
The source code for the examples in this book is available online from the publisher’s
website at http://www.manning.com/CamelinAction, as well as from this site: http://
code.google.com/p/camelinaction.

Software requirements
The following software is required to run the examples:

■ JDK 5 or better
■ Maven 2.2.1 or better
■ Apache Camel 2.5 or better

Apache Camel can be downloaded from its official website: http://camel.apache.org/
download.html.

 All the examples can be run using Maven. Chapter 1 shows you how to get started
with Maven and run the examples.

Author Online
The purchase of Camel in Action includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum and

 www.it-ebooks.info

http://www.manning.com/CamelinAction
http://code.google.com/p/camelinaction
http://code.google.com/p/camelinaction
http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://www.it-ebooks.info/

ABOUT THIS BOOKxxviii

subscribe to it, point your web browser to http://www.manning.com/CamelinAction.
This page provides information on how to get on the forum once you’re registered,
what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

 www.it-ebooks.info

http://www.manning.com/CamelinAction
http://www.it-ebooks.info/

xxix

about the cover illustration
The illustration on the cover of Camel in Action bears the caption “A Bedouin,” and is
taken from a collection of costumes of the Ottoman Empire published on Janu-
ary 1, 1802, by William Miller of Old Bond Street, London. The title page is missing
from the collection and we have been unable to track it down to date. The book’s
table of contents identifies the figures in both English and French, and each illustra-
tion also bears the names of two artists who worked on it, both of whom would no
doubt be surprised to find their art gracing the front cover of a computer program-
ming book. . .200 years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor did not have on his person the substantial amount of
cash that was required for the purchase and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening, the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed that
the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed by
this unknown person’s trust in one of us. It recalls something that might have hap-
pened a long time ago.

 www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE COVER ILLUSTRATIONxxx

 The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries
ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present. Dress codes have changed since
then and the diversity by region, so rich at the time, has faded away. It is now often
hard to tell the inhabitant of one continent from another. Perhaps, trying to view it
optimistically, we have traded a cultural and visual diversity for a more varied personal
life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.

 www.it-ebooks.info

http://www.it-ebooks.info/

xxxi

about the authors
CLAUS IBSEN has worked as a software engineer and architect for more than 13 years.
He has often worked with integration in various forms, from integrating with legacy
systems on AS/400s to building custom in-house integration frameworks. Claus has
designed and architected a large solution for custom clearance for the district of
Shanghai, China. He tracks the trends in the open source integration space and it led
him to Camel in late 2007. He became a committer in March 2008.

 He currently holds a position as principal software engineer at FuseSource, as proj-
ect lead on Apache Camel. Claus has ambitions to pick up speaking engagements, so
you will likely be able to catch up with him at various conferences.

 Claus lives in Sweden near Malmo with his wife and dog, which is spoiled as the
only child in the family. He is Danish by nationality.

JONATHAN ANSTEY is a software engineer with varied experience in manufacturing con-
trol systems, build infrastructure, and enterprise integration. He got involved in the
Apache Camel project in early 2008 and hasn’t looked back since. Most recently, Jon
has been working on Apache Camel and other Apache open source projects
at FuseSource.

 When Jon is not hacking on Camel, he likes to spend time with his wife and daugh-
ter in St. John’s, Newfoundland.

 www.it-ebooks.info

http://www.it-ebooks.info/

 www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

First steps

Apache Camel is an open source integration framework that aims to make
integrating systems easier. In the first chapter of this book we’ll introduce you to
Camel and show you how it fits into the bigger enterprise software picture. You’ll
also learn the concepts and terminology of Camel.

 Chapter 2 focuses on one of Camel’s most important features: message rout-
ing. Camel has two main ways of defining routing rules: the Java-based domain-
specific language (DSL) and the Spring XML configuration format. In addition
to these route-creation techniques, we’ll show you how to design and implement
solutions to enterprise integration problems using enterprise integration pat-
terns (EIPs) and Camel.

 www.it-ebooks.info

http://www.it-ebooks.info/

 www.it-ebooks.info

http://www.it-ebooks.info/

3

Meeting Camel

Building complex systems from scratch is a very costly endeavor, and one that’s almost
never successful. An effective and less risky alternative is to assemble a system like a
jigsaw puzzle from existing, proven components. We depend daily on a multitude of
such integrated systems, making possible everything from phone communications,
financial transactions, and healthcare to travel planning and entertainment.

 You can’t finalize a jigsaw puzzle until you have a complete set of pieces that plug
into each other simply, seamlessly, and robustly. That holds true for system integra-
tion projects as well. But whereas jigsaw puzzle pieces are made to plug into each
other, the systems we integrate rarely are. Integration frameworks aim to fill this gap.
As an integrator, you’re less concerned about how the system you integrate works and
more focused on how to interoperate with it from the outside. A good integration
framework provides simple, manageable abstractions for the complex systems you’re
integrating and the “glue” for plugging them together seamlessly.

 Apache Camel is such an integration framework. In this book, we’ll help you
understand what Camel is, how to use it, and why we think it’s one of the best inte-
gration frameworks out there.

This chapter covers
■ An introduction to Camel
■ Camel’s main features
■ Your first Camel ride
■ Camel’s architecture and concepts

 www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1 Meeting Camel

 This chapter will start off by introducing Camel and highlighting some of its core
features. We’ll then take a look at the Camel distribution and explain how you can run
the Camel examples in the book. We’ll round off the chapter by bringing core Camel
concepts to the table so you can understand Camel’s architecture.

 Are you ready? Let’s meet Camel.

1.1 Introducing Camel
Camel is an integration framework that aims to make your integration projects pro-
ductive and fun. The Camel project was started in early 2007, but although it’s rela-
tively young, Camel is already a mature open source project, available under the
liberal Apache 2 license, and it has a strong community.

 Camel’s focus is on simplifying integration. We’re confident that by the time you
finish reading these pages, you’ll appreciate Camel and add it to your “must have” list
of tools.

 The Apache Camel project was named Camel simply because the name is short
and easy to remember. Rumor has it the name may be inspired by the fact that one of
the founders once smoked Camel cigarettes. At the Camel website a FAQ entry
(http://camel.apache.org/why-the-name-camel.html) lists other lighthearted reasons
for the name.

1.1.1 What is Camel?
At the core of the Camel framework is a routing engine, or more precisely a routing-
engine builder. It allows you to define your own routing rules, decide from which
sources to accept messages, and determine how to process and send those messages to
other destinations. Camel uses an integration language that allows you to define com-
plex routing rules, akin to business processes.

 One of the fundamental principles of Camel is that it makes no assumptions about
the type of data you need to process. This is an important point, because it gives you,
the developer, an opportunity to integrate any kind of system, without the need to
convert your data to a canonical format.

 Camel offers higher-level abstractions that allow you to interact with various sys-
tems using the same API regardless of the protocol or data type the systems are using.
Components in Camel provide specific implementations of the API that target differ-
ent protocols and data types. Out of the box, Camel comes with support for over 80
protocols and data types. Its extensible and modular architecture allows you to imple-
ment and seamlessly plug in support for your own protocols, proprietary or not.
These architectural choices eliminate the need for unnecessary conversions and make
Camel not only faster but also very lean. As a result, it’s suitable for embedding into
other projects that require Camel’s rich processing capabilities. Other open source
projects, such as Apache ServiceMix and ActiveMQ, already use Camel as a way to
carry out enterprise integration.

 We should also mention what Camel isn’t. Camel isn’t an enterprise service bus
(ESB), although some call Camel a lightweight ESB because of its support for rout-
ing, transformation, monitoring, orchestration, and so forth. Camel doesn’t have a

 www.it-ebooks.info

http://camel.apache.org/why-the-name-camel.html
http://www.it-ebooks.info/

5Introducing Camel

container or a reliable message bus, but it can be deployed in one, such as Open-
ESB or the previously mentioned ServiceMix. For that reason, we prefer to call
Camel an integration framework rather than an ESB.

 To understand what Camel is, it helps to look at its main features. So let’s take a
look at them.

1.1.2 Why use Camel?
Camel introduces a few novel ideas into the integration space, which is why its authors
decided to create Camel in the first place, instead of using an existing framework.
We’ll explore the rich set of Camel features throughout the book, but these are the
main ideas behind Camel:

Let’s dive into the details of each of these features.

ROUTING AND MEDIATION ENGINE

The core feature of Camel is its routing and mediation engine. A routing engine will
selectively move a message around, based on the route’s configuration. In Camel’s
case, routes are configured with a combination of enterprise integration patterns and
a domain-specific language, both of which we’ll describe next.

ENTERPRISE INTEGRATION PATTERNS (EIPS)

Although integration problems are diverse, Gregor Hohpe and Bobby Woolf noticed
that many problems and their solutions are quite similar. They cataloged them
in their book Enterprise Integration Patterns, a must-read for any integration profes-
sional (http://www.enterpriseintegrationpatterns.com). If you haven’t read it, we
encourage you to do so. At the very least, it will help you understand Camel concepts
faster and easier.

 The enterprise integration patterns, or EIPs, are helpful not only because they pro-
vide a proven solution for a given problem, but also because they help define and
communicate the problem itself. Patterns have known semantics, which makes com-
municating problems much easier. The difference between using a pattern language
and describing the problem at hand is similar to using spoken language rather than
sign language. If you’ve ever visited a foreign country, you’ve probably experienced
the difference.

 Camel is heavily based on EIPs. Although EIPs describe integration problems and
solutions and also provide a common vocabulary, the vocabulary isn’t formalized.
Camel tries to close this gap by providing a language to describe the integration solu-
tions. There’s almost a one-to-one relationship between the patterns described in
Enterprise Integration Patterns and the Camel DSL.

■ Routing and mediation engine ■ Enterprise integration patterns (EIPs)

■ Domain-specific language (DSL) ■ Extensive component library

■ Payload-agnostic router ■ Modular and pluggable architecture

■ POJO model ■ Easy configuration

■ Automatic type converters ■ Lightweight core

■ Test kit ■ Vibrant community

 www.it-ebooks.info

http://www.enterpriseintegrationpatterns.com
http://www.it-ebooks.info/

6 CHAPTER 1 Meeting Camel

DOMAIN-SPECIFIC LANGUAGE (DSL)

Camel’s domain-specific language (DSL) is a major contribution to the integration
space. A few other integration frameworks currently feature a DSL (and some allow
you to use XML to describe routing rules), but unlike Camel their DSLs are based on
custom languages. Camel is unique because it offers multiple DSLs in regular pro-
gramming languages such as Java, Scala, Groovy, and it also allows routing rules to be
specified in XML.

 The purpose of the DSL is to allow the developer to focus on the integration problem
rather than on the tool—the programming language. Although Camel is written mostly
in Java, it does support mixing multiple programming languages. Each language has its
own strengths, and you may want to use different languages for different tasks. You have
the freedom to build a solution your own way with as few constraints as possible.

 Here are some examples of the DSL using different languages and staying func-
tionally equivalent:

■ Java DSL
from("file:data/inbox").to("jms:queue:order");

■ Spring DSL
<route>
 <from uri="file:data/inbox"/>
 <to uri="jms:queue:order"/>
</route>

■ Scala DSL
from "file:data/inbox" -> "jms:queue:order"

These examples are real code, and they show how easily you can route files from a
folder to a JMS queue. Because there’s a real programming language underneath, you
can use the existing tooling support, such as code completion and compiler error
detection, as illustrated in figure 1.1.

Figure 1.1 Camel DSLs use real programming languages like Java, so you can use existing tooling support.

 www.it-ebooks.info

http://www.it-ebooks.info/

7Introducing Camel

Here you can see how the Eclipse IDE’s autocomplete feature can give us a list of DSL
terms that are valid to use.

EXTENSIVE COMPONENT LIBRARY

Camel provides an extensive library of more than 80 components. These components
enable Camel to connect over transports, use APIs, and understand data formats.

PAYLOAD-AGNOSTIC ROUTER

Camel can route any kind of payload—you aren’t restricted to carrying XML payloads.
This freedom means that you don’t have to transform your payload into a canonical
format to facilitate routing.

MODULAR AND PLUGGABLE ARCHITECTURE

Camel has a modular architecture, which allows any component to be loaded into
Camel, regardless of whether the component ships with Camel, is from a third party,
or is your own custom creation.

POJO MODEL

Beans (or POJOs) are considered first-class citizens in Camel, and Camel strives to let
you use beans anywhere and anytime in your integration projects. This means that in
many places you can extend Camel’s built-in functionality with your own custom code.
Chapter 4 has a complete discussion of using beans within Camel.

EASY CONFIGURATION

The convention over configuration paradigm is followed whenever possible, which mini-
mizes configuration requirements. In order to configure endpoints directly in routes,
Camel uses an easy and intuitive URI configuration.

 For example, you could configure a file consumer to scan recursively in a sub-
folder and include only a .txt file, as follows:

from("file:data/inbox?recursive=true&include=*.txt")...

AUTOMATIC TYPE CONVERTERS

Camel has a built-in type-converter mechanism that ships with more than 150 convert-
ers. You no longer need to configure type-converter rules to go from byte arrays to
strings, for example. And if you find a need to convert to types that Camel doesn’t sup-
port, you can create your own type converter. The best part is that it works under the
hood, so you don’t have to worry about it.

 The Camel components also leverage this feature; they can accept data in most
types and convert the data to a type they’re capable of using. This feature is one of the
top favorites in the Camel community. You may even start wondering why it wasn’t
provided in Java itself! Chapter 3 covers more about type converters.

LIGHTWEIGHT CORE

Camel’s core can be considered pretty lightweight, with the total library coming in at
about 1.6 MB and only having a dependency on Apache Commons Logging and Fuse-
Source Commons Management. This makes Camel easy to embed or deploy anywhere
you like, such as in a standalone application, web application, Spring application, Java

 www.it-ebooks.info

http://www.it-ebooks.info/

8 CHAPTER 1 Meeting Camel

EE application, JBI container, OSGi bundle, Java Web Start, or on the Google App
engine. Camel was designed not to be a server or ESB but instead to be embedded in
whatever platform you choose.

TEST KIT

Camel provides a Test Kit that makes it easier for you to test your own Camel applica-
tions. The same Test Kit is used extensively to test Camel itself, and it includes more
than 6,000 unit tests. The Test Kit contains test-specific components that, for example,
can help you mock real endpoints. It also contains setup expectations that Camel can
use to determine whether an application satisfied the requirements or failed. Chap-
ter 6 covers testing with Camel.

VIBRANT COMMUNITY

Camel has an active community. This is essential if you intend to use any open source
project in your application. Inactive projects have little community support, so if you
run into issues, you’re on your own. With Camel, if you’re having any trouble, users
and developers alike will come to your aid promptly. For more information on
Camel’s community, see appendix D.

 Now that you’ve seen the main features that make up Camel, we’ll get a bit more
hands on by looking at the Camel distribution and trying out an example.

1.2 Getting started
In this section, we’ll show you how to get your hands on a Camel distribution, explain
what’s inside, and then run an example using Apache Maven. After this, you’ll know
how to run any of the examples from the book’s source code.

 Let’s first get the Camel distribution.

1.2.1 Getting Camel

Camel is available from the official Apache Camel website at http://
camel.apache.org/download.html. On that page you’ll see a list of all the Camel
releases and also the downloads for the latest release.

 For the purposes of this book, we’ll be using Camel 2.5.0. To get this version, click
on the Camel 2.5.0 Release link and near the bottom of the page you’ll find two
binary distributions: the zip distribution is for Windows users, and the tar.gz distribu-
tion is for Unix/Linux/Cygwin users. When you’ve downloaded one of the distribu-
tions, extract it to a location on your hard drive.

 Open up a command prompt, and go to the location where you extracted the
Camel distribution. Issuing a directory listing here will give you something like this:

janstey@mojo:~/apache-camel-2.5.0$ ls
doc examples lib LICENSE.txt NOTICE.txt README.txt

As you can see, the distribution is pretty small, and you can probably guess what each
directory contains already. Here are the details:

 www.it-ebooks.info

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://www.it-ebooks.info/

9Getting started

■ doc—Contains the Camel Manual in PDF and HTML formats. This user guide is
a download of a large portion of the Apache Camel wiki at the time of release.
As such, it’s a great reference for those not able to browse to the Camel website.

■ examples—Includes 27 Camel examples. You’ll see an example shortly.
■ lib—Contains all Camel libraries and third-party dependencies needed for the

core of Camel to run. You’ll see later in the chapter how Maven can be used to
easily grab dependencies for the components outside the core.

■ LICENSE.txt—Contains the license of the Camel distribution. Because this is an
Apache project, the license is the Apache License, version 2.0.

■ NOTICE.txt—Contains copyright information about the third-party dependen-
cies included in the Camel distribution.

■ README.txt—Contains a short intro to what Camel is and a list of helpful links
to get new users up and running fast.

Now let’s try out one of the Camel examples.

1.2.2 Your first Camel ride
So far, we’ve shown you how to get a Camel distribution and we’ve explored what’s
inside. At this point, feel free to explore the distribution; all examples have instruc-
tions to help you figure them out.

 From this point on, though, we won’t be using the distribution at all. The exam-
ples in the book’s source all use Apache Maven, which means that Camel libraries will
be downloaded automatically for you—there’s no need to make sure the Camel distri-
bution’s libraries are on the path, for example.

 You can get the book’s source code from either the book’s website, at http://
manning.com/ibsen or from the Google Code project that’s hosting the source:
http://code.google.com/p/camelinaction.

 The first example we’ll look at can
be considered the “hello world” of inte-
grations: routing files. Suppose you
need to read files from one directory
(data/inbox), process them in some
way, and write the result to another
directory (data/outbox). For simplic-
ity, you’ll skip the processing, so your
output will be merely a copy of the original file. Figure 1.2 illustrates this process.

 It looks pretty simple, right? Here’s a possible solution using pure Java (with no
Camel).

public class FileCopier {

 public static void main(String args[]) throws Exception {
 File inboxDirectory = new File("data/inbox");
 File outboxDirectory = new File("data/outbox");

Listing 1.1 Routing files from one folder to another in plain Java

Filedata/inbox data/outbox

Figure 1.2 Files are routed from the data/inbox
directory to the data/outbox directory.

 www.it-ebooks.info

http://manning.com/ibsen
http://manning.com/ibsen
http://code.google.com/p/camelinaction
http://www.it-ebooks.info/

10 CHAPTER 1 Meeting Camel

 outboxDirectory.mkdir();

 File[] files = inboxDirectory.listFiles();

 for (File source : files) {
 if (source.isFile()) {
 File dest = new File(
 outboxDirectory.getPath()
 + File.separator
 + source.getName());
 copyFIle(source, dest);
 }
 }
 }

 private static void copyFile(File source, File dest)
 throws IOException {
 OutputStream out = new FileOutputStream(dest);
 byte[] buffer = new byte[(int) source.length()];
 FileInputStream in = new FileInputStream(source);
 in.read(buffer);
 try {
 out.write(buffer);
 } finally {
 out.close();
 in.close();
 }
 }
}

The FileCopier example in listing 1.1 is a pretty simple use case, but it still results
in 34 lines of code. You have to use low-level file APIs and ensure that resources get
closed properly, a task that can easily go wrong. Also, if you wanted to poll the data/
inbox directory for new files, you’d need to set up a timer and also keep track of
which files you’ve already copied. This simple example is getting more complex.

 Integration tasks like these have been done thousands of times before—you
shouldn’t ever need to code something like this by hand. Let’s not reinvent the wheel
here. Let’s see what a polling solution looks like if you use an integration framework
like Apache Camel.

public class FileCopierWithCamel {
 public static void main(String args[]) throws Exception {
 CamelContext context = new DefaultCamelContext();
 context.addRoutes(new RouteBuilder() {
 public void configure() {
 from("file:data/inbox?noop=true")
 .to("file:data/outbox");
 }
 });
 context.start();

 Thread.sleep(10000);

 context.stop();
 }
}

Listing 1.2 Routing files from one folder to another with Apache Camel

B Routes files from
inbox to outbox

 www.it-ebooks.info

http://www.it-ebooks.info/

11Getting started

Most of this code is boilerplate stuff when using Camel. Every Camel application uses
a CamelContext that’s subsequently started and then stopped. You also add a sleep
method to allow your simple Camel application time to copy the files. What you
should really focus on in listing 1.2 is the route B.

 Routes in Camel are defined in such a way that they flow when read. This route can
be read like this: consume messages from file location data/inbox with the noop
option set, and send to file location data/outbox. The noop option tells Camel to
leave the source file as is. If you didn’t use this option, the file would be moved. Most
people who have never seen Camel before will be able to understand what this route
does. You may also want to note that, excluding the boilerplate code, you created a
file-polling route in just one line of Java code B.

 To run this example, you’ll need to download and install Apache Maven from the
Maven site at http://maven.apache.org/download.html. Once you have Maven up
and working, open a terminal and browse to the chapter1/file-copy directory of the
book’s source. If you take a directory listing here, you’ll see several things:

■ data—Contains the inbox directory, which itself contains a single file named
message1.xml.

■ src—Contains the source code for the listings shown in this chapter.
■ pom.xml—Contains information necessary to build the examples. This is the

Maven Project Object Model (POM) XML file.

NOTE We used Maven 2.2.1 during the development of the book. Newer ver-
sions of Maven may not work or appear exactly as we’ve shown.

The POM is shown here.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.camelinaction</groupId>
 <artifactId>chapter1</artifactId>
 <version>1.0</version>
 </parent>

 <artifactId>file-copy</artifactId>

 <name>Camel in Action :: Chapter 1 :: File Copy Example</name>

 <dependencies>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-core</artifactId>
 <version>${camel-version}</version>
 </dependency>
 </dependencies>
</project>

Listing 1.3 The Maven POM required to use Camel’s core library

Parent POMB

Camel’s
core library

C

 www.it-ebooks.info

http://maven.apache.org/download.html
http://www.it-ebooks.info/

12 CHAPTER 1 Meeting Camel

Maven itself is a complex topic, and we won’t go into great detail here. We’ll give you
enough information to be productive with the examples in this book. For an in-depth
look at Maven, we recommend reading Maven by Example and Maven: The Complete Ref-
erence, both of which are freely available from http://www.sonatype.com/book. We’ll
also discuss using Maven to develop Camel applications in chapter 11, so there’s a
good deal of information there too.

 The Maven POM in listing 1.3 is probably one of the shortest POMs you’ll ever
see—almost everything uses the defaults provided by Maven. Besides those defaults,
there are also some settings configured in the parent POM B. Probably the most
important section to point out here is the dependency on the Camel library C. This
dependency element tells Maven to do the following:

1 Create a search path based on the groupId, artifactId, and version. The ver-
sion element is set to the camel-version property, which is defined in the POM
referenced in the parent element B, and will resolve to 2.5.0. The type of depen-
dency was not specified, so the JAR file type will be assumed. The search path will
be org/apache/camel/camel-core/2.5.0/camel-core-2.5.0.jar.

2 Because listing 1.3 defined no special places for Maven to look for the Camel
dependencies, it will look in Maven’s central repository, located at http://
repo1.maven.org/maven2.

3 Combining the search path and the repository URL, Maven will try to down-
load http://repo1.maven.org/maven2/org/apache/camel/camel-core/2.5.0/
camel-core-2.5.0.jar.

4 This JAR will be saved to Maven’s local download cache, which is typically located
in the home directory under .m2/repository. This would be ~/.m2/repository on
Linux/Unix and C:\Documents and Settings\<Username>\.m2\ repository on
Windows XP, and C:\Users\<Username>\.m2\repository on Windows Vista/7.

5 When the application code in listing 1.2 is started, the Camel JAR will be added
to the classpath.

To run the example in listing 1.2, use the following command:

mvn compile exec:java -Dexec.mainClass=camelinaction.FileCopierWithCamel

This instructs Maven to compile the source in the src directory and to execute the
FileCopierWithCamel class with the camel-core JAR on the classpath.

NOTE In order to run any of the examples in this book you’ll need an Inter-
net connection. A broadband speed connection is preferable because Apache
Maven will download many JAR dependencies of the examples, some of which
are large. The whole set of examples will download about 140 MB of libraries.

Run the Maven command from the chapter1/file-copy directory, and after it completes,
browse to the data/outbox folder to see the file copy that has just been made. Congrat-
ulations, you’ve just run your first Camel example! It was a simple example, but knowing
how it’s set up will enable you to run pretty much any of the book’s examples.

 www.it-ebooks.info

http://www.sonatype.com/book
http://repo1.maven.org/maven2
http://repo1.maven.org/maven2
http://repo1.maven.org/maven2/org/apache/camel/camel-core/2.5.0/camel-core-2.5.0.jar
http://repo1.maven.org/maven2/org/apache/camel/camel-core/2.5.0/camel-core-2.5.0.jar
http://www.it-ebooks.info/

13Camel’s message model

 We now need to cover some Camel basics and the integration space in general to
ensure that you’re well prepared for using Camel. We’ll turn our attention to the mes-
sage model, the architecture, and a few other Camel concepts. Most of the abstrac-
tions are based on known service-oriented architecture (SOA) and EIP concepts and
retain their names and semantics. We’ll start with Camel’s message model.

1.3 Camel’s message model
In Camel, there are two abstractions for modeling messages, both of which we’ll cover
in this section.

■ org.apache.camel.Message—The fundamental entity containing the data
being carried and routed in Camel

■ org.apache.camel.Exchange—The Camel abstraction for an exchange of mes-
sages. This exchange of messages has an “in” message and as a reply, an “out”
message

We’ll start by looking at Message to understand how data is modeled and carried in
Camel. Then we’ll look at how a “conversation” is modeled in Camel by the Exchange.

1.3.1 Message
Messages are the entities used by systems to communicate with each other when using
messaging channels. Messages flow in
one direction from a sender to a
receiver, as illustrated in figure 1.3.

 Messages have a body (a payload),
headers, and optional attachments, as
illustrated in figure 1.4.

 Messages are uniquely identified with an identifier of type
java.lang.String. The identifier’s uniqueness is enforced
and guaranteed by the message creator, it’s protocol depen-
dent, and it doesn’t have a guaranteed format. For protocols
that don’t define a unique message identification scheme,
Camel uses its own UID generator.

HEADERS AND ATTACHMENTS

Headers are values associated with the message, such as sender
identifiers, hints about content encoding, authentication infor-
mation, and so on. Headers are name-value pairs; the name is a
unique, case-insensitive string, and the value is of type java.
lang.Object. This means that Camel imposes no constraints on
the type of the headers. Headers are stored as a map within the
message. A message can also have optional attachments, which
are typically used for the web service and email components.

Sender Receiver

Message

Figure 1.3 Messages are entities used to send data
from one system to another.

Headers

Attachments

Body

Message

Figure 1.4
A message can contain
headers, attachments,
and a body.

 www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1 Meeting Camel

BODY

The body is of type java.lang.Object. That means that a message can store any kind
of content. It also means that it’s up to the application designer to make sure that the
receiver can understand the content of the message. When the sender and receiver
use different body formats, Camel provides a number of mechanisms to transform the
data into an acceptable format, and in many cases the conversion happens automati-
cally with type converters, behind the scenes.

FAULT FLAG

Messages also have a fault flag. Some protocols and specifications, such as WSDL and
JBI, distinguish between output and fault messages. They’re both valid responses to
invoking an operation, but the latter indicates an unsuccessful outcome. In general,
faults aren’t handled by the integration infrastructure. They’re part of the contract
between the client and the server and are handled at the application level.

 During routing, messages are contained in an exchange.

1.3.2 Exchange

An exchange in Camel is the message’s container during routing. An exchange also
provides support for the various types of interactions between systems, also known as
message exchange patterns (MEPs). MEPs are used to differentiate between one-way
and request-response messaging styles. The Camel exchange holds a pattern property
that can be either

■ InOnly—A one-way message (also known as an Event message). For example, JMS
messaging is often one-way messaging.

■ InOut—A request-response message. For
example, HTTP-based transports are often
request reply, where a client requests to
retrieve a web page, waiting for the reply
from the server.

Figure 1.5 illustrates the contents of an exchange
in Camel.

 Let’s look at the elements of figure 1.5 in
more detail:

■ Exchange ID—A unique ID that identifies
the exchange. Camel will generate a default
unique ID, if you don’t explicitly set one.

■ MEP—A pattern that denotes whether
you’re using the InOnly or InOut messag-
ing style. When the pattern is InOnly, the
exchange contains an in message. For
InOut, an out message also exists that con-
tains the reply message for the caller.

Exchange

Headers

Attachments

Body

Out message

Headers

Attachments

Body

In message

Exchange ID MEP

Exception Properties

Figure 1.5 A Camel exchange has an ID,
MEP, exception, and properties. It also
has an in message to store the incoming
message and an out message to store
the result.

 www.it-ebooks.info

http://www.it-ebooks.info/

15Camel’s architecture

■ Exception—If an error occurs at any time during routing, an Exception will be
set in the exception field.

■ Properties—Similar to message headers, but they last for the duration of the
entire exchange. Properties are used to contain global-level information,
whereas message headers are specific to a particular message. Camel itself will
add various properties to the exchange during routing. You, as a developer, can
store and retrieve properties at any point during the lifetime of an exchange.

■ In message—This is the input message, which is mandatory. The in message con-
tains the request message.

■ Out message—This is an optional message that only exists if the MEP is InOut.
The out message contains the reply message.

We discussed Camel’s message model before the architecture because we wanted you
to have a solid understanding of what a message is in Camel. After all, the most impor-
tant aspect of Camel is routing messages. You’re now well prepared to learn more
about Camel and its architecture.

1.4 Camel’s architecture
Let’s now turn our attention to Camel’s architecture. We’ll first take a look at the high-
level architecture and then drill down into the specific concepts. After you’ve read
this section, you should be caught up on the integration lingo and be ready for chap-
ter 2, where we’ll explore Camel’s routing capabilities.

1.4.1 Architecture from 10,000 feet

We think that architectures are best viewed first from high above. Figure 1.6 shows a
high-level view of the main concepts that make up Camel’s architecture.

Content-based router
processor

Message filter
processor

...

...

CamelContext

File HTTP JMS

Route 1

Route 2

Route N
from("file:c:\dir")
 .filter()
 .xpath(expression)
 .to("jms :aQueue");

Components

• Provide a uniform
endpoint interface

• Connect to other systems

Processors

Handle things in
between endpoints
like
• EIPs
• Routing
• Transformation
• Mediation
• Enrichment
• Validation
• Interception

Routing engine

A DSL wires
endpoints and
processors
together to form
routes.

Figure 1.6 At a high level, Camel is composed of processors, components, and routes. All of these are
contained within the CamelContext.

 www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 1 Meeting Camel

The routing engine uses routes as specifications for where messages are routed.
Routes are defined using one of Camel’s domain-specific languages (DSLs). Proces-
sors are used to transform and manipulate messages during routing and also to
implement all the EIP patterns, which have corresponding keywords in the DSL lan-
guages. Components are the extension points in Camel for adding connectivity to
other systems. To expose these systems to the rest of Camel, components provide an
endpoint interface.

 With that high-level view out of the way, let’s take a closer look at the individual
concepts in figure 1.6.

1.4.2 Camel concepts

Figure 1.6 revealed many new concepts, so let’s take some time to go over them one by
one. We’ll start with the CamelContext, which is Camel’s runtime.

CAMELCONTEXT

You may have guessed that the Camel-
Context is a container of sorts, judging
from figure 1.6. You can think of it as
Camel’s runtime system, which keeps
all the pieces together.

 Figure 1.7 shows the most notable
services that the CamelContext keeps
together.

 As you can see from figure 1.7, there
are a lot of services for the Camel-
Context to keep track of. These are
described in table 1.1.

 The details of each of these services will be discussed throughout the book. Let’s
now take a look at routes and Camel’s routing engine.

Table 1.1 The services that the CamelContext provides

Service Description

Components Contains the components used. Camel is capable of loading components on the fly
either by autodiscovery on the classpath or when a new bundle is activated in an OSGi
container. In chapter 7 we’ll discuss components in more detail.

Endpoints Contains the endpoints that have been created.

Routes Contains the routes that have been added. We’ll cover routes in chapter 2.

Type
converters

Contains the loaded type converters. Camel has a mechanism that allows you to manu-
ally or automatically convert from one type to another. Type converters are covered in
chapter 3.

Data formats Contains the loaded data formats. Data formats are covered in chapter 3.

Components

CamelContext

Endpoints Routes

Type
converters

Registry

Data formats

Languages

Figure 1.7 The CamelContext provides
access to many useful services, the most notable
being components, type converters, a registry,
endpoints, routes, data formats, and languages.

 www.it-ebooks.info

http://www.it-ebooks.info/

17Camel’s architecture

ROUTING ENGINE

Camel’s routing engine is what actually moves messages under the hood. This engine
isn’t exposed to the developer, but you should be aware that it’s there and that it does
all the heavy lifting, ensuring that messages are routed properly.

ROUTES

Routes are obviously a core abstraction for Camel. The simplest way to define a route
is as a chain of processors. There are many reasons for using routers in messaging appli-
cations. By decoupling clients from servers, and producers from consumers, routes can

■ Decide dynamically what server a client will invoke
■ Provide a flexible way to add extra processing
■ Allow for clients and servers to be developed independently
■ Allow for clients of servers to be stubbed out (using mocks) for testing purposes
■ Foster better design practices by connecting disparate systems that do one

thing well
■ Enhance features and functionality of some systems (such as message brokers

and ESBs)

Each route in Camel has a unique identifier that’s used for logging, debugging, moni-
toring, and starting and stopping routes. Routes also have exactly one input source for
messages, so they’re effectively tied to an input endpoint.

 To define a route, a DSL is used.

DOMAIN-SPECIFIC LANGUAGE (DSL)

To wire processors and endpoints together to form routes, Camel defines a DSL. The
term DSL is used a bit loosely here. In Camel, DSL means a fluent Java API that con-
tains methods named for EIP terms.

 Consider this example:

from("file:data/inbox")
 .filter().xpath("/order[not(@test)]")
 .to("jms:queue:order")

Here, in a single Java statement, you define a route that consumes files from a file end-
point. Messages are then routed to the filter EIP, which will use an XPath predicate to

Registry Contains a registry that allows you to look up beans. By default, this will be a JNDI registry.
If you’re using Camel from Spring, this will be the Spring ApplicationContext. It can
also be an OSGi registry if you use Camel in an OSGi container. We’ll cover registries in
chapter 4.

Languages Contains the loaded languages. Camel allows you to use many different languages to
create expressions. You’ll get a glimpse of the XPath language in action when we cover
the DSL. A complete reference to Camel’s own Simple expression language is available
in appendix A.

Table 1.1 The services that the CamelContext provides (continued)

Service Description

 www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 1 Meeting Camel

test whether the message is a test order or not. If a message passes the test, it’s for-
warded to the JMS endpoint. Messages failing the filter test will be dropped.

 Camel provides multiple DSL languages, so you could define the same route using
the Spring DSL, like this:

<route>
 <from uri="file:data/inbox"/>
 <filter>
 <xpath>/order[not(@test)]</xpath>
 <to uri="jms:queue:order"/>
 </filter>
</route>

The DSLs provide a nice abstraction for Camel users to build applications with. Under
the hood, though, a route is actually composed of a graph of processors. Let’s take a
moment to see what a processor really is.

PROCESSOR

The processor is a core Camel concept that represents a node capable of using, creat-
ing, or modifying an incoming exchange. During routing, exchanges flow from one
processor to another; as such, you can think of a route as a graph having specialized
processors as the nodes, and lines that connect the output of one processor to the
input of another. Many of the processors are implementations of EIPs, but one could
easily implement their own custom processor and insert it into a route.

 So how do exchanges get in or out of this processor graph? To find out, we’ll need
to look at both components and endpoints.

COMPONENT

Components are the main extension point in Camel. To date, there are over 80 com-
ponents in the Camel ecosystem that range in function from data transports, to DSLs,
data formats, and so on. You can even create your own components for Camel—we’ll
discuss this in chapter 11.

 From a programming point of view, components are fairly simple: they’re associ-
ated with a name that’s used in a URI, and they act as a factory of endpoints. For exam-
ple, a FileComponent is referred to by file in a URI, and it creates FileEndpoints.
The endpoint is perhaps an even more fundamental concept in Camel.

ENDPOINT

An endpoint is the Camel abstraction that models the end of a channel through
which a system can send or receive messages. This is illustrated in figure 1.8.

Data Message
endpoint

Sender
application

Receiver
application

Message
endpoint

Data
Message Channel

Figure 1.8
An endpoint acts as
a neutral interface
allowing systems
to integrate.

 www.it-ebooks.info

http://www.it-ebooks.info/

19Camel’s architecture

In Camel, you configure endpoints using URIs,
such as file:data/inbox?delay=5000, and you
also refer to endpoints this way. At runtime,
Camel will look up an endpoint based on the URI
notation. Figure 1.9 shows how this works.

 The scheme B denotes which Camel compo-
nent handles that type of endpoint. In this case,
the scheme of file selects the FileComponent.
The FileComponent then works as a factory creat-
ing the FileEndpoint based on the remaining parts of the URI. The context path data/
inbox C tells the FileComponent that the starting folder is data/inbox. The option,
delay=5000 D indicates that files should be polled at a 5 second interval.

 There’s more to an endpoint than meets the eye. Figure 1.10 shows how an end-
point works together with an exchange, producers, and consumers.

 At first glance, figure 1.10 may seem a bit overwhelming, but it will all make sense
in a few minutes. In a nutshell, an endpoint acts as a factory for creating consumers
and producers that are capable of receiving and sending messages to a particular end-
point. We didn’t mention producers or consumers in the high-level view of Camel in
figure 1.6, but they’re important concepts. We’ll go over them next.

PRODUCER

A producer is the Camel abstraction that
refers to an entity capable of creating and
sending a message to an endpoint. Fig-
ure 1.10 illustrates where the producer fits
in with other Camel concepts.

 When a message needs to be sent to an
endpoint, the producer will create an
exchange and populate it with data compat-
ible with that particular endpoint. For
example, a FileProducer will write the mes-
sage body to a file. A JmsProducer, on the
other hand, will map the Camel message to
a javax.jms.Message before sending it to a
JMS destination. This is an important fea-
ture in Camel, because it hides the com-
plexity of interacting with particular
transports. All you need to do is route a mes-
sage to an endpoint, and the producer does
the heavy lifting.

file:data/inbox?delay=5000

Scheme Context path Options

B C D

Figure 1.9 Endpoint URIs are divided
into three parts: a scheme, a context
path, and options.

Endpoint Exchange

Consumer Producer

Processor

Creates

Creates Creates
Creates

Uses

Uses Uses

Figure 1.10 How endpoints work with
producers, consumers, and an exchange

 www.it-ebooks.info

http://www.it-ebooks.info/

20 CHAPTER 1 Meeting Camel

CONSUMER

A consumer is the service that receives messages produced by a producer, wraps them
in an exchange, and sends them to be processed. Consumers are the source of the
exchanges being routed in Camel.

 Looking back at figure 1.10, we can see where the consumer fits in with other
Camel concepts. To create a new exchange, a consumer will use the endpoint that
wraps the payload being consumed. A processor is then used to initiate the routing of
the exchange in Camel using the routing engine.

 In Camel there are two kinds of consumers: event-driven consumers and polling
consumers. The differences between these consumers are important, because they
help solve different problems.

EVENT-DRIVEN CONSUMER

The most familiar consumer is probably
the event-driven consumer, which is
illustrated in figure 1.11.

 This kind of consumer is mostly
associated with client-server architec-
tures and web services. It’s also referred
to as an asynchronous receiver in the EIP
world. An event-driven consumer listens
on a particular messaging channel, usu-
ally a TCP/IP port or a JMS queue, and waits for a client to send messages to it. When a
message arrives, the consumer wakes up and takes the message for processing.

POLLING CONSUMER

The other kind of consumer is the poll-
ing consumer illustrated in figure 1.12.

 In contrast to the event-driven con-
sumer, the polling consumer actively
goes and fetches messages from a partic-
ular source, such as an FTP server. The
polling consumer is also known as a syn-
chronous receiver in EIP lingo, because it
won’t poll for more messages until it has finished processing the current message. A com-
mon flavor of the polling consumer is the scheduled polling consumer, which polls at
scheduled intervals. File, FTP, and email transports all use scheduled polling consumers.

 We’ve now covered all of Camel’s core concepts. With this new knowledge, you can
revisit your first Camel ride and see what’s really happening.

1.5 Your first Camel ride, revisited
Recall that in your first Camel ride (section 1.2.2), you read files from one directory
(data/inbox) and wrote the results to another directory (data/outbox). Now that you
know the core Camel concepts, you can put this example in perspective.

Sender
Event driven

consumerMessage

Receiver

Figure 1.11 An event-driven consumer waits idle
until a message arrives, at which point it wakes up
and consumes the message.

Sender
Polling

consumerMessage

Receiver

Figure 1.12 A polling consumer actively checks
for new messages.

 www.it-ebooks.info

http://www.it-ebooks.info/

21Summary

 Take another look at the Camel application.

public class FileCopierWithCamel {
 public static void main(String args[]) throws Exception {
 CamelContext context = new DefaultCamelContext();
 context.addRoutes(new RouteBuilder() {
 public void configure() {
 from("file:data/inbox?noop=true")
 .to("file:data/outbox");
 }
 });
 context.start();

 Thread.sleep(10000);

 context.stop();
 }
}

In this example, you first create a CamelContext, which is the Camel runtime. You
then add the routing logic using a RouteBuilder and the Java DSL B. By using the
DSL, you can cleanly and concisely let Camel instantiate components, endpoints, con-
sumers, producers, and so on. All you have to focus on is defining the routes that mat-
ter for your integration projects. Under the hood, though, Camel is accessing the
FileComponent, and using it as a factory to create the endpoint and its producer. The
same FileComponent is used to create the consumer side as well.

1.6 Summary
In this chapter you met Camel. You saw how Camel simplifies integration by relying
on known EIPs. You also saw Camel’s DSL, which aims to make Camel code self docu-
menting and keeps developers focused on what the glue code does, not how it does it.

 We covered Camel’s main features, what Camel is and isn’t, and where it can be
used. We looked at how Camel provides abstractions and an API that work over a large
range of protocols and data formats.

 At this point, you should have a good understanding of what Camel does and what
the concepts behind Camel are. Soon you’ll be able to confidently browse Camel
applications and get a good idea of what they do.

 In the rest of the book, we’ll explore Camel’s features and give you practical solu-
tions you can apply in everyday integration scenarios. We’ll also explain what’s going
on under Camel’s tough skin. To make sure that you get the main concepts from each
chapter, from now on we’ll present you with a number of best practices and key points
in the summary.

 In the next chapter, we’ll investigate routing, which is an essential feature and a
fun one to learn.

Listing 1.4 Routing files from one folder to another with Apache Camel

B Java DSL
route

 www.it-ebooks.info

http://www.it-ebooks.info/

22

Routing with Camel

One of the most important features of Camel is routing; without it, Camel would
essentially be a library of transport connectors. In this chapter, we’ll dive into rout-
ing with Camel.

 Routing happens in many aspects of everyday life. When you mail a letter, for
instance, it may be routed through several cities before reaching its final address.
An email you send will be routed through many different computer network sys-
tems before reaching its final destination. In all cases, the router’s function is to
selectively move the message forward.

 In the context of enterprise messaging systems, routing is the process by which a
message is taken from an input queue and, based on a set of conditions, sent to one
of several output queues, as shown in figure 2.1. This effectively means that the

This chapter covers
■ An overview of routing
■ Introducing the Rider Auto Parts scenario
■ The basics of FTP and JMS endpoints
■ Creating routes using the Java DSL
■ Configuring routes from Spring
■ Routing using enterprise integration patterns (EIPs)

 www.it-ebooks.info

http://www.it-ebooks.info/

23Introducing Rider Auto Parts

input and output queues are unaware of the conditions in between them. The condi-
tional logic is decoupled from the message consumer and producer.

 In Apache Camel, routing is a more general concept. It’s defined as a step-by-step
movement of the message, which originates from an endpoint in the role of a con-
sumer. The consumer could be receiving the message from an external service, poll-
ing for the message on some system, or even creating the message itself. This message
then flows through a processing component, which could be an enterprise integration
pattern (EIP), a processor, an interceptor, or some other custom creation. The mes-
sage is finally sent to a target endpoint that’s in the role of a producer. A route may
have many processing components that modify the message or send it to another loca-
tion, or it may have none, in which case it would be a simple pipeline.

 In this chapter, we’ll first introduce the fictional company that we’ll use as the run-
ning example throughout the book. To support this company’s use case, you’ll learn
how to communicate over FTP and Java Message Service (JMS) using Camel’s end-
points. Following this, we’ll look in depth at the Java-based domain-specific language
(DSL) and the Spring-based configuration format for creating routes. We’ll also give
you a glimpse of how to design and implement solutions to enterprise integration
problems using EIPs and Camel. By the end of the chapter, you’ll be proficient
enough to create useful routing applications with Camel.

 To start, let’s look at the example company that we’ll use to demonstrate the con-
cepts throughout the book.

2.1 Introducing Rider Auto Parts
Our fictional motorcycle parts business, Rider Auto Parts, supplies parts to motorcycle
manufacturers. Over the years, they’ve changed the way they receive orders several
times. Initially, orders were placed by uploading comma-separated value (CSV) files to
an FTP server. The message format was later changed to XML. Currently they provide a
website through which orders are submitted as XML messages over HTTP.

 Rider Auto Parts asks new customers to use the web interface to place orders, but
because of service level agreements (SLAs) with existing customers, they must keep all
the old message formats and interfaces up and running. All of these messages are con-
verted to an internal Plain Old Java Object (POJO) format before processing. A high-
level view of the order processing system is shown in figure 2.2.

inQueue

Message router

outQueue1

outQueue2

Figure 2.1 A message
router consumes
messages from an input
channel and, depending on
a set of conditions, sends
the message to one of a
set of output channels.

 www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 2 Routing with Camel

Rider Auto Parts faces a pretty common problem: over years of operation, they have
acquired software baggage in the form of transports and data formats that were popu-
lar at the time. This is no problem for an integration framework like Camel, though.
In this chapter, and throughout the book, you’ll help Rider Auto Parts implement
their current requirements and new functionality using Camel.

 As a first assignment, you’ll need to implement the FTP module in the Rider order
frontend system. Later in the chapter, you’ll see how backend services are imple-
mented too. Implementing the FTP module will involve the following steps:

1 Polling the FTP server and downloading new orders
2 Converting the order files to JMS messages
3 Sending the messages to the JMS incomingOrders queue

To complete steps 1 and 3, you’ll need to understand how to communicate over FTP
and JMS using Camel’s endpoints. To complete the entire assignment, you’ll need to
understand routing with the Java DSL. Let’s first take a look at how you can use
Camel’s endpoints.

2.2 Understanding endpoints
As you read in chapter 1, an endpoint is an abstraction that models the end of a mes-
sage channel through which a system can send or receive messages. In this section,
we’re going to explain how you can use URIs to configure Camel to communicate over
FTP and JMS. Let’s first look at FTP.

2.2.1 Working with files over FTP

One of the things that make Camel easy to use is the endpoint URI. By specifying a
URI, you can identify the component you want to use and how that component is con-
figured. You can then decide to either send messages to the component configured by
this URI, or to consume messages from it.

 Take your first Rider Auto Parts assignment, for example. To download new orders
from the FTP server, you need to do the following:

Rider Auto
Parts web

store

User

FTP

HTTP

Rider order
frontend

Rider order
backend

JMS

Figure 2.2 A customer has two ways of submitting orders to the Rider Auto Parts order-handling
system: either by uploading the raw order file to an FTP server or by submitting an order through the
Rider Auto Parts web store. All orders are eventually sent via JMS for processing at Rider Auto Parts.

 www.it-ebooks.info

http://www.it-ebooks.info/

25Understanding endpoints

1 Connect to the rider.com FTP server on the default FTP port of 21
2 Provide a username of “rider” and password of “secret”
3 Change the directory to “orders”
4 Download any new order files

As shown in figure 2.3, you can easily configure Camel to do this by using URI notation.
 Camel will first look up the ftp scheme in the component registry, which will

resolve to the FtpComponent. The FtpComponent then works as a factory, creating the
FtpEndpoint based on the remaining context path and options.

 The context path of rider.com/orders tells the FtpComponent that it should log
into the FTP server at rider.com on the default FTP port and change the directory to
“orders”. Finally, the only options specified are username and password, which are
used to log in to the FTP server.

TIP For the FTP component, you can also specify the username and pass-
word in the context path of the URI. So the following URI is equivalent to the
one in figure 2.3: ftp://rider:secret@rider.com/orders.

 The FtpComponent isn’t part of the camel-core module, so you have to add an addi-
tional dependency to your project. Using Maven you just have to add the following
dependency to the POM:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ftp</artifactId>
 <version>2.5.0</version>
</dependency>

Although this endpoint URI would work equally well in a consumer or producer sce-
nario, you’ll be using it to download orders from the FTP server. To do so, you need to
use it in a from node of Camel’s DSL:

from("ftp://rider.com/orders?username=rider&password=secret")

That’s all you need to do to consume files from an FTP server.
 The next thing you need to do, as you may recall from figure 2.2, is send the orders

you downloaded from the FTP server to a JMS queue. This process requires a little
more setup, but it’s still easy.

ftp://rider.com/orders?username rider&password secret

Scheme Context path Options

Figure 2.3 A Camel endpoint URI consists of three parts: a scheme, a context
path, and a list of options.

 www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 2 Routing with Camel

2.2.2 Sending to a JMS queue

Camel provides extensive support for connecting to JMS-enabled providers, and we’ll
cover all the details in chapter 7. For now, though, we’re just going to cover enough so
that you can complete your first task for Rider Auto Parts. Recall that you need to
download orders from an FTP server and send them to a JMS queue.

WHAT IS JMS?

JMS (Java Message Service) is a Java API that allows you to create, send, receive, and
read messages. It also mandates that messaging is asynchronous and has specific ele-
ments of reliability, like guaranteed and once-and-only-once delivery. JMS is the de
facto messaging solution in the Java community.

 In JMS, message consumers and producers talk to one another through an inter-
mediary—a JMS destination. As shown in figure 2.4, a destination can be either a
queue or a topic. Queues are strictly point-to-point, where each message has only one
consumer. Topics operate on a publish/subscribe scheme; a single message may be
delivered to many consumers if they have subscribed to the topic.

JMS also provides a ConnectionFactory that clients (like Camel) can use to cre-
ate a connection with a JMS provider. JMS providers are usually referred to as brokers
because they manage the communication between a message producer and a mes-
sage consumer.

HOW TO CONFIGURE CAMEL TO USE A JMS PROVIDER

To connect Camel to a specific JMS provider, you need to configure Camel’s JMS com-
ponent with an appropriate ConnectionFactory.

 Apache ActiveMQ is one of the most popular open source JMS providers, and it’s
the primary JMS broker that the Camel team uses to test the JMS component. As such,
we’ll be using it to demonstrate JMS concepts within the book. For more information
on Apache ActiveMQ, we recommend ActiveMQ in Action by Bruce Snyder, Dejan
Bosanac, and Rob Davies, available from Manning Publications.

Client A Client BQueue

Client C

Client D

Topic

Subscribes

Delivers

Client E
Subscribes

Delivers

ConsumesSends

Publishes

Figure 2.4 There are two types of JMS destinations: queues and topics. The queue is a point-to-point
channel, where each message has only one recipient. A topic delivers a copy of the message to all clients
who have subscribed to receive it.

 www.it-ebooks.info

http://www.it-ebooks.info/

27Understanding endpoints

So in the case of Apache ActiveMQ, you can create an ActiveMQConnectionFactory
that points to the location of the running ActiveMQ broker:

ConnectionFactory connectionFactory =
 new ActiveMQConnectionFactory("vm://localhost");

The vm://localhost URI means that you should connect to an embedded broker
named “localhost” running inside the current JVM. The vm transport connector in
ActiveMQ creates a broker on demand if one isn’t running already, so it’s very handy
for quickly testing JMS applications; for production scenarios, it’s recommended that
you connect to a broker that’s already running. Furthermore, in production scenarios
we recommend that connection pooling be used when connecting to a JMS broker.
See chapter 7 for details on these alternate configurations.

 Next, when you create your CamelContext, you can add the JMS component as
follows:

CamelContext context = new DefaultCamelContext();
context.addComponent("jms",
 JmsComponent.jmsComponentAutoAcknowledge(connectionFactory));

The JMS component and the ActiveMQ-specific connection factory aren’t part of the
camel-core module. In order to use these, you’ll need to add some dependencies to
your Maven-based project. For the plain JMS component, all you have to add is this:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jms</artifactId>
 <version>2.5.0</version>
</dependency>

The connection factory comes directly from ActiveMQ, so you’ll need the following
dependency:

<dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>activemq-core</artifactId>
 <version>5.3.2</version>
</dependency>

Now that you’ve configured the JMS component to connect to an actual JMS broker,
it’s time to look at how URIs can be used to specify the destination.

USING URIS TO SPECIFY THE DESTINATION

Once the JMS component is configured, you can start sending and receiving JMS mes-
sages at your leisure. Because you’re using URIs, this is a real breeze to configure.

 Let’s say you want to send a JMS message to the queue named incomingOrders.
The URI in this case would be

jms:queue:incomingOrders

This is pretty self-explanatory. The “jms” prefix indicates that you’re using the JMS
component you configured before. By specifying “queue”, the JMS component knows

 www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2 Routing with Camel

to send to a queue named incomingOrders. You could even have omitted the queue
qualifier, because the default behavior is to send to a queue rather than a topic.

NOTE Some endpoints can have an intimidating list of endpoint URI proper-
ties. For instance, the JMS component has about 60 options, many of which are
only used in specific JMS scenarios. Camel always tries to provide built-in
defaults that fit most cases, and you can always find out what the default values
are by browsing to the component’s page in the online Camel documentation.
The JMS component is discussed here: http://camel.apache.org/jms.html.

Using Camel’s Java DSL, you can send a message to the incomingOrders queue by
using the to keyword like this:

...to("jms:queue:incomingOrders")

This can be read as sending to the JMS queue named incomingOrders.
 Now that you know the basics of communicating over FTP and JMS with Camel, you

can get back to the routing theme of this chapter and start routing some messages!

2.3 Creating routes in Java
In chapter 1, you saw how each CamelContext can contain multiple routes and also
how a RouteBuilder could be used to create a route. It may not have been obvious,
though, that the RouteBuilder isn’t the final route that the CamelContext will use at
runtime; it’s a builder of one or more routes, which are then added to the CamelCon-
text. This is illustrated in figure 2.5.

 The addRoutes method of the CamelContext accepts a RoutesBuilder, not just a
RouteBuilder. The RoutesBuilder interface has a single method defined:

void addRoutesToCamelContext(CamelContext context) throws Exception;

This means that you could use your own custom class to build Camel routes. The most
common way to build routes, though, is to use the RouteBuilder class, which imple-
ments RoutesBuilder. The RouteBuilder class also gives you access to Camel’s Java
DSL for route creation.

 In the next sections, you’ll learn how to use a RouteBuilder and the Java DSL to
create simple routes. Once you know that, you’ll be well prepared to take on the
Spring DSL in section 2.4 and routing using EIPs in section 2.5.

CamelContext

Route 1RouteBuilder

route 1;
route 2;

RouteBuilder

route 3;

Route 2

Route 3

Figure 2.5 RouteBuilders
are used to create routes in
Camel. Each RouteBuilder
can create multiple routes.

 www.it-ebooks.info

http://camel.apache.org/jms.html
http://www.it-ebooks.info/

29Creating routes in Java

2.3.1 Using the RouteBuilder

The abstract org.apache.camel.builder.RouteBuilder class in Camel is one that
you’ll see frequently. You’ll need to use it any time you create a route in Java.

 To use the RouteBuilder class, you extend a class from it and implement the con-
figure method, like this:

class MyRouteBuilder extends RouteBuilder {
 public void configure() throws Exception {
 ...
 }
}

You then need to add the class to the CamelContext with the addRoutes method:

CamelContext context = new DefaultCamelContext();
context.addRoutes(new MyRouteBuilder());

Alternatively, you can combine the RouteBuilder and CamelContext configuration by
adding an anonymous RouteBuilder class directly into the CamelContext, like this:

CamelContext context = new DefaultCamelContext();
context.addRoutes(new RouteBuilder() {
 public void configure() throws Exception {
 ...
 }
});

Within the configure method, you define your routes using the Java DSL. We’ll dis-
cuss the Java DSL in detail in the next section, but you can start a route now to get an
idea of how it works.

 In chapter 1, you should have downloaded the source code from the book’s web-
site and set up Apache Maven. If you didn’t do this, please do so now. Change to the
chapter2/ftp-jms directory in your terminal, and type this command:

mvn eclipse:eclipse

This will generate an Eclipse project file.

NOTE Eclipse is a popular open source IDE that you can find at http://
eclipse.org. During the book’s development, we used Eclipse 3.5.2.

When the command has completed, you can import this project by selecting File >
Import > Existing Projects into Workspace in the Eclipse menus and selecting the
chapter2/ftp-jms directory. For more information on developing Camel projects in
Eclipse, see chapter 11.

NOTE You don’t need an IDE to use Camel, but it does make it a lot easier!
Feel free to skip to the next section if you don’t want to see the IDE-related
setup.

When the ftp-jms project is loaded in Eclipse, open the src/main/java/camelinaction/
RouteBuilderExample.java file. As shown in figure 2.6, when you try autocomplete

 www.it-ebooks.info

http://eclipse.org
http://eclipse.org
http://www.it-ebooks.info/

30 CHAPTER 2 Routing with Camel

(Ctrl-space in Eclipse) in the configure method, you’ll be presented with a number of
methods. To start a route, you should use the from method.

 The from method accepts an endpoint URI as an argument. You can add a FTP
endpoint URI to connect to Rider Auto Parts’ order server as follows:

from("ftp://rider.com/orders?username=rider&password=secret")

The from method returns a RouteDefinition object, on which you can invoke a num-
ber of different methods that implement EIPs and other messaging concepts.

 Congratulations, you’re now using Camel’s Java DSL! Let’s take a closer look at
what’s going on here.

2.3.2 The Java DSL

Domain-specific languages (DSLs) are computer languages that target a specific prob-
lem domain, rather than a general purpose domain like most programming languages.

 For example, you have probably used the regular expression DSL to match strings of
text and found it to be a clear and concise way of matching strings. Doing the same string
matching in Java wouldn’t be so easy. The regular expression DSL is an external DSL—it
has a custom syntax and so requires a separate compiler or interpreter to execute.

Internal DSLs, in contrast, use an existing general purpose language, such as Java, in
such a way that the DSL feels like a language from a particular domain. The most obvi-
ous way of doing this is by naming methods and arguments to match concepts from
the domain in question.

 Another popular way of implementing internal DSLs is by using fluent interfaces (aka
fluent builders). When using a fluent interface, you build up objects with methods that
perform an operation and then return the current object instance; another method is
then invoked on this object instance, and so on.

Figure 2.6 Use autocomplete to start your route. All routes start with a from method.

 www.it-ebooks.info

http://www.it-ebooks.info/

31Creating routes in Java

NOTE For more information on internal DSLs, see Martin Fowler’s “Domain
Specific Language” entry on his bliki (blog plus wiki) at http://www.martin-
fowler.com/bliki/DomainSpecificLanguage.html. He also has an entry on
“Fluent Interfaces” at http://www.martinfowler.com/bliki/FluentInterface.
html. For more information on DSLs in general, we recommend DSLs in Action
by Debasish Ghosh, available from Manning Publications.

Camel’s domain is enterprise integration, so the Java DSL is essentially a set of fluent
interfaces that contain methods named after terms from the EIP book. In the Eclipse
editor, take a look at what is available using autocomplete after a from method in the
RouteBuilder. You should see something like what’s shown in figure 2.7. The screen-
shot shows several EIPs—Pipeline, Enricher, and Recipient List—and there are many
others that we’ll discuss later.

 For now, select the to method and finish the route with a semicolon. Each Java
statement that starts with a from method in the RouteBuilder creates a new route.
This new route now completes your first task at Rider Auto Parts—consuming orders
from an FTP server and sending them to the incomingOrders JMS queue.

 If you want, you can load up the completed example from the book’s source code,
in chapter2/ftp-jms and open src/main/java/camelinaction/FtpToJMSExample.java.
The code is shown in listing 2.1.

Figure 2.7 After the from method, use your IDE’s autocomplete feature to get a list of EIPs
(such as Pipeline, Enricher, and Recipient List) and other useful integration functions.

 www.it-ebooks.info

http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://www.martinfowler.com/bliki/FluentInterface
http://www.it-ebooks.info/

32 CHAPTER 2 Routing with Camel

import javax.jms.ConnectionFactory;

import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.camel.CamelContext;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.jms.JmsComponent;
import org.apache.camel.impl.DefaultCamelContext;

public class FtpToJMSExample {

 public static void main(String args[]) throws Exception {
 CamelContext context = new DefaultCamelContext();

 ConnectionFactory connectionFactory =
 new ActiveMQConnectionFactory("vm://localhost");
 context.addComponent("jms",
 JmsComponent.jmsComponentAutoAcknowledge(connectionFactory));

 context.addRoutes(new RouteBuilder() {
 public void configure() {
 from("ftp://rider.com/orders"
 + "?username=rider&password=secret")
 .to("jms:incomingOrders");
 }
 });

 context.start();
 Thread.sleep(10000);

 context.stop();
 }
}

NOTE Because you’re consuming from ftp://rider.com, which doesn’t exist,
you can’t run this example. It’s only useful for demonstrating the Java DSL
constructs. For runnable FTP examples, please see chapter 7.

As you can see, this listing includes a bit of boilerplate setup and configuration, but the
actual solution to the problem is concisely defined within the configure method as a
single Java statement B. The from method tells Camel to consume messages from an
FTP endpoint, and the to method instructs Camel to send messages to a JMS endpoint.

 The flow of messages in this simple route can be viewed as a basic pipeline, where
the output of the consumer is fed into the producer as input. This is depicted in
figure 2.8.

Listing 2.1 Polling for FTP messages and sending them to the incomingOrders queue

B Java statement
that forms a
route

Route

Consumer Producer

JMS queue

Implicit
type

conversion

FTP server

Figure 2.8 The route shown in
listing 2.1 forms a simple
pipeline. The output of the FTP
consumer is fed into the input of
the JMS producer. The payload
conversion from file to JMS
message is done automatically.

 www.it-ebooks.info

http://www.it-ebooks.info/

33Creating routes in Java

One thing you may have noticed is that we didn’t do any conversion from the FTP file
type to the JMS message type—this was done automatically by Camel’s TypeConverter
facility. You can force type conversions to occur at any time during a route, but often
you don’t have to worry about them at all. Data transformation and type conversion is
covered in detail in chapter 3.

 You may be thinking now that although this route is nice and simple, it would be
really nice to see what’s going on in the middle of the route. Fortunately, Camel always
lets the developer stay in control by providing ways to hook into flows or inject behav-
ior into features. There is a pretty simple way of getting access to the message by using
a processor, and we’ll discuss that next.

ADDING A PROCESSOR

The Processor interface in Camel is an important building block of complex routes.
It’s a simple interface, having a single method:

public void process(Exchange exchange) throws Exception;

This gives you full access to the message exchange, letting you do pretty much what-
ever you want with the payload or headers.

 All EIPs in Camel are implemented as processors. You can even add a simple pro-
cessor to your route inline, like so:

from("ftp://rider.com/orders?username=rider&password=secret").
process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 System.out.println("We just downloaded: "
 + exchange.getIn().getHeader("CamelFileName"));
 }
}).
to("jms:incomingOrders");

This route will now print out the filename of the order that was downloaded before
sending it to the JMS queue.

 By adding this processor into the middle of the route, you’ve effectively added it to
the conceptual pipeline we mentioned earlier, as illustrated in figure 2.9. The output of
the FTP consumer is fed into the processor as input; the processor doesn’t modify the
message payload or headers, so the exchange moves on to the JMS producer as input.

NOTE Many components, like the FileComponent and the FtpComponent, set
useful headers describing the payload on the incoming message. In the previ-
ous example, you used the CamelFileName header to retrieve the filename of
the file that was downloaded via FTP. The component pages of the online
documentation contain information about the headers set for each individual
component. You’ll find information about the FTP component at http://
camel.apache.org/ftp2.html.

Camel’s main method for creating routes is through the Java DSL. It is, after all, built
into the camel-core module. There are other ways of creating routes though, some of
which may better suit your situation. For instance, Camel provides extensions for writ-
ing routes in Groovy, Scala, and, as we’ll discuss next, Spring XML.

 www.it-ebooks.info

http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://www.it-ebooks.info/

34 CHAPTER 2 Routing with Camel

2.4 Creating routes with Spring
Spring is the most popular Inversion of Control (IoC) Java container out there. The
core framework allows to you “wire” beans together to form applications. This wiring
is done through an XML configuration file.

 In this section, we’ll give you a quick introduction to creating applications with
Spring. For a more comprehensive view of Spring, we recommend Spring in Action, by
Craig Walls (http://www.manning.com/walls4/).

 We’ll then go on to show you how Camel uses Spring to form a replacement or
complementary solution to the Java DSL.

2.4.1 Bean injection and Spring
Creating an application from beans using Spring is pretty simple. All you need are a
few Java beans (classes), a Spring XML configuration file, and an ApplicationCon-
text. The ApplicationContext is similar to the CamelContext, in that it’s the runtime
container for Spring. Let’s look at a simple example.

 Consider an application that prints out a greeting followed by your username. In
this application you don’t want the greeting to be hardcoded, so you can use an inter-
face to break this dependency. Consider the following interface:

public interface Greeter {
 public String sayHello();
}

This interface is implemented by the following classes:

public class EnglishGreeter implements Greeter {
 public String sayHello() {
 return "Hello " + System.getProperty("user.name");
 }
}
public class DanishGreeter implements Greeter {
 public String sayHello() {
 return "Davs " + System.getProperty("user.name");
 }
}

You can now create a greeter application as follows:

public class GreetMeBean {
 private Greeter greeter;

 public void setGreeter(Greeter greeter) {
 this.greeter = greeter;
 }

Route

Consumer Producer

FTP server

JMS queue
Processor

Figure 2.9 With a processor in
the mix, the output of the FTP
consumer is now fed into the
processor, and then the output
of the processor is fed into the
JMS producer.

 www.it-ebooks.info

http://www.manning.com/walls4/
http://www.it-ebooks.info/

35Creating routes with Spring

 public void execute() {
 System.out.println(greeter.sayHello());
 }
}

This application will output a different greeting depending on how you configure it.
To configure this application using Spring, you could do something like this:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean id="myGreeter" class="camelinaction.EnglishGreeter"/>

 <bean id="greetMeBean" class="camelinaction.GreetMeBean">
 <property name="greeter" ref="myGreeter"/>
 </bean>

</beans>

 This XML file instructs Spring to do the following:

1 Create an instance of EnglishGreeter and names the bean myGreeter
2 Create an instance of GreetMeBean and names the bean greetMeBean
3 Set the reference of the greeter property of the GreetMeBean to the bean

named myGreeter

This configuring of beans is called wiring.
 In order to load this XML file into Spring, you can use the ClassPathXmlApplica-

tionContext, which is a concrete implementation of the ApplicationContext that’s
provided with the Spring framework. This class loads Spring XML files from a location
specified on the classpath.

 Here is the final version of GreetMeBean:

public class GreetMeBean {
 ...

 public static void main(String[] args) {
 ApplicationContext context =
 new ClassPathXmlApplicationContext("beans.xml");
 GreetMeBean bean = (GreetMeBean) context.getBean("greetMeBean");
 bean.execute();
 }
}

The ClassPathXmlApplicationContext you instantiate here loads up the bean defini-
tions you saw previously in the beans.xml file. You then call getBean on the context to
look up the bean with the greetMeBean ID in the Spring registry. All beans defined in
this file are accessible in this way.

 To run this example, go to the chapter2/spring directory in the book’s source
code and run this Maven command:

mvn compile exec:java -Dexec.mainClass=camelinaction.GreetMeBean

 www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 Routing with Camel

This will output something like the following on the command line:

Hello janstey

If you had wired the DanishGreeter in instead, you’d have seen something like this on
the console:

Davs janstey

This example may seem pretty simple, but it should give you an understanding of
what Spring and, more generally, an IoC container, really is.

 So how does Camel fit into this? Essentially, Camel can be configured as if it were
another bean. For instance, you configured the JMS component to connect to an
ActiveMQ broker in section 2.2.2, but you could have done this in Spring by using the
bean terminology, as follows:

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
 <property name="connectionFactory">
 <bean class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="vm://localhost" />
 </bean>
 </property>
</bean>

In this case, Camel will know to look for beans of type org.apache.camel.Compo-
nent and add them to the CamelContext automatically—a task you did manually in
section 2.2.2.

 But where is the CamelContext defined in Spring? Well, to make things easier on
the eyes, Camel utilizes Spring extension mechanisms to provide custom XML syntax
for Camel concepts within the Spring XML file. To load up a CamelContext in Spring,
you can do the following:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">

 ...

 <camelContext xmlns="http://camel.apache.org/schema/spring"/>

</beans>

This will automatically start a SpringCamelContext, which is a subclass of the
DefaultCamelContext you used for the Java DSL. Also notice that you had to include
the http://camel.apache.org/schema/spring/camel-spring.xsd XML schema defini-
tion in the XML file—this is needed to import the custom XML elements.

 This snippet alone isn’t going to do much for you. You need to tell Camel what
routes to use, as you did when using the Java DSL. The following code uses Spring to
produce the same results as the code in listing 2.1.

 www.it-ebooks.info

http://camel.apache.org/schema/spring/camel-spring.xsd
http://www.it-ebooks.info/

37Creating routes with Spring

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">

 <bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
 <property name="connectionFactory">
 <bean class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="vm://localhost" />
 </bean>
 </property>
 </bean>

 <bean id="ftpToJmsRoute" class="camelinaction.FtpToJMSRoute"/>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <routeBuilder ref="ftpToJmsRoute"/>
 </camelContext>

</beans>

You may have noticed that we’re referring to the camelinaction.FtpToJMSRoute class
as a RouteBuilder. In order to reproduce the Java DSL example in listing 2.1, you have
to factor out the anonymous RouteBuilder into its own named class. The FtpToJMS-
Route class looks like this:

public class FtpToJMSRoute extends RouteBuilder {
 public void configure() {
 from("ftp://rider.com" +
 "/orders?username=rider&password=secret")
 .to("jms:incomingOrders");
 }
}

Now that you know the basics of Spring and how to load Camel inside it, we can go
further by looking at how to write Camel routing rules purely in XML—no Java DSL
required.

2.4.2 The Spring DSL

What we’ve seen of Camel’s integration with Spring is adequate, but it isn’t taking full
advantage of Spring’s methodology of configuring applications using no code. To
completely invert the control of creating applications using Spring XML, Camel pro-
vides custom XML extensions that we call the Spring DSL. The Spring DSL allows you to
do almost everything you can do in the Java DSL.

 Let’s continue with the Rider Auto Parts example shown in listing 2.2, but this time
you’ll specify the routing rules defined in the RouteBuilder purely in XML. The fol-
lowing Spring XML does this.

Listing 2.2 A Spring configuration that produces the same results as listing 2.1

 www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 2 Routing with Camel

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">

 <bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
 <property name="connectionFactory">
 <bean class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="vm://localhost" />
 </bean>
 </property>
 </bean>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from
uri="ftp://rider.com/orders?username=rider&password=secret"/>
 <to uri="jms:incomingOrders"/>
 </route>
 </camelContext>

</beans>

In this listing, under the camelContext element you replace routeBuilder with the
route element. Within the route element, you specify the route using elements with
names similar to ones used inside the Java DSL RouteBuilder. This listing is function-
ally equivalent to the Java DSL version in listing 2.1 and the Spring plus Java DSL
combo in listing 2.2.

 In the book’s source code, we changed the from method to consume messages
from a local file directory instead. The new route looks like this:

<route>
 <from uri="file:src/data?noop=true"/>
 <to uri="jms:incomingOrders"/>
</route>

The file endpoint will load order files from the relative src/data directory. The noop
property configures the endpoint to leave the file as is after processing; this option is
very useful for testing. In chapter 7, you’ll also see how Camel allows you to delete or
move the files after processing.

 This route won’t display anything interesting yet. You need to add an additional
processing step for testing.

ADDING A PROCESSOR

Adding additional processing steps is simple, as in the Java DSL. Here you’ll add a cus-
tom processor like you did in section 2.3.2.

 Because you can’t refer to an anonymous class in Spring XML, you need to factor
out the anonymous processor into the following class:

Listing 2.3 A Spring DSL example that produces the same results as listing 2.1

 www.it-ebooks.info

http://www.it-ebooks.info/

39Creating routes with Spring

public class DownloadLogger implements Processor {
 public void process(Exchange exchange) throws Exception {
 System.out.println("We just downloaded: "
 + exchange.getIn().getHeader("CamelFileName"));
 }
}

You can now use it in your Spring DSL route as follows:

<bean id="downloadLogger" class="camelinaction.DownloadLogger"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="file:src/data?noop=true"/>
 <process ref="downloadLogger"/>
 <to uri="jms:incomingOrders"/>
 </route>
</camelContext>

Now you’re ready to run the example. Go to the chapter2/spring directory in the
book’s source code and run this Maven command:

mvn clean compile camel:run

Because there is only one message file named message1.xml in the src/data directory,
this will output something like the following on the command line:

We just downloaded: message1.xml

What if you wanted to print this message after consuming it from the incomingOrders
queue? To do this, you’ll need to create another route.

USING MULTIPLE ROUTES

You may recall that in the Java DSL each Java statement starting with a from creates a
new route. You can also create multiple routes with the Spring DSL. To do this, simply
add an additional route element within the camelContext element.

 For example, move the DownloadLogger bean into a second route, after the order
gets sent to the incomingOrders queue:

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="file:src/data?noop=true"/>
 <to uri="jms:incomingOrders"/>
 </route>
 <route>
 <from uri="jms:incomingOrders"/>
 <process ref="downloadLogger"/>
 </route>
</camelContext>

Now you are consuming the message from the incomingOrders queue in the second
route. So, the downloaded message will be printed after the order is sent to the queue.

CHOOSING WHICH DSL TO USE

Which DSL is best to use in a particular scenario is a common question for Camel
users, but it mostly comes down to personal preference. If you like working with

 www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 2 Routing with Camel

Spring or like defining things in XML, you may prefer a pure Spring approach. If you
want to be hands-on with Java, maybe a pure Java DSL approach is better for you.

 In either case, you’ll be able to access nearly all of Camel’s functionality. The Java
DSL is a slightly richer language to work with because you have the full power of the
Java language at your fingertips. Also, some Java DSL features, like value builders (for
building expressions and predicates1), aren’t available in the Spring DSL. On the
other hand, using Spring gives you access to the wonderful object construction capa-
bilities as well as commonly used Spring abstractions for things like database connec-
tions and JMS integration.

 A common compromise (and our favorite usage) is to use both Spring and the Java
DSL, which is one of the topics we’ll cover next.

2.4.3 Using Camel and Spring

Whether you write your routes in the Java or Spring DSL, running Camel in a Spring con-
tainer gives you many other benefits. For one, if you’re using the Spring DSL, you don’t
have to recompile any code when you want to change your routing rules. Also, you gain
access to Spring’s portfolio of database connectors, transaction support, and more.

 Let’s take a closer look at what other Spring integrations Camel provides.

FINDING ROUTE BUILDERS

Using the Spring CamelContext as a runtime and the Java DSL for route development
is a great way of using Camel. In fact, it’s the most frequent usage of Camel.

 You saw before that you can explicitly tell the Spring CamelContext what route
builders to load. You can do this by using the routerBuilder element:

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <routeBuilder ref="ftpToJmsRoute"/>
</camelContext>

Being this explicit results in a clean and concise definition of what is being loaded
into Camel.

 Sometimes, though, you may need to be a bit more dynamic. This is where the
packageScan and contextScan elements come in:

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <packageScan>
 <package>camelinaction.routes</package>
 </packageScan>
</camelContext>

This packageScan element will load all RouteBuilder classes found in the camelinac-
tion.routes package, including all subpackages.

 You can even be a bit more picky about what route builders are included:

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <packageScan>
 <package>camelinaction.routes</package>

1 See appendix B for more information on expressions and predicates.

 www.it-ebooks.info

http://www.it-ebooks.info/

41Creating routes with Spring

 <excludes>**.*Test*</excludes>
 <includes>**.*</includes>
 </packageScan>
</camelContext>

In this case, you’re loading all route builders in the camelinaction.routes package,
except for ones with “Test” in the class name. The matching syntax is similar to what is
used in Apache Ant’s file pattern matchers.

 The contextScan element takes advantage of Spring’s component-scan feature to
load any Camel route builders that are marked with the @org.springframework.
stereotype.Component annotation. Let’s modify the FtpToJMSRoute class to use
this annotation:

@Component
public class FtpToJMSRoute extends SpringRouteBuilder {

 public void configure() {
 from("ftp://rider.com" +
 "/orders?username=rider&password=secret")
 .to("jms:incomingOrders");
 }
}

Notice that this version uses the org.apache.camel.spring.SpringRouteBuilder
class, which is an extension of RouteBuilder that contains extra Spring utility func-
tions. You can now enable the component scanning by using the following configura-
tion in your Spring XML file:

<context:component-scan base-package="camelinaction.routes"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <contextScan/>
</camelContext>

This will load up any Spring route builders within the camelinaction.routes pack-
age that have the @Component annotation.

 Under the hood, some of Camel’s components, like the JMS component, are built
on top of abstraction libraries from Spring. It makes sense that configuring those
components is easy in Spring.

CONFIGURING COMPONENTS AND ENDPOINTS

You saw in section 2.4.1 that components could be defined in Spring XML and would
be picked up automatically by Camel. For instance, look at the JMS component again:

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
 <property name="connectionFactory">
 <bean class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="vm://localhost" />
 </bean>
 </property>
</bean>

The bean id defines what this component will be called. This gives you the flexibility to
give the component a more meaningful name based on the use case. Your application

 www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 2 Routing with Camel

may require the integration of two JMS brokers, for instance. One could be for Apache
ActiveMQ and another could be for SonicMQ:

<bean id="activemq" class="org.apache.camel.component.jms.JmsComponent">
 ...
</bean>
<bean id="sonicmq" class="org.apache.camel.component.jms.JmsComponent">
 ...
</bean>

You could then use URIs like activemq:myActiveMQQueue or sonicmq:mySonicQueue.
 Endpoints can also be defined using Camel’s Spring XML extensions. For example,

you can break out the FTP endpoint for connecting to Rider Auto Parts’ legacy order
server and see what the route looks like:

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <endpoint id="ridersFtp"
uri="ftp://rider.com/orders?username=rider&password=secret"/>
 <route>
 <from ref="ridersFtp"/>
 <to uri="jms:incomingOrders"/>
 </route>
</camelContext>

NOTE You may notice that credentials have been added directly into the end-
point URI, which isn’t always the best solution. A better way would be to refer
to credentials that are defined and sufficiently protected elsewhere. In sec-
tion 6.1.6 of chapter 6, you can see how the Camel Properties component or
Spring property placeholders are used to do this.

IMPORTING CONFIGURATION AND ROUTES

A common practice in Spring development is to separate out an application’s wiring
into several XML files. This is mainly done to make the XML more readable; you prob-
ably wouldn’t want to wade through thousands of lines of XML in a single file without
some separation.

 Another reason to separate an application into several XML files is the potential for
reuse. For instance, some other application may require a similar JMS setup, so you
can define a second Spring XML file called jms-setup.xml with these contents:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
 <property name="connectionFactory">
 <bean class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="vm://localhost" />
 </bean>
 </property>
 </bean>
</beans>

 www.it-ebooks.info

http://www.it-ebooks.info/

43Routing and EIPs

This file could then be imported into the XML file containing the CamelContext by
using the following line:

<import resource="jms-setup.xml"/>

Now the CamelContext can use the JMS component configuration even though it’s
defined in a separate file.

 Other useful things to define in separate files are the Spring DSL routes them-
selves. Because route elements need to be defined within a camelContext element, an
additional concept is introduced to define routes. You can define routes within a
routeContext element, as shown here:

<routeContext id="ftpToJms" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="ftp://rider.com/orders?username=rider&password=secret"/>
 <to uri="jms:incomingOrders"/>
 </route>
</routeContext>

This routeContext element could be in another file or in the same file. You can then
import the routes defined in this routeContext with the routeContextRef element.
You use the routeContextRef element inside a camelContext as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <routeContextRef ref="ftpToJms"/>
</camelContext>

If you import the routeContext into multiple CamelContexts, a new instance of the
route is created in each. In the preceding case, two identical routes, with the same
endpoint URIs, will lead to them competing for the same resource. In this case, only
one route at a time will receive a particular file from FTP. In general, you should take
care when reusing routes in multiple CamelContexts.

ADVANCED CONFIGURATION OPTIONS

There are many other configuration options available when using the Spring Camel-
Context:

■ Pluggable bean registries are discussed in chapter 4.
■ The Tracer and Delay mechanisms are covered in chapter 12.
■ Custom class resolvers, tracing, fault handling and startup are mentioned in

chapter 13.
■ The configuration of interceptors is covered in chapter 6.

With these route configuration techniques behind us, you’re ready to tackle more
advanced routing topics using Camel’s implementation of the EIPs.

2.5 Routing and EIPs
So far we haven’t touched much on the EIPs that Camel was built to implement. This
was intentional. We wanted to make sure you had a good understanding of what
Camel is doing in the simplest cases before moving on to more complex examples.

 www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 2 Routing with Camel

 As far as EIPs go, we’ll be looking at the Content-Based Router, Message Filter, Mul-
ticast, Recipient List, and Wire Tap right away. Other patterns will be introduced
throughout the book, and in chapter 8 we’ll be covering the most complex EIPs. The
complete list of EIPs supported by Camel is available from the Camel website (http://
camel.apache.org/enterprise-integration-patterns.html).

 For now, let’s start by looking at the most well known EIP, the Content-Based
Router.

2.5.1 Using a content-based router

As the name implies, a Content-Based Router (CBR) is a message router that routes a
message to a destination based on its content. The content could be a message
header, the payload data type, part of the payload itself—pretty much anything in the
message exchange.

 To demonstrate, let’s go back to Rider Auto Parts. Some customers have started
uploading orders to the FTP server in the newer XML format rather than CSV. That
means you have two types of messages coming in to the incomingOrders queue. We
didn’t touch on this before, but you need to convert the incoming orders into an
internal POJO format. You obviously need to do different conversions for the differ-
ent types of incoming orders.

 As a possible solution, you could use the filename extension to determine whether
a particular order message should be sent to a queue for CSV orders or a queue for
XML orders. This is depicted in figure 2.10.

 As you saw earlier, you can use the CamelFileName header set by the FTP consumer
to get the filename.

 To do the conditional routing required by the CBR, Camel introduces a few key-
words in the DSL. The choice method creates a CBR processor, and conditions are
added by following choice with a combination of a when method and a predicate.

 Camel’s creators could have chosen contentBasedRouter for the method name,
to match the EIP, but they stuck with choice because it reads more naturally. It looks
like this:

if file extension is “ .xml”
 send to xmlOrders queue
else
 send to csvOrders queue

jms:incomingOrders

Content based
router

jms:xmlOrders

jms:csvOrders

Figure 2.10 The CBR routes messages based on their content. In this case, the filename
extension (as a message header) is used to determine which queue to route to.

 www.it-ebooks.info

http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://www.it-ebooks.info/

45Routing and EIPs

from("jms:incomingOrders")
.choice()
 .when(predicate)
 .to("jms:xmlOrders")
 .when(predicate)
 .to("jms:csvOrders");

You may have noticed that we didn’t fill in the predicates required for each when
method. A predicate in Camel is a simple interface that only has a matches method:

public interface Predicate {
 boolean matches(Exchange exchange);
}

For example, you can think of a predicate as a Boolean condition in a Java if
statement.

 You probably don’t want to look inside the exchange yourself and do a compari-
son. Fortunately, predicates are often built up from expressions, and expressions are
used to extract a result from an exchange based on the expression content. There are
many different expression languages to choose from in Camel, some of which include
Simple, EL, JXPath, Mvel, OGNL, PHP, BeanShell, JavaScript, Groovy, Python, Ruby,
XPath, and XQuery. As you’ll see in chapter 4, you can even use a method call to a
bean as an expression in Camel. In this case, you’ll be using the expression builder
methods that are part of the Java DSL.

 Within the RouteBuilder, you can start by using the header method, which returns
an expression that will evaluate to the header value. For example, header("CamelF-
ileName") will create an expression that will resolve to the value of the CamelFile-
Name header on the incoming exchange. On this expression you can invoke a number
of methods to create a predicate. So, to check whether the filename extension is equal
to .xml, you can use the following predicate:

header("CamelFileName").endsWith(".xml")

The completed CBR is shown here.

context.addRoutes(new RouteBuilder() {
 public void configure() {
 from("file:src/data?noop=true").to("jms:incomingOrders");

 from("jms:incomingOrders")
 .choice()
 .when(header("CamelFileName")
 .endsWith(".xml"))
 .to("jms:xmlOrders")
 .when(header("CamelFileName")
 .endsWith(".csv"))
 .to("jms:csvOrders");

 from("jms:xmlOrders").process(new Processor() {
 public void process(Exchange exchange) throws Exception {

Listing 2.4 A complete content-based router

B Content-based
router

Test routes
that print
message
content

C

 www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 2 Routing with Camel

 System.out.println("Received XML order: "
 + exchange.getIn().getHeader("CamelFileName"));
 }
 });

 from("jms:csvOrders").process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 System.out.println("Received CSV order: "
 + exchange.getIn().getHeader("CamelFileName"));
 }
 });
 }
});

To run this example, go to the chapter2/cbr directory in the book’s source code and
run this Maven command:

mvn clean compile exec:java -Dexec.mainClass=camelinaction.OrderRouter

This will consume two order files in the chapter2/cbr/src/data directory and output
the following:

Received CSV order: message2.csv
Received XML order: message1.xml

The output comes from the two routes at the end of the configure method C. These
routes consume messages from the xmlOrders and csvOrders queues and then print
out messages. You use these routes to test that the router B is working as expected.
More advanced route-testing techniques will be discussed in chapter 6.

USING THE OTHERWISE CLAUSE

One of Rider Auto Parts’ customers sends CSV orders with the .csl extension. Your cur-
rent route only handles .csv and .xml files and will drop all orders with other exten-
sions. This isn’t a good solution, so you need to improve things a bit.

 One way to handle the extra extension is to use a regular expression as a predicate
instead of the simple endsWith call. The following route can handle the extra file
extension:

from("jms:incomingOrders")
.choice()
 .when(header("CamelFileName").endsWith(".xml"))
 .to("jms:xmlOrders")
 .when(header("CamelFileName").regex("^.*(csv|csl)$"))
 .to("jms:csvOrders");

This solution still suffers from the same problem, though. Any orders not conforming
to the file extension scheme will be dropped. Really, you should be handling bad
orders that come in so someone can fix the problem. For this you can use the other-
wise clause:

from("jms:incomingOrders")
.choice()
 .when(header("CamelFileName").endsWith(".xml"))

Test routes that print
message content

C

 www.it-ebooks.info

http://www.it-ebooks.info/

47Routing and EIPs

 .to("jms:xmlOrders")
 .when(header("CamelFileName").regex("^.*(csv|csl)$"))
 .to("jms:csvOrders")
 .otherwise()
 .to("jms:badOrders");

Now, all orders not having an extension of .csv, .csl, or .xml are sent to the badOrders
queue for handling.

 To run this example, go to the chapter2/cbr directory in the book’s source and
run this command:

mvn clean compile exec:java
➥ -Dexec.mainClass=camelinaction.OrderRouterOtherwise

This will consume four order files in the chapter2/cbr/src/data directory and output
the following:

Received CSV order: message2.csv
Received XML order: message1.xml
Received bad order: message4.bad
Received CSV order: message3.csl

You can now see that a bad order has been received.

ROUTING AFTER A CBR

The CBR may seem like it’s the end of the route; messages are routed to one of several
destinations, and that’s it. Continuing the flow means you need another route, right?

 Well, there are several ways you can continue routing after a CBR. One is by using
another route, like you did in listing 2.4 for printing a test message to the console.
Another way of continuing the flow is by closing the choice block and adding another
processor to the pipeline after that.

 You can close the choice block by using the end method:

from("jms:incomingOrders")
.choice()
 .when(header("CamelFileName").endsWith(".xml"))
 .to("jms:xmlOrders")
 .when(header("CamelFileName").regex("^.*(csv|csl)$"))
 .to("jms:csvOrders")
 .otherwise()
 .to("jms:badOrders")
.end()
.to("jms:continuedProcessing");

Here, the choice has been closed and another to has been added to the route. Now,
after each destination with the choice, the message will be routed to the continued-
Processing queue as well. This is illustrated in figure 2.11.

 You can also control what destinations are final in the choice block. For instance,
you may not want bad orders continuing through the rest of the route. You’d like
them to be routed to the badOrders queue and stop there. In this case, you can use
the stop method in the DSL:

 www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 2 Routing with Camel

from("jms:incomingOrders")
.choice()
 .when(header("CamelFileName").endsWith(".xml"))
 .to("jms:xmlOrders")
 .when(header("CamelFileName").regex("^.*(csv|csl)$"))
 .to("jms:csvOrders")
 .otherwise()
 .to("jms:badOrders").stop()
.end()
.to("jms:continuedProcessing");

Now, any orders entering into the otherwise block will only be sent to the badOrders
queue—not to the continuedProcessing queue.

 Using the Spring DSL, this route looks a bit different:

<route>
 <from uri="jms:incomingOrders"/>
 <choice>
 <when>
 <simple>${header.CamelFileName} regex '^.*xml$'</simple>
 <to uri="jms:xmlOrders"/>
 </when>
 <when>
 <simple>${header.CamelFileName} regex '^.*(csv|csl)$'</simple>
 <to uri="jms:csvOrders"/>
 </when>
 <otherwise>
 <to uri="jms:badOrders"/>
 <stop/>
 </otherwise>
 </choice>
 <to uri="jms:continuedProcessing"/>
</route>

Other than being in XML rather than Java, there are two main differences to note
here, compared to the Java DSL version:

jms:incomingOrders

Content based
router

jms:xmlOrders

jms:csvOrders

jms:badOrders

jms:continuedProcessing

Figure 2.11 By using the end method, you can route messages to a destination after the CBR.

 www.it-ebooks.info

http://www.it-ebooks.info/

49Routing and EIPs

■ You use a Simple expression instead of the Java-based predicate. The Simple
expression language is typically used as a replacement for predicates from the
Java DSL. A complete guide on the Simple expression language can be found in
appendix A.

■ You don’t have to use an end() call to end the choice block because XML
requires an explicit end block in the form of the closing element </choice>.

2.5.2 Using message filters

Rider Auto Parts now has a new issue—their QA department has expressed the need
to be able to send test orders into the live web frontend of the order system. Your cur-
rent solution would accept these orders as real and send them to the internal systems
for processing. You’ve suggested that QA should be testing on a development clone of
the real system, but management has shot down this idea, citing a limited budget.
What you need is a solution that will discard these test messages while still operating
on the real orders.

 The Message Filter EIP, shown in figure 2.12, provides a nice way of dealing with
this kind of problem. Incoming messages only pass through the filter if a certain con-
dition is met. Messages failing the condition will be dropped.

 Let’s see how you can implement this using Camel. Recall that the web frontend
that Rider Auto Parts uses only sends orders in the XML format, so you can place this
filter after the xmlOrders queue, where all orders are XML. Test messages have an
extra test attribute set, so you can use this to do the filtering. A test message looks
like this:

<?xml version="1.0" encoding="UTF-8"?>
<order name="motor" amount="1" customer="foo" test="true"/>

The entire solution is implemented in OrderRouterWithFilter.java, which is included
with the chapter2/filter project in the book’s source distribution. The filter looks like
this:

from("jms:xmlOrders").filter(xpath("/order[not(@test)]"))
.process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 System.out.println("Received XML order: "
 + exchange.getIn().getHeader("CamelFileName"));
 }
});

To run this example, execute the following Maven command on the command line:

mvn clean compile exec:java
➥ -Dexec.mainClass=camelinaction.OrderRouterWithFilter

Message filter
Real
order

RealTest
order order

Real
order

Real
order

Figure 2.12 A Message
Filter allows you to filter out
uninteresting messages based
on some condition. In this case,
test messages are filtered out.

 www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 2 Routing with Camel

This will output the following on the command line:

Received XML order: message1.xml

You’ll only receive one message after the filter because the test message was filtered out.
 You may have noticed that this example filters out the test message with an XPath

expression. XPath expressions are useful for creating conditions based on XML pay-
loads. In this case, the expression will evaluate true for orders that don’t have the
test attribute.

 As you saw back in section 2.4.2, when the Spring DSL is used, you cannot use an anon-
ymous inner class for a processor. You must name the Processor class and add a bean
entry in the Spring XML file. So a message filter route in the Spring DSL looks like this:

<route>
 <from uri="jms:xmlOrders"/>
 <filter>
 <xpath>/order[not(@test)]</xpath>
 <process ref="orderLogger"/>
 </filter>
</route>

The flow remains the same as in the Java DSL version of this route, but here you reference
the processor as orderLogger, which is defined as a bean entry in the Spring XML file.

 So far, the EIPs we’ve looked at only sent messages to a single destination. Next
we’ll take a look at how you can send to multiple destinations.

2.5.3 Using multicasting
Often in enterprise applications you’ll need to send a copy of a message to several dif-
ferent destinations for processing. When the list of destinations is known ahead of
time and is static, you can add an element to the route that will consume messages
from a source endpoint and then send the message out to a list of destinations. Bor-
rowing terminology from computer networking, we call this the Multicast EIP.

 Currently at Rider Auto Parts, orders are processed in a step-by-step manner.
They’re first sent to accounting for validation of customer standing and then to pro-
duction for manufacture. A bright new manager has suggested that they could
improve the speed of operations by sending orders to accounting and production at
the same time. This would cut out the delay involved when production waits for the
OK from accounting. You’ve been asked to implement this change to the system.

 Using a multicast, you could envision the solution shown in figure 2.13.

jms:xmlOrders

Multicast

jms:accounting

jms:production Figure 2.13
A multicast sends a
message to a number
of specified recipients.

 www.it-ebooks.info

http://www.it-ebooks.info/

51Routing and EIPs

With Camel, you can use the multicast method in the Java DSL to implement this
solution:

from("jms:xmlOrders").multicast().to("jms:accounting", "jms:production");

To run this example, go to the chapter2/multicast directory in the book’s source code
and run this command:

mvn clean compile exec:java
-Dexec.mainClass=camelinaction.OrderRouterWithMulticast

You should see the following output on the command line:

Accounting received order: message1.xml
Production received order: message1.xml

These two lines of output are coming from two test routes that consume from the
accounting and production queues and then output text to the console that qualifies
the message.

TIP For dealing with responses from services invoked in a multicast, an
aggregator is used. See more about aggregation in chapter 8.

By default, the multicast sends message copies sequentially. In the preceding example,
a message is sent to the accounting queue and then to the production queue. But
what if you wanted to send them in parallel?

PARALLEL MULTICASTING

Sending messages in parallel using the multicast involves only one extra DSL method:
parallelProcessing. Extending the previous multicast example, you can add the
parallelProcessing method as follows:

from("jms:xmlOrders")
 .multicast().parallelProcessing()
 .to("jms:accounting", "jms:production");

This will set up the multicast to distribute messages to the destinations in parallel.
 A default thread pool size of 10 is used if you don’t specify anything else. If you

want to change this default, you can set the underlying java.util.concurrent.Exec-
utorService that’s used to launch new asynchronous message sends by using the
executorService DSL method. Here’s an example:

ExecutorService executor = Executors.newFixedThreadPool(16);

from("jms:xmlOrders")
 .multicast().parallelProcessing().executorService(executor)
 .to("jms:accounting", "jms:production");

This code increases the maximum number of threads to 16, in order to handle a
larger number of incoming requests. For more information on the Camel threading
model and thread pools, please see chapter 10.

 By default, the multicast will continue sending messages to destinations even if one
fails. In your application, though, you may consider the whole process as failed if one
destination fails. What do you do in this case?

 www.it-ebooks.info

http://www.it-ebooks.info/

52 CHAPTER 2 Routing with Camel

STOPPING THE MULTICAST ON EXCEPTION

Our multicast solution at Rider Auto Parts suffers from a problem: if the order failed
to send to the accounting queue, it might take longer to track down the order from
production and bill the customer. To solve this problem, you can take advantage of
the stopOnException feature of the multicast. When enabled, this feature will stop
the multicast on the first exception caught, so you can take any necessary action.

 To enable this feature, use the stopOnException method as follows:

from("jms:xmlOrders")
 .multicast().stopOnException()
 .parallelProcessing().executorService(executor)
 .to("jms:accounting", "jms:production");

To handle the exception coming back from this route, you’ll need to use Camel’s
error-handling facilities, which are described in detail in chapter 5.

 When using the Spring DSL, this route looks a little bit different:

<route>
 <from uri="jms:xmlOrders"/>
 <multicast stopOnException="true" parallelProcessing="true"
➥ executorServiceRef="executor">
 <to uri="jms:accounting"/>
 <to uri="jms:production"/>
 </multicast>
</route>

The main difference is that the methods used to set flags such as stopOnException in
the Java DSL are now attributes on the multicast element. Also, the executor service
is now specified as a reference to a Spring bean defined as follows:

<bean id="executor" class="java.util.concurrent.Executors"
➥ factory-method="newFixedThreadPool">
 <constructor-arg index="0" value="16"/>
</bean>

Now you know how to multicast messages in Camel, but you may be thinking that this
seems like a pretty static solution, because changing the destinations means changing
the route. Let’s see how you can make sending to multiple recipients more dynamic.

2.5.4 Using recipient lists

In the previous section, you implemented a new manager’s suggestion to parallelize
the accounting and production queues so orders could be processed more quickly.
Rider Auto Parts’ top-tier customers first noticed the problem with this approach: now
that all orders are going directly into production, top-tier customers are not getting
priority over the smaller customers. Their orders are taking longer, and they’re losing
business opportunities. Management suggested immediately going back to the old
scheme, but you suggested a simple solution to the problem: by parallelizing only top-
tier customers’ orders, all other orders would have to go to accounting first, thereby
not bogging down production.

 www.it-ebooks.info

http://www.it-ebooks.info/

53Routing and EIPs

This solution can be realized by using the Recipient List EIP. As shown in figure 2.14, a
recipient list first inspects the incoming message, then generates a list of desired
recipients based on the message content, and sends the message to those recipients. A
recipient is specified by an endpoint URI. Note that the recipient list is different from
the multicast because the list of recipients is dynamic.

 Camel provides a recipientList method for implementing the Recipient List EIP.
For example, the following route will take the list of recipients from a header named
recipients, where each recipient is separated from the next by a comma:

from("jms:xmlOrders")
.recipientList(header("recipients"));

This is useful if you already have some information in the message that can be used to
construct the destination names—you could use an expression to create the list. In
order for the recipient list to extract meaningful endpoint URIs, the expression result
must be iterable. Values that will work are java.util.Collection, java.util.Itera-
tor, Java arrays, org.w3c.dom.NodeList, and, as shown in the example, a String with
comma-separated values.

 In the Rider Auto Parts situation, the message doesn’t contain that list. You need
some way of determining whether the message is from a top-tier customer or not. A
simple solution could be to add a custom processor to do this:

from("jms:xmlOrders")
.setHeader("customer", xpath("/order/@customer"))
.process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 String recipients = "jms:accounting";
 String customer =
 exchange.getIn().getHeader("customer", String.class);
 if (customer.equals("honda")) {
 recipients += ",jms:production";
 }
 exchange.getIn().setHeader("recipients", recipients);
 }
})
.recipientList(header("recipients"));

Recipient list

A

B

C

D

Figure 2.14 A recipient
list inspects the incoming
message and determines a
list of recipients based on
the content of the message.
In this case, the message
is only sent to the A, B,
and D destinations.

 www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 2 Routing with Camel

The processor now sets the recipients header to "jms:accounting, jms:produc-
tion" only if the customer is at the gold level of support. The check for gold-level sup-
port here is greatly simplified—ideally you’d query a database for this check. Any
other orders will be routed only to accounting, which will send them to production
after the checks are complete.

 The Spring DSL version of this route follows a very similar layout:

<route>
 <from uri="jms:xmlOrders" />
 <setHeader headerName="customer">
 <xpath>/order/@customer</xpath>
 </setHeader>
 <process ref="calculateRecipients" />
 <recipientList>
 <header>recipients</header>
 </recipientList>
</route>

As you may have expected, the anonymous processor specified in the Java DSL route
had to be separated out into a named processor. This processor was then loaded as a
Spring bean and given the name calculateRecipients, which is then referenced in
the process element by using the ref attribute.

 It’s common for recipients to not be embedded in the message as headers or parts
of the body, and using a custom processor for this case is perfectly functional, but not
very nice. In using a custom processor, you have to manipulate the exchange and mes-
sage APIs directly. Fortunately, Camel supports a better way of implementing a recipi-
ent list.

RECIPIENT LIST ANNOTATION

Rather than using the recipientList method in the DSL, you can add a @Recipient-
List annotation to a method in a plain Java class (a Java bean). This annotation tells
Camel that the annotated method should be used to generate the list of recipients
from the exchange. This behavior only gets invoked, however, if the class is used with
Camel’s bean integration.

 For example, replacing the custom processor you used in the previous section with
an annotated bean results in a greatly simplified route:

from("jms:xmlOrders").bean(RecipientListBean.class);

Now all the logic for calculating the recipients and sending out messages is captured
in the RecipientListBean class, which looks like this:

public class RecipientListBean {
 @RecipientList
 public String[] route(@XPath("/order/@customer") String customer) {
 if (isGoldCustomer(customer)) {
 return new String[] {"jms:accounting", "jms:production"};
 } else {
 return new String[] {"jms:accounting"};
 }
 }

 www.it-ebooks.info

http://www.it-ebooks.info/

55Routing and EIPs

 private boolean isGoldCustomer(String customer) {
 return customer.equals("honda");
 }
}

Notice that the return type of the bean is a list of the desired recipients. Camel will
take this list and send a copy of the message to each destination in the list.

 One nice thing about implementing the recipient list this way is that it’s entirely
separated from the route, which makes it a bit easier to read. You also have access to
Camel’s bean-binding annotations, which allow you to extract data from the message
using expressions, so you don’t have to manually explore the exchange. This example
uses the @XPath bean-binding annotation to grab the customer attribute of the order
element in the body. We’ll cover these annotations in chapter 4, which is all about
using beans.

 To run this example, go to the chapter2/recipientlist directory in the book’s
source code and run this command:

mvn clean compile exec:java
-Dexec.mainClass=camelinaction.OrderRouterWithRecipientListBean

This will output the following on the command line:

Accounting received order: message1.xml
Production received order: message1.xml
Accounting received order: message2.xml

Why do you get this output? Well, you had the following two orders in the src/data
directory:

■ message1.xml
<?xml version="1.0" encoding="UTF-8"?>
<order name="motor" amount="1000" customer="honda"/>

■ message2.xml
<?xml version="1.0" encoding="UTF-8"?>
<order name="motor" amount="2" customer="joe's bikes"/>

The first message is from a gold customer, according to the Rider Auto Parts rules, so
it was routed to both accounting and production. The second order is from a smaller
customer, so it went to accounting for verification of the customer’s credit standing.

 What this system lacks now is a way to inspect these messages as they’re flowing
through the route, rather than waiting until they reach the end. Let’s see how a wire
tap can help.

2.5.5 Using the wireTap method
Often in enterprise applications it’s useful and necessary to inspect messages as they
flow through a system. For instance, when an order fails, you need a way to look at
which messages were received to determine the cause of the failure.

 You could use a simple processor, as you’ve done before, to output information
about a incoming message to the console or append it to a file. Here is a processor
that outputs the message body to the console:

 www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 2 Routing with Camel

from("jms:incomingOrders")
.process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 System.out.println("Received order: " +
 exchange.getIn().getBody());
 }
})
...

This is fine for debugging purposes, but it’s a pretty poor solution for production use.
What if you wanted the message headers, exchange properties, or other data in the
message exchange? Ideally you could copy the whole incoming exchange and send
that to another channel for auditing. As shown in figure 2.15, the Wire Tap EIP
defines such a solution.

 By using the wireTap method in the Java DSL, you can send a copy of the exchange
to a secondary destination without affecting the behavior of the rest of the route:

from("jms:incomingOrders")
.wireTap("jms:orderAudit")
.choice()
 .when(header("CamelFileName").endsWith(".xml"))
 .to("jms:xmlOrders")
 .when(header("CamelFileName").regex("^.*(csv|csl)$"))
 .to("jms:csvOrders")
 .otherwise()
 .to("jms:badOrders");

The preceding code sends a copy of the exchange to the orderAudit queue, and the
original exchange continues on through the route, as if you hadn’t used a wire tap at
all. Camel doesn’t wait for a response from the wire tap because the wire tap sets the
message exchange pattern (MEP) to InOnly. This means that the message will be sent
to the orderAudit queue in a fire-and-forget fashion—it won’t wait for a reply.

 In the Spring DSL, you can configure a wire tap just as easily:

<route>
 <from uri="jms:incomingOrders"/>
 <wireTap uri="jms:orderAudit"/>
 ..

What can you do with a tapped message? A number of things could be done at this
point:

Source Destination

Tap
destination

Wire tap

Figure 2.15 A wire tap is a fixed recipient list that
sends a copy of a message traveling from a source to
a destination to a secondary destination.

 www.it-ebooks.info

http://www.it-ebooks.info/

57Summary and best practices

■ You could print the information to the console like you did before. This is use-
ful for simple debugging purposes.

■ You could save the message in a persistent store (in a file or database) for
retrieval later.

The wire tap is a pretty useful monitoring tool, but it leaves most of the work up to you.
We’ll discuss some of Camel’s more powerful tracing and auditing tools in chapter 12.

2.6 Summary and best practices
In this chapter, we’ve covered one of the core abilities of Camel: routing messages. By
now you should know how to create routes in either the Java or Spring DSL and know
the differences in their configuration. You should also have a good grasp of when to
apply several EIP implementations in Camel and how to use them. With this knowl-
edge, you can create Camel applications that do useful tasks.

 Here are some of the key concepts you should take away from this chapter:

■ Routing occurs in many aspects of everyday life. Whether you’re surfing the Internet,
doing online banking, booking a flight or hotel room, messages are being
routed behind the scenes using some sort of router.

■ Use Apache Camel for routing messages. Camel is primarily a message router that
allows to you route messages from and to a variety of transports and APIs.

■ Camel’s DSLs are used to define routing rules. The Java DSL allows you to write in the
popular Java language, which gives you autocompletion of terms in most IDEs.
It also allows you to use the full power of the Java language when writing routes.
It’s considered the main DSL in Camel. The Spring DSL allows you to write rout-
ing rules without any Java code at all.

■ The Java DSL and Spring CamelContext are a powerful combination. In section 2.4.3
we described our favorite way to write Camel applications, which is to boot up the
CamelContext in Spring and write routing rules in Java DSL RouteBuilders. This
gives you the best of both: the most expressive DSL that Camel has in the Java DSL,
and a more feature-rich and standard container in the Spring CamelContext.

■ Use enterprise integration patterns (EIPs) to solve integration and routing problems. EIPs
are like design patterns from object oriented programming, but for the enter-
prise integration world.

■ Use Camel’s built-in EIP implementations rather than creating your own. Camel imple-
ments most EIPs as easy-to-use DSL terms, which allows you to focus on the
actual business problem rather than the integration architecture.

In the coming chapters we’ll build on this foundation to show you things like data
transformation, error handling, testing, sending data over other transports, and more.
In the next chapter, we’ll look at how Camel makes data transformation a breeze.

 www.it-ebooks.info

http://www.it-ebooks.info/

 www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

Core Camel

In part 1, we guided you through what we consider introductory topics in
Camel. They were topics you absolutely needed to know to use Camel. In this
next part, we’ll cover in depth the core features of Camel. You’ll need many of
these features when using Camel in real-world applications.

 In chapter 3 we’ll take a look at the data in the messages being routed by
Camel. In particular, we’ll look at how you can transform this data to other for-
mats using Camel.

 Camel has great support for integrating beans into your routing applications.
In chapter 4 we’ll look at the many ways beans can be used in Camel applications.

 In complex enterprise systems, lots of things can go wrong. This is why Camel
features an extensive set of error-handling abilities. In chapter 5 we’ll discuss
these in detail.

 In chapter 6 we’ll take a look at another important topic in application devel-
opment: testing. We’ll look at the testing facilities shipped with Camel. You can
use these features for testing your own Camel applications or applications based
on other stacks.

 Components are the main extension mechanism in Camel. As such, they
include functionality to connect to many different transports, APIs, and other
extensions to Camel’s core. Chapter 7 covers the most heavily used components
that ship with Camel.

 The last chapter of this part revisits the important topic of enterprise integra-
tion patterns (EIPs) in Camel. Back in chapter 2, we covered some of the simpler
EIPs; in chapter 8, we’ll look at several of the more complex EIPs.

 www.it-ebooks.info

http://www.it-ebooks.info/

 www.it-ebooks.info

http://www.it-ebooks.info/

61

Transforming
 data with Camel

In the previous chapter, we covered routing, which is the single most important fea-
ture any integration kit must provide. In this chapter, we’ll take a look at the sec-
ond most important feature: data or message transformation.

 Just as in the real world, where people speak different languages, the IT world
speaks different protocols. Software engineers regularly need to act as mediators
between various protocols when IT systems must be integrated. To address this, the
data models used by the protocols must be transformed from one form to another,
adapting to whatever protocol the receiver understands. Mediation and data trans-
formation is a key feature in any integration kit, including Camel.

This chapter covers
■ Transforming data using EIPs and Java
■ Transforming XML data
■ Transforming using well-known data formats
■ Writing your own data formats for transformations
■ Understanding the Camel type-converter mechanism

 www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 3 Transforming data with Camel

 In this chapter, you’ll learn all about how Camel can help you with your data trans-
formation challenges. We’ll start with a brief overview of data transformation in Camel
and then look at how you can transform data into any custom format you may have.
Then we’ll look at some Camel components that are specialized for transforming XML
data and other well-known data formats. We’ll end the chapter by looking into Camel’s
type-converter mechanism, which supports implicitly and explicitly type coercing.

 After reading this chapter, you’ll know how to tackle any data transformation
you’re faced with and which Camel solution to leverage.

3.1 Data transformation overview
Camel provides many techniques for data transformation, and we’ll cover them
shortly. But first we’ll start with an overview of data transformation in Camel.

Data transformation is a broad term that covers two types of transformation:

■ Data format transformation—The data format of the message body is transformed
from one form to another. For example, a CSV record is formatted as XML.

■ Data type transformation—The data type of the message body is transformed
from one type to another. For example a java.lang.String is transformed into
a javax.jms.TextMessage.

Figure 3.1 illustrates the principle of transforming a message body from one form into
another. This transformation can involve any combination of format and type trans-
formations. In most cases, the data transformation you’ll face with Camel is format
transformation, where you have to mediate between two protocols. Camel has a built-
in type-converter mechanism that can automatically convert between types, which
greatly reduces the need for end users to deal with type transformations.

Camel has many data-transformation features. We’ll introduce them in the following
section, and then look at them one by one. After reading this chapter, you’ll have a
solid understanding of how to use Camel to transform your data.

3.1.1 Data transformation with Camel

In Camel, data transformation typically takes places in the six ways listed in table 3.1.

Message

Message
body

Message

Message
body

Transform Figure 3.1 Camel
offers many features for
transforming data from
one form to another.

 www.it-ebooks.info

http://en.wikipedia.org/wiki/Erich_Gamma
http://en.wikipedia.org/wiki/Erich_Gamma
http://en.wikipedia.org/wiki/Richard_Helm
http://en.wikipedia.org/wiki/Ralph_Johnson
http://en.wikipedia.org/wiki/John_Vlissides
http://en.wikipedia.org/wiki/John_Vlissides
http://www.it-ebooks.info/

63Transforming data using EIPs and Java

In this chapter, we’ll cover the first five of the data transformation methods listed in
table 3.1. We’ll leave the last one for chapter 11.

3.2 Transforming data using EIPs and Java
Data mapping is the process of mapping between two distinct data models, and it’s a
key factor in data integration. There are many existing standards for data models, gov-
erned by various organizations or committees. As such, you’ll often find yourself need-
ing to map from a company’s custom data model to a standard data model.

 Camel provides great freedom in data mapping because it allows you to use Java
code—you aren’t limited to using a particular data mapping tool that at first might
seem elegant but that turns out to make things impossible.

 In this section, we’ll look at how you can map data using a Processor, which is a
Camel API. Camel can also use beans for mapping, which is a good practice, because it
allows your mapping logic to be independent of the Camel API.

3.2.1 Using the Message Translator EIP

The Message Translator EIP is illustrated in figure 3.2.
 This pattern covers translating a message from one format to another. It’s the

equivalent of the Adapter pattern from the Gang of Four book.

Table 3.1 Six ways data transformation typically takes place in Camel

Transformation Description

Data transformation in
routes

You can explicitly enforce transformation in the route using the Message
Translator or the Content Enricher EIPs. This gives you the power to do data
mapping using regular Java code. We ll cover this in section 3.2.

Data transformation
using components

Camel provides a range of components for transformation, such as the XSLT
component for XML transformation. We’ll dive into this in section 3.3.

Data transformation
using data formats

Data formats are Camel transformers that come in pairs to transform data
back and forth between well-known formats.

Data transformation
using templates

Camel provides a range of components for transforming using templates,
such as Apache Velocity. We’ll look at this in section 3.5.

Data type transforma-
tion using Camel’s type-
converter mechanism

Camel has an elaborate type-converter mechanism that activates on
demand. This is convenient when you need to convert from common types
such as java.lang.Integer to java.lang.String or even from
java.io.File to java.lang.String. Type converters are covered in
section 3.6.

Message transforma-
tion in component
adapters

Camel’s many components adapt to various commonly used protocols and,
as such, need to be able to transform messages as they travel to and from
those protocols. Often these components use a combination of custom data
transformations and type converters. This happens seamlessly, and only
component writers need to worry about it. We’ll cover writing custom compo-
nents in chapter 11.

 www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 3 Transforming data with Camel

NOTE The Gang of Four book is Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. See the “Design Patterns” Wikipedia article for more information:
http://en.wikipedia.org/wiki/Design_Patterns_(book).

Camel provides three ways of using this pattern:

■ Using a Processor
■ Using beans
■ Using <transform>

We’ll look at them each in turn.

TRANSFORMING USING A PROCESSOR

The Camel Processor is an interface defined in org.apache.camel.Processor with a
single method:

public void process(Exchange exchange) throws Exception;

The Processor is a low-level API where you work directly on the Camel Exchange
instance. It gives you full access to all Camel’s moving parts from the CamelContext,
which you can obtain Exchange using the getCamelContext method.

 Let’s look at an example. At Rider Auto Parts you’ve been asked to generate daily
reports of newly received orders to be outputted to a CSV file. The company uses a cus-
tom format for order entries, but to make things easy, they already have an HTTP ser-
vice that returns a list of orders for whatever date you input. The challenge you face is
mapping the returned data from the HTTP service to a CSV format and writing the
report to a file.

 Because you want to get started on a prototype quickly, you decide to use the
Camel Processor.

import org.apache.camel.Exchange;
import org.apache.camel.Processor;

public class OrderToCsvProcessor implements Processor {

 public void process(Exchange exchange) throws Exception {
 String custom = exchange.getIn()
 .getBody(String.class);

Listing 3.1 Using a Processor to translate from a custom format to CSV format

Message
translator

Incoming
message

Translated
message

Figure 3.2 In the
Message Translator
EIP, an incoming
message goes
through a translator
and comes out as a
translated message.

Gets
custom
payload

B

 www.it-ebooks.info

http://en.wikipedia.org/wiki/Design_Patterns_(book)
http://www.it-ebooks.info/

65Transforming data using EIPs and Java

 String id = custom.substring(0, 9);
 String customerId = custom.substring(10, 19);
 String date = custom.substring(20, 29);
 String items = custom.substring(30);
 String[] itemIds = items.split("@");

 StringBuilder csv = new StringBuilder();
 csv.append(id.trim());
 csv.append(",").append(date.trim());
 csv.append(",").append(customerId.trim());
 for (String item : itemIds) {
 csv.append(",").append(item.trim());
 }

 exchange.getIn().setBody(csv.toString());
 }

}

First you grab the custom format payload from the exchange B. It’s a String type, so
you pass String in as the parameter to have the payload returned as a String. Then
you extract data from the custom format to the local variables C. The custom format
could be anything, but in this example it’s a fixed-length custom format. Then you
map the CSV format by building a string with comma-separated values D. Finally, you
replace the custom payload with your new CSV payload E.

 You can use the OrderToCsvProcessor from listing 3.1 in a Camel route as follows:

from("quartz://report?cron=0+0+6+*+*+?")
 .to("http://riders.com/orders/cmd=received&date=yesterday")
 .process(new OrderToCsvProcessor())
 .to("file://riders/orders?fileName=report-${header.Date}.csv");

The preceding route uses Quartz to schedule a job to run once a day at 6 a.m. It then
invokes the HTTP service to retrieve the orders received yesterday, which are returned
in the custom format. Next, it uses OrderToCSVProcessor to map from the custom for-
mat to CSV format before writing the result to a file.

 The equivalent route in Spring XML is as follows:

<bean id="csvProcessor" class="camelinaction.OrderToCsvProcessor"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="quartz://report?cron=0+0+6+*+*+?"/>
 <to uri="http://riders.com/orders/cmd=received&date=yesterday"/>
 <process ref="csvProcessor"/>
 <to uri="file://riders/orders?fileName=report-${header.Date}.csv"/>
 </route>
</camelContext>

You can try this example yourself—we’ve provided a little unit test with the book’s
source code. Go to the chapter3/transform directory, and run these Maven goals:

mvn test -Dtest=OrderToCsvProcessorTest
mvn test -Dtest=SpringOrderToCsvProcessorTest

After the test runs, a report file is written in the target/orders/received directory.

Maps to
CSV formatD

Replaces payload
with CSV payload

E

 www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 3 Transforming data with Camel

Using a processor has one disadvantage: you’re required to use the Camel API. In the
next section, we’ll look at how to avoid this by using a bean.

TRANSFORMING USING BEANS

Using beans is a great practice because it allows you to use any Java code and library
you wish. Camel imposes no restrictions whatsoever. Camel can invoke any bean you
choose, so you can use existing beans without having to rewrite or recompile them.

 Let’s try using a bean instead of a Processor.

public class OrderToCsvBean {

 public static String map(String custom) {
 String id = custom.substring(0, 9);
 String customerId = custom.substring(10, 19);
 String date = custom.substring(20, 29);
 String items = custom.substring(30);
 String[] itemIds = items.split("@");

 StringBuilder csv = new StringBuilder();
 csv.append(id.trim());
 csv.append(",").append(date.trim());
 csv.append(",").append(customerId.trim());
 for (String item : itemIds) {
 csv.append(",").append(item.trim());
 }

 return csv.toString();
 }
}

Listing 3.2 Using a bean to translate from a custom format to CSV format

Using the getIn and getOut methods on exchanges
The Camel Exchange defines two methods for retrieving messages: getIn and
getOut. The getIn method returns the incoming message, and the getOut method
accesses the outbound message.

There are two scenarios where the Camel end user will have to decide among using
these methods:

■ A read-only scenario, such as when you’re logging the incoming message
■ A write scenario, such as when you’re transforming the message

In the second scenario, you’d assume getOut should be used. That’s correct accord-
ing to theory, but in practice there’s a common pitfall when using getOut: the incom-
ing message headers and attachments will be lost. This is often not what you want,
so you must copy the headers and attachments from the incoming message to the
outgoing message, which can be tedious. The alternative is to set the changes direct-
ly on the incoming message using getIn, and not to use getOut at all. This is the
practice we use in this book.

B Extracts data to
local variables

Returns CSV
payload

C

 www.it-ebooks.info

http://www.it-ebooks.info/

67Transforming data using EIPs and Java

The first noticeable difference between listings 3.1 and 3.2 is that listing 3.2 doesn’t
use any Camel imports. This means your bean is totally independent of the Camel API.
The next difference is that you can name the method signature in listing 3.2—in this
case it’s a static method named map.

 The method signature defines the contract, which means that the first parameter,
(String custom), is the message body you’re going to use for translation. The method
returns a String, which means the translated data will be a String type. At runtime,
Camel binds to this method signature. We won’t go into any more details here; we’ll
cover much more about using beans in chapter 4.

 The actual mapping B is the same as with the processor. At the end, you return
the mapping output C.

 You can use OrderToCsvBean in a Camel route as shown here:

from("quartz://report?cron=0+0+6+*+*+?")
 .to("http://riders.com/orders/cmd=received&date=yesterday")
 .bean(new OrderToCsvBean())
 .to("file://riders/orders?fileName=report-${header.Date}.csv");

The equivalent route in Spring XML is as follows:

<bean id="csvBean" class="camelinaction.OrderToCsvBean"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="quartz://report?cron=0+0+6+*+*+?"/>
 <to uri="http://riders.com/orders/cmd=received&date=yesterday"/>
 <bean ref="csvBean"/>
 <to uri="file://riders/orders?fileName=report-${header.Date}.csv"/>
 </route>
</camelContext>

You can try this example from the chapter3/transform directory by using the follow-
ing Maven goals:

mvn test -Dtest=OrderToCsvBeanTest
mvn test -Dtest=SpringOrderToCsvBeanTest

It will generate a test report file in the target/orders/received directory.
 Another advantage of using beans over processors for mappings is that unit testing

is much easier. For example, listing 3.2 doesn’t require the use of Camel at all, as
opposed to listing 3.1 where you need to create and pass in an Exchange instance.

 We’ll leave the beans for now, because they’re covered extensively in the next
chapter. But you should keep in mind that beans are very useful for doing message
transformation.

TRANSFORMING USING THE TRANSFORM() METHOD FROM THE JAVA DSL

Transform() is a method in the Java DSL that can be used in Camel routes to trans-
form messages. By allowing the use of expressions, transform() permits great flexibil-
ity, and using expressions directly within the DSL can sometimes save time. Let’s look
at a little example.

 www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 3 Transforming data with Camel

 Suppose you need to prepare some text for HTML formatting by replacing all line
breaks with a
 tag. This can be done with a built-in Camel expression that
searches and replaces using regular expressions:

from("direct:start")
 .transform(body().regexReplaceAll("\n", "
"))
 .to("mock:result");

What this route does is use the transform() method to tell Camel that the message
should be transformed using an expression. Camel provides what is know as the
Builder pattern to build expressions from individual expressions. This is done by
chaining together method calls, which is the essence of the Builder pattern.

NOTE For more information on the Builder pattern, see the Wikipedia article:
http://en.wikipedia.org/wiki/Builder_pattern.

In this example, you combine body() and regexReplaceAll(). The expression
should be read as follows: take the body and perform a regular expression that
replaces all new lines (\n) with
 tags. Now you’ve combined two methods that
conform to a compound Camel expression.

 You can run this example from chapter3/transform directly by using the following
Maven goal:

mvn test -Dtest=TransformTest

Camel also allows you to use custom expressions. This is useful when you need to be in
full control and have Java code at your fingertips. For example, the previous example
could have been implemented as follows:

from("direct:start")
 .transform(new Expression() {
 public <T> T evaluate(Exchange exchange, Class<T> type) {
 String body = exchange.getIn().getBody(String.class);
 body = body.replaceAll("\n", "
");
 body = "<body>" + body + "</body>";
 return (T) body;
 }
 })
 .to("mock:result");

As you can see, this code uses an inlined Camel Expression that allows you to use Java
code in its evaluate method. This follows the same principle as the Camel Processor
you saw before.

The Direct component
The example here uses the Direct component (http://camel.apache.org/direct) as the
input source for the route (from("direct:start")). The Direct component provides
direct invocation between a producer and a consumer. It only allows connectivity from
within Camel, so external systems can’t send messages directly to it. This component
is used within Camel to do things such as link routes together or for testing.

 www.it-ebooks.info

http://en.wikipedia.org/wiki/Builder_pattern
http://camel.apache.org/direct
http://www.it-ebooks.info/

69Transforming data using EIPs and Java

 Now let’s see how you can transform data using Spring XML.

TRANSFORMING USING <TRANSFORM> FROM SPRING XML

Using <transform> from Spring XML is a bit different than from Java DSL because the
XML DSL isn’t as powerful. In Spring XML, the Builder pattern expressions aren’t
available because with XML you don’t have a real programming language underneath.
What you can do instead is invoke a method on a bean or use scripting languages.

 Let’s see how this works. The following route uses a method call on a bean as the
expression:

<bean id="htmlBean" class="camelinaction.HtmlBean"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <transform>
 <method bean="htmlBean" method="toHtml"/>
 </transform>
 <to uri="mock:result"/>
 </route>
</camelContext>

First, you declare a regular spring bean to be used to transform the message B.
Then, in the route, you use <transform> with a <method> call expression to invoke
the bean C.

 The implementation of the htmlBean is very straightforward:

public class HtmlBean {
 public static String toHtml(String body) {
 body = body.replaceAll("\n", "
");
 body = "<body>" + body + "</body>";
 return body;
 }
}

You can also use scripting languages as expressions in Camel. For example, you can
use Groovy, MVEL, JavaScript, or Camel’s own scripting language, called Simple
(explained in some detail in appendix A). We won’t go in detail on how to use the
other scripting languages at this point, but the Simple language can be used to build
strings using placeholders. It pretty much speaks for itself—I’m sure you’ll under-
stand what the following transformation does:

<transform>
 <simple>Hello ${body} how are you?</simple>
</transform>

You can try the Spring transformation examples provided in the book’s source code
by running the following Maven goals from the chapter3/transform directory:

mvn test -Dtest= SpringTransformMethodTest
mvn test -Dtest= SpringTransformScriptTest

They’re located in the chapter3/transform directory and are named SpringTrans-
formMethodTest and SpringTransformScriptTest.

Does the
transformation

B

Invokes toHtml
method on bean

C

 www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 3 Transforming data with Camel

 We’re done covering the Message Translator EIP, so let’s look at the related Con-
tent Enricher EIP.

3.2.2 Using the Content Enricher EIP

The Content Enricher EIP is illustrated in figure 3.3. This pattern documents the sce-
nario where a message is enriched with data obtained from another resource.

To help understand this pattern, we’ll turn back to Rider Auto Parts. It turns out that
the data mapping you did in listing 3.1 wasn’t sufficient. Orders are also piled up on
an FTP server, and your job is to somehow merge this information into the existing
report. Figure 3.4 illustrates the scenario.

Basic
message

Enriched
message

Enricher

Resource
Figure 3.3 In the Content Enricher EIP, an
existing message has data added to it from
another source.

HTTP server

FTP server
Content
enricher

Quartz
scheduler

Report
(CSV)

File server

Orders
(CSV)

Transform

Camel

B C

D

E
F

G

Figure 3.4
An overview of
the route that
generates the
orders report,
now with the
content enricher
pulling in data from
an FTP server

 www.it-ebooks.info

http://www.it-ebooks.info/

71Transforming data using EIPs and Java

In figure 3.4, a scheduled consumer using Quartz starts the route every day at 6 a.m.
B. It then pulls data from an HTTP server, which returns orders in a custom
format C, which is then transformed into CSV format D. At this point, you have to
perform the additional content enrichment step E with the data obtained from the
FTP server F. After this, the final report is written to the file server G.

 Before we dig into the code and see how to implement this, we need to take a step
back and look at how the Content Enricher EIP is implemented in Camel. Camel pro-
vides two operations in the DSL for implementing the pattern:

■ pollEnrich—This operation merges data retrieved from another source using
a consumer.

■ enrich—This operation merges data retrieved from another source using a
producer.

Camel uses the org.apache.camel.processor.AggregationStrategy interface to
merge the result from the source with the original message, as follows:

Exchange aggregate(Exchange oldExchange, Exchange newExchange);

This aggregate method is a callback that you must implement. The method has two
parameters: the first, named oldExchange, contains the original exchange; the sec-
ond, newExchange, is the enriched source. Your task is to enrich the message using
Java code and return the merged result. This may sound a bit confusing, so let’s see it
in action.

 To solve the problem at Rider Auto Parts, you need to use pollEnrich because it’s
capable of polling a file from an FTP server.

ENRICHING USING POLLENRICH

Listing 3.3 shows how you can use pollEnrich to retrieve the additional orders from
the remote FTP server and aggregate this data with the existing message using Camel’s
AggregationStrategy.

from("quartz://report?cron=0+0+6+*+*+?")
 .to("http://riders.com/orders/cmd=received")
 .process(new OrderToCSVProcessor())
 .pollEnrich("ftp://riders.com/orders/?username=rider&password=secret",

Listing 3.3 Using pollEnrich to merge additional data with an existing message

The difference between pollEnrich and enrich
The difference between pollEnrich and enrich is that the former uses a consumer
and the latter a producer to retrieve data from the source. Knowing the difference is
important: the file component can be used with both, but using enrich will write the
message content as a file; using pollEnrich will read the file as the source, which
is most likely the scenario you’ll be facing when enriching with files. The HTTP com-
ponent only works with enrich; it allows you to invoke an external HTTP service and
use its reply as the source.

 www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 3 Transforming data with Camel

 new AggregationStrategy() {
 public Exchange aggregate(Exchange oldExchange,
 Exchange newExchange) {
 if (newExchange == null) {
 return oldExchange;
 }

 String http = oldExchange.getIn()
 .getBody(String.class);
 String ftp = newExchange.getIn()
 .getBody(String.class);
 String body = http + "\n" + ftp;
 oldExchange.getIn().setBody(body);

 return oldExchange;
 }
 })
 .to("file://riders/orders");

The route is triggered by Quartz to run at 6 a.m. every day. You invoke the HTTP ser-
vice to retrieve the orders and transform them to CSV format using a processor.

 At this point, you need to enrich the existing data with the orders from the remote
FTP server. This is done by using pollEnrich B, which consumes the remote file.

 To merge the data, you use AggregationStrategy C. First, you check whether any
data was consumed or not. If newExchange is null, there is no remote file to consume,
and you just return the existing data. If there is a remote file, you merge the data by
concatenating the existing data with the new data and setting it back on the old-
Exchange. Then, you return the merged data by returning the oldExchange. To write
the CSV report file, you use the file component D.

PollEnrich uses a polling consumer to retrieve messages, and it offers three time-
out modes:

■ pollEnrich(timeout = -1)—Polls the message and waits until a message arrives.
This mode will block until a message exists.

■ pollEnrich(timeout = 0)—Immediately polls the message if any exists; other-
wise null is returned. It will never wait for messages to arrive, so this mode will
never block. This is the default mode.

■ pollEnrich(timeout > 0)—Polls the message, and if no message exists, it will
wait for one, waiting at most until the timeout triggers. This mode will poten-
tially block.

It’s a best practice to either use timeout = 0 or to assign a timeout value when using
pollEnrich to avoid waiting indefinitely if no message arrives.

Uses pollEnrich
to read FTP fileB

C Merges data using
AggregationStrategy

Writes
output to file

D

Enrich and pollEnrich can’t access information in the current exchange
Neither enrich nor pollEnrich can leverage any information from the current ex-
change. This means, for example, that you can’t store a filename header on the ex-
change for pollEnrich to use to select a particular file. This may change in the future
if the Camel team can find a solution.

 www.it-ebooks.info

http://www.it-ebooks.info/

73Transforming XML

Now let’s take a quick look at how to use enrich with Spring XML; it’s a bit different
than when using the Java DSL.

ENRICHING USING ENRICH

Enrich is used when you need to enrich the current message with data from another
source using request-response messaging. A prime example would be to enrich the
current message with the reply from a web service call. But we’ll look at another exam-
ple, using Spring XML to enrich the current message using the TCP transport:

<bean id="quoteStrategy"
 class="camelinaction.QuoteStrategy"/>

<route>
 <from uri="activemq:queue:quotes"/>
 <enrich url="mina:tcp://riders.com:9876?textline=true&sync=true"
 strategyRef="quoteStrategy"/>
 <to uri="log:quotes"/>
</route>

Here you use the Camel mina component for TCP transport, configured to use
request-response messaging by using sync=true option. To merge the original mes-
sage with data from the remote server, <enrich> must refer to an AggregationStrat-
egy. This is done using the strategyRef attribute. As you can see in the example, the
quoteStrategy being referred to is a bean id B, which contains the actual implemen-
tation of the AggregationStrategy, where the merging takes place.

 You’ve seen a lot about how to transform data in Camel, using Java code for the
actual transformations. Now let’s take a peek into the XML world and look at the XSLT
component, which is used for transforming XML messages using XSLT stylesheets.

3.3 Transforming XML
Camel provides two ways to perform XML transformations:

■ XSLT component—For transforming an XML payload into another format using
XSLT stylesheets

■ XML marshaling—For marshaling and unmarshaling objects to and from XML

Both of these will be covered in following sections.

3.3.1 Transforming XML with XSLT
XSL Transformations (XSLT) is a declarative XML-based language used to transform
XML documents into other documents. For example, XSLT can be used to transform
XML into HTML for web pages or to transform an XML document into another XML
document with a different structure. XSLT is powerful and versatile, but it’s also a
complex language that takes time and effort to fully understand and master. Think
twice before deciding to pick up and use XSLT.

 Camel provides XSLT as a component in camel-spring.jar because it leverages
Spring’s resource loading. This means greater flexibility in loading stylesheets because
Spring enables them to be loaded from various locations, such as the classpath, file
paths, and over HTTP.

B Bean implementing
AggregationStrategy

 www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 3 Transforming data with Camel

Using the XSLT component is straightforward because it’s just another Camel compo-
nent. The following route shows an example of how you could use it; this route is also
illustrated in figure 3.5.

from("file://rider/inbox")
 .to("xslt://camelinaction/transform.xsl")
 .to("activemq:queue:transformed")

The file consumer picks up new files and routes them to the XSLT component, which
transforms the payload using the stylesheet. After the transformation, the message is
routed to a JMS producer, which sends the message to the JMS queue. Notice in the
preceding code how the URL for the XSLT component is defined: xslt://camelinac-
tion/transform.xsl. The part after the scheme is the URI location of the stylesheet
to use. Camel will look in the classpath by default.

 As mentioned before, the Camel XSLT component leverages Spring to load the
stylesheet. You can prefix the resource name with any of the three prefixes listed in
table 3.2.

Let’s leave the XSLT world now and take a look at how you can do XML-to-object mar-
shaling with Camel.

Table 3.2 Prefixes supported by the XSLT component for loading stylesheets

Prefix Example Description

<none> xslt://camelinaction/
transform.xsl

If no prefix is provided, Camel loads the
resource from the classpath

classpath: xslt://classpath:com/
mycompany/transform.xml

Loads the resource from the classpath

file: xslt://file:/rider/config/
transform.xml

Loads the resource from the filesystem

http: xslt://http://rider.com/
styles/transform.xsl

Loads the resource from an URL

XSLT
component

Style
sheet

File
message

D

Transformed
message

File
consumer

JMS
producer

B C D

Figure 3.5 A Camel route using an XSLT component to transform an XML document before it’s sent
to a JMS queue

 www.it-ebooks.info

http://www.it-ebooks.info/

75Transforming XML

3.3.2 Transforming XML with object marshaling
Any software engineer who has worked with XML knows that it’s a challenge to use the
low-level XML API that Java offers. Instead, people often prefer to work with regular Java
objects and use marshaling to transform between Java objects and XML representations.

 In Camel, this marshaling process is provided in ready-to-use components known
as data formats. We’ll cover data formats in full detail in section 3.4, but we’ll take a
quick look at the XStream and JAXB data formats here as we cover XML transforma-
tions using marshaling.

TRANSFORMING USING XSTREAM

XStream is a simple library for serializing objects to XML and back again. To use it,
you need camel-xstream.jar on the classpath and the XStream library itself.

 Suppose you need to send messages in XML format to a shared JMS queue, which is
then used to integrate two systems. Let’s look at how this can be done.

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <dataFormats>
 <xstream id="myXstream"/>
 </dataFormats>

 <route>
 <from uri="direct:foo"/>
 <marshal ref="myXstream"/>
 <to uri="activemq:queue:foo"/>
 </route>
</camelContext>

When using the XML DSL, you can declare the data formats used at the top B of the
<camelContext>. By doing this, you can share the data formats in multiple routes.
In the first route, where you send messages to a JMS queue, you use marshal C,
which refers to the id from B, so Camel knows that the XStream data format is
being used.

 You can also use the XStream data format directly in the route, which can shorten
the syntax a bit, like this:

<route>
 <from uri="direct:foo"/>
 <marshal><xstream/></marshal>
 <to uri="activemq:queue:foo"/>
</route>

The same route is a bit shorter to write in the Java DSL, because you can do it with one
line per route:

from("direct:foo").marshal().xstream().to("uri:activemq:queue:foo");

Yes, using XStream is that simple. And the reverse operation, unmarshaling from XML
to an object, is just as simple:

Listing 3.4 Using XStream to transform a message into XML

Specifies XStream
data formatB

Transforms
to XML

C

 www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 3 Transforming data with Camel

<route>
 <from uri="activemq:queue:foo"/>
 <unmarshal ref="myXstream"/>
 <to uri="direct:handleFoo"/>
</route>

You’ve now seen how easy it is to use XStream with Camel. Let’s take a look at using
JAXB with Camel.

TRANSFORMING USING JAXB

JAXB (Java Architecture for XML Binding) is a standard specification for XML binding,
and it’s provided out of the box in the Java runtime. Like XStream, it allows you to
serialize objects to XML and back again. It’s not as simple, but it does offer more bells
and whistles for controlling the XML output. And because it’s distributed in Java, you
don’t need any special JAR files on the classpath.

 Unlike XStream, JAXB requires that you do a bit of work to declare the binding
between Java objects and the XML form. This is often done using annotations. Sup-
pose you define a model bean to represent an order, as shown in listing 3.5, and you
want to transform this into XML before sending it to a JMS queue. Then you want to
transform it back to the order bean again when consuming from the JMS queue. This
can be done as shown in listings 3.5 and 3.6.

package com.acme.order;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class PurchaseOrder {
 @XmlAttribute
 private String name;
 @XmlAttribute
 private double price;
 @XmlAttribute
 private double amount;
}

Listing 3.5 shows how to use JAXB annotations to decorate your model object (omit-
ting the usual getters and setters). First you define @XmlRootElement B as a class-level
annotation to indicate that this class is an XML element. Then you define the @Xml-
AccessorType to let JAXB access fields directly. To expose the fields of this model
object as XML attributes, you mark them with the @XmlAttribute annotation.

 Using JAXB, you should be able to marshal a model object into an XML representa-
tion like this:

<purchaseOrder name="Camel in Action" price="4995" amount="1"/>

Listing 3.5 Annotating a bean with JAXB so it can be transformed to and from XML

B PurchaseOrder class
is JAXB annotated

 www.it-ebooks.info

http://www.it-ebooks.info/

77Transforming with data formats

Listing 3.6 shows how you can use JAXB in routes to transform the PurchaseOrder
object to XML before it’s sent to a JMS queue, and then back again from XML to the
PurchaseOrder object when consuming from the same JMS queue.

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <dataFormats>
 <jaxb id="jaxb" contextPath="camelinaction"/>
 </dataFormats>

 <route>
 <from uri="direct:order"/>
 <marshal ref="jaxb"/>
 <to uri="activemq:queue:order"/>
 </route>

 <route>
 <from uri="activemq:queue:order"/>
 <unmarshal ref="jaxb"/>
 <to uri="direct:doSomething"/>
 </route>
</camelContext>

First you need to declare the JAXB data format B. Note that a contextPath attribute
is also defined on the JAXB data format—this is a package name that instructs JAXB to
look in this package for classes that are JAXB-annotated.

 The first route then marshals to XML C and the second route unmarshals to trans-
form the XML back into the PurchaseOrder object D.

 You can try this example by running the following Maven goal from the chapter3/
order directory:

mvn test -Dtest=PurchaseOrderJaxbTest

NOTE To tell JAXB which classes are JAXB-annotated, you need to drop a spe-
cial jaxb.index file into the context path. It’s a plain text file in which each
line lists the class name. In the preceding example, the file contains a single
line with the text PurchaseOrder.

That’s the basis of using XML object marshaling with XStream and JAXB. Both of them
are implemented in Camel via data formats that are capable of transforming back and
forth between various well-known formats.

3.4 Transforming with data formats
In Camel, data formats are pluggable transformers that can transform messages from
one form to another and vice versa. Each data format is represented in Camel as an
interface in org.apace.camel.spi.DataFormat containing two methods:

■ marshal—For marshaling a message into another form, such as marshaling Java
objects to XML, CSV, EDI, HL7, or other well-known data models

■ unmarshal—For performing the reverse operation, which turns data from well-
known formats back into a message

Listing 3.6 Using JAXB to serialize objects to and from XML

Declares JAXB
data formatB

Transforms from
model to XML

C

Transforms from
XML to model

D

 www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 3 Transforming data with Camel

You may already have realized that these two functions are opposites, meaning that
one is capable of reversing what the other has done, as illustrated in figure 3.6.
We touched on data formats in section 3.3, where we covered XML transformations.
This section will cover data formats in more depth and using other data types than XML,
such as CSV and JSON. We’ll even look at how you can create your own data formats.

 We’ll start our journey by briefly looking at the data formats Camel provides out of
the box.

3.4.1 Data formats provided with Camel

Camel provides data formats for a range of well-known data models, as listed in table 3.3.

Table 3.3 Data formats provided out of the box with Camel

Data format Data model Artifact Description

Bindy CSV, FIX,
fixed length

camel-bindy Binds various data models to model objects using
annotations

Castor XML camel-castor Uses Castor for XML binding to and from Java objects

Crypto Any camel-crypto Encrypts and decrypts data using the Java Cryptogra-
phy Extension

CSV CSV camel-csv Transforms to and from CSV using the Apache Com-
mons CSV library

Flatpack CSV camel-flatpack Transforms to and from CSV using the FlatPack library

GZip Any camel-gzip Compresses and decompresses files (compatible
with the popular gzip/gunzip tools)

HL7 HL7 camel-hl7 Transforms to and from HL7, which is a well-known
data format in the health care industry

JAXB XML camel-jaxb Uses the JAXB 2.x standard for XML binding to and
from Java objects

Jackson JSON camel-jackson Transforms to and from JSON using the ultra-fast
Jackson library

Protobuf XML camel-protobuf Transforms to and from XML using the Google Proto-
col Buffers library

SOAP XML camel-soap Transforms to and from SOAP

Message

Message
body

Message

Message
body

marshal

010011010101...

unmarshal

Attribute
Attribute

Class
Figure 3.6 An
object is marshaled
to a binary represen-
tation; unmarshal
can be used to get
the object back.

 www.it-ebooks.info

http://www.it-ebooks.info/

79Transforming with data formats

As you can see, Camel provides 18 data formats out of the box. We’ve picked 3 to
cover in the following section. They’re among the most commonly used, and what you
learn about those will also apply for the remainder of the data formats. You can read
more about all these data formats at the Camel website (http://camel.apache.org/
data-format.html).

3.4.2 Using Camel’s CSV data format

The camel-csv data format is capable of transforming to and from CSV format. It lever-
ages Apache Commons CSV to do the actual work.

 Suppose you need to consume CSV files, split out each row, and send it to a JMS
queue. Sounds hard to do, but it’s possible with little effort in a Camel route:

from("file://rider/csvfiles")
 .unmarshal().csv()
 .split(body()).to("activemq:queue.csv.record");

All you have to do is unmarshal the CSV files, which will read the file line by line and
store all lines in the message body as a java.util.List<List> type. Then you use the
splitter to split up the body, which will break the java.util.List<List<String>> into
rows (each row represented as another List<String> containing the fields) and send
each row to the JMS queue. You may not want to send each row as a List type to the JMS
queue, so you can transform the row before sending, perhaps using a processor.

 The same example in Spring XML is a bit different, as shown here:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="file://rider/csvfiles"/>
 <unmarshal><csv/></unmarshal>

Serialization Object camel-core Uses Java Object Serialization to transform objects to
and from a serialized stream

TidyMarkup HTML camel-tagsoup Tidies up HTML by parsing ugly HTML and returning it
as pretty well-formed HTML

XmlBeans XML camel-xmlbeans Uses XmlBeans for XML binding to and from Java
objects

XMLSecurity XML camel-xmlsecurity Facilitates encryption and decryption of XML docu-
ments

XStream XML camel-xstream Uses XStream for XML binding to and from Java
objects

XStream JSON camel-xstream Transforms to and from JSON using the XStream
library

Zip Any camel-core Compresses and decompresses messages; it’s most
effective when dealing with large XML- or text-based
payloads

Table 3.3 Data formats provided out of the box with Camel (continued)

Data format Data model Artifact Description

 www.it-ebooks.info

http://camel.apache.org/data-format.html
http://camel.apache.org/data-format.html
http://www.it-ebooks.info/

80 CHAPTER 3 Transforming data with Camel

 <split>
 <simple>body</simple>
 <to uri="activemq:queue.csv.record"/>
 </split>
 </route>
</camelContext>

The noticeable difference is how you tell <split> that it should split up the message
body. To do this you need to provide <split> with an Expression, which is what the split-
ter should iterate when it performs the splitting. To do so, you can use Camel’s built-in
expression language called Simple (see appendix A), which knows how to do that.

NOTE The Splitter EIP is fully covered in section 8.1 of this book.

This example is in the source code for the book in the chapter3/order directory. You
can try the examples by running the following Maven goals:

mvn test -Dtest=PurchaseOrderCsvTest
mvn test -Dtest=PurchaseOrderCsvSpringTest

At first, the data types that the CSV data format uses may seem a bit confusing. They’re
listed in table 3.4.

One problem with camel-csv is that it uses generic data types, such as Maps or Lists,
to represent CSV records. Often you’ll already have model objects to represent your
data in memory. Let’s look at how you can use model objects with the camel-bindy
component.

3.4.3 Using Camel’s Bindy data format
The two existing CSV-related data formats (camel-csv and camel-flatpack) are older
libraries that don’t take advantage of the new features in Java 1.5, such as annotations
and generics. In light of this deficiency, Charles Moulliard stepped up and wrote the
camel-bindy component to take advantage of these new possibilities. It’s capable of
binding CSV, FIX, and fixed-length formats to existing model objects using annota-
tions. This is similar to what JAXB does for XML.

Table 3.4 Data types that camel-csv uses when transforming to and from CSV format

Operation From type To type Description

marshal Map<String,
Object>

OutputStream Contains a single row in CSV
format

marshal List<Map<String,
Object>>

OutputStream Contains multiple rows in
CSV format where each row
is separated by \n (newline)

unmarshal InputStream List<List<String>> Contains a List of rows
where each row is another
List of fields

 www.it-ebooks.info

http://www.it-ebooks.info/

81Transforming with data formats

 Suppose you have a model object that represents a purchase order. By annotating
the model object with camel-bindy annotations, you can easily transform messages
between CSV and Java model objects.

package camelinaction.bindy;

import java.math.BigDecimal;
import org.apache.camel.dataformat.bindy.annotation.CsvRecord;
import org.apache.camel.dataformat.bindy.annotation.DataField;

@CsvRecord(separator = ",", crlf = "UNIX")
public class PurchaseOrder {

 @DataField(pos = 1)
 private String name;

 @DataField(pos = 2, precision = 2)
 private BigDecimal price;

 @DataField(pos = 3)
 private int amount;
}

First you mark the class with the @CsvRecord annotation B to indicate that it repre-
sents a record in CSV format. Then you annotate the fields with @DataField according
to the layout of the CSV record C. Using the pos attribute, you can dictate the order
in which they’re outputted in CSV; pos starts with a value of 1. For numeric fields, you
can additionally declare precision, which in this example is set to 2, indicating that
the price should use two digits for cents. Bindy also has attributes for fine-grained lay-
out of the fields, such as pattern, trim, and length. You can use pattern to indicate a
data pattern, trim to trim the input, and length to restrict a text description to a cer-
tain number of characters.

 Before we look at how to use Bindy in Camel routes, we need to take a step back
and look at the data types Bindy expects to use. They’re listed in table 3.5.

The important thing to notice in table 3.5 is that Bindy uses a Map<String, Object> to
represent a CSV row. At first, this may seem odd. Why doesn’t it just use a single model
object for that? The answer is that you can have multiple model objects with the CSV

Listing 3.7 Model object annotated for CSV transformation

Table 3.5 Data types that Bindy uses when transforming to and from CSV format

Operation From type To type Output description

marshal List<Map<String,
Object>>

OutputStream Contains multiple rows in CSV for-
mat where each row is separated
by a \n (newline)

unmarshal InputStream List<Map<String,
Object>>

Contains a List of rows where
each row contains 1..n data mod-
els contained in a Map

Maps to
CSV recordB

Maps to column
in CSV record

C

 www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 3 Transforming data with Camel

record being scattered across those objects. For example, you could have fields 1 to 3
in one model object, fields 4 to 9 in another, and fields 10 to 12 in a third.

 The map entry <String, Object> is distilled as follows:

■ Map key (String)—Must contain the fully qualified class name of the model object
■ Map value (Object)—Must contain the model object

If this seems a bit confusing, don’t worry. The following example should make it clearer.

public class PurchaseOrderBindyTest extends TestCase {

public void testBindy() throws Exception {
 CamelContext context = new DefaultCamelContext();
 context.addRoutes(createRoute());
 context.start();

 MockEndpoint mock = context.getEndpoint("mock:result",
 MockEndpoint.class);
 mock.expectedBodiesReceived("Camel in Action,49.95,1\n");

 PurchaseOrder order = new PurchaseOrder();
 order.setAmount(1);
 order.setPrice(new BigDecimal("49.95"));
 order.setName("Camel in Action");

 ProducerTemplate template = context.createProducerTemplate();
 template.sendBody("direct:toCsv", order);

 mock.assertIsSatisfied();
}

public RouteBuilder createRoute() {
 return new RouteBuilder() {
 public void configure() throws Exception {
 from("direct:toCsv")
 .marshal().bindy(BindyType.Csv,
 "camelinaction.bindy")
 .to("mock:result");
 }
 };
}

In this listing, you first create and populate the order model using regular Java set-
ters B. Then you send the order model to the route by sending it to the
direct:toCsv endpoint C that is used in the route. The route will then marshal the
order model to CSV using Bindy D. Notice how Bindy is configured to use CSV
mode via BindyType.Csv. To let Bindy know how to map to order model object, you
need to provide a package name that will be scanned for classes annotated with
Bindy annotations. This is the same solution JAXB offers.

NOTE Listing 3.8 uses MockEndpoint to easily test that the CSV record is as
expected. Chapter 6 will covered testing with Camel, and you’ll learn all
about using MockEndpoints.

Listing 3.8 Using Bindy to transform a model object to CSV format

Creates model
object as usualB

Starts testC

Transforms
model object
to CSV

D

 www.it-ebooks.info

http://www.it-ebooks.info/

83Transforming with data formats

You can try this example from the chapter3/order directory using the following
Maven goal:

mvn test –Dtest=PurchaseOrderBindyTest

The source code for the book also contains a reverse example of how to use Bindy to trans-
form a CSV record into a Java object. You can try it by using the following Maven goal:

mvn test –Dtest=PurchaseOrderUnmarshalBindyTest

CSV is only one of the well-known data formats that Bindy supports. Bindy is equally
capable of working with fixed-length and FIX data formats, both of which follow the
same principles as CSV.

 It’s now time to leave CSV and look at a more modern format: JSON.

3.4.4 Using Camel’s JSON data format

JSON (JavaScript Object Notation) is a data-interchange format, and Camel provides two
components that support the JSON data format: camel-xstream and camel-jackson. In
this section, we’ll focus on camel-jackson because Jackson is a very popular JSON library.

 Back at Rider Auto Parts, you now have to implement a new service that returns
order summaries rendered in JSON format. Doing this with Camel is fairly easy,
because Camel has all the ingredients needed to brew this service. Listing 3.9 shows
how you could ramp up a prototype.

<bean id="orderService" class="camelinaction.OrderServiceBean"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <dataFormats>
 <json id="json" library="Jackson"/>
 </dataFormats>

 <route>
 <from uri="jetty://http://0.0.0.0:8080/order"/>
 <bean ref="orderService" method="lookup"/>
 <marshal ref="json"/>
 </route>
</camelContext>

First you need to set up the JSON data format and specify that the Jackson library
should be used B. Then you define a route that exposes the HTTP service using the
Jetty endpoint. This example exposes the Jetty endpoint directly in the URI. By using
http://0.0.0.0:8080/order, you tell Jetty that any client can reach this service on
port 8080. Whenever a request hits this HTTP service, it’s routed to the orderService
bean C and the lookup method is invoked on that bean. The result of this bean invo-
cation is then marshaled to JSON format and returned back to the HTTP client.

 The order service bean could have a method signature such as this:

public PurchaseOrder lookup(@Header(name = "id") String id)

Listing 3.9 An HTTP service that returns order summaries rendered in JSON format

Sets up JSON
data formatB

Invokes bean to
retrieve data for replyC

 www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 3 Transforming data with Camel

This signature allows you to implement the lookup logic as you wish. You’ll learn
more about the @Header annotation in section 4.5.3, when we cover how bean param-
eter binding works in Camel.

 Notice that the service bean can return a POJO that the JSON library is capable of
marshaling. For example, suppose you used the PurchaseOrder from listing 3.7, and
had JSON output as follows:

{"name":"Camel in Action","amount":1.0,"price":49.95}

The HTTP service itself can be invoked by an HTTP Get request with the id of the
order as a parameter: http://0.0.0.0:8080/order/service?id=123.

 Notice how easy it is with Camel to bind the HTTP id parameter as the String id
parameter with the help of the @Header annotation.

 You can try this example yourself from chapter3/order directory by using the fol-
lowing Maven goal.

mvn test –Dtest=PurchaseOrderJSONTest

So far we’ve used data formats with their default settings. But what if you need to con-
figure the data format, such as to use another splitter character with the CSV data for-
mat? That’s the topic of the next section.

3.4.5 Configuring Camel data formats

In section 3.4.2, you used the CSV data format, but this data format offers many addi-
tional settings. This listing shows how you can configure the CSV data format.

public void configure() {
 CSVConfig custom = new CSVConfig();
 custom.setDelimiter(';');
 custom.setEndTrimmed(true);
 custom.addField(new CSVField("id"));
 custom.addField(new CSVField("customerId"));
 custom.addField(new CSVField("date"));
 custom.addField(new CSVField("item"));
 custom.addField(new CSVField("amount"));
 custom.addField(new CSVField("description"));

 CsvDataFormat myCsv = new CsvDataFormat();
 myCsv.setConfig(custom);
 myCsv.setAutogenColumns(false);

 from("direct:toCsv")
 .marshal(myCsv)
 .to("file://acme/outbox/csv");
}

Configuring data formats in Camel is done using regular Java code; you use the API
that the data format provides. In listing 3.10, the CSV data format offers a CSVConfig
object B that is used to set the semicolon as a delimiter and to specify the order of the

Listing 3.10 Configuring the CSV data format

Configures custom
CSV data format

B

Creates custom
CSV data formatC

Uses CSV
data format

D

 www.it-ebooks.info

http://www.it-ebooks.info/

85Transforming with data formats

fields. The data format itself is then created C and set to use the configuration. The
use of the data format stays the same, so all you need to do is refer to it from the
marshal D or unmarshal methods. This same principle applies to all data formats in
Camel. You can configure them using the APIs they provide.

 Now that you know how to use data formats, let’s look at how you can write your
own data format.

3.4.6 Writing your own data format

You may find yourself needing to transform data to and from a custom data format. In
this section, we’ll look at how you can develop a data format that can reverse strings.

 Developing your own data format is fairly easy, because Camel provides a single API
you must implement: org.apache.camel.spi.DataFormat. Let’s look at how you
could implement a string-reversing data format.

package camelinaction;

import java.io.InputStream;
import java.io.OutputStream;

import org.apache.camel.Exchange;
import org.apache.camel.spi.DataFormat;

public class ReverseDataFormat implements DataFormat {

 public void marshal(Exchange exchange,
 Object graph, OutputStream stream) throws Exception {
 byte[] bytes = exchange.getContext().getTypeConverter()
 .mandatoryConvertTo(byte[].class, graph);
 String body = reverseBytes(bytes);
 stream.write(body.getBytes());
 }

 public Object unmarshal(Exchange exchange,
 InputStream stream) throws Exception {
 byte[] bytes = exchange.getContext().getTypeConverter()
 .mandatoryConvertTo(byte[].class, stream);
 String body = reverseBytes(bytes);
 return body;
 }

 private static String reverseBytes(byte[] data) {
 StringBuilder sb = new StringBuilder(data.length);
 for (int i = data.length - 1; i >= 0; i--) {
 char ch = (char) data[i];
 sb.append(ch);
 }
 return sb.toString();
 }
}

The custom data format must implement the DataFormat interface, which forces you
to develop two methods: marshal B and unmarshal C. That’s no surprise, as they’re

Listing 3.11 Developing a custom data format that can reverse strings

Marshals to
reverse string

B

Unmarshals to
unreverse string

C

 www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 3 Transforming data with Camel

the same methods you use in the route. The marshal method B needs to output the
result to the OutputStream. To do this, you need to get the message payload as a
byte[], and then reverse it with a helper method. Then you write that data to the
OutputStream. Note that you use the Camel type converters to return the message
payload as a byte[]. This is very powerful and saves you from doing a manual typecast
in Java or trying to convert the payload yourself.

 The unmarshal method C is nearly the same. You use the Camel type-converter
mechanism again to provide the message payload as a byte[]. unmarshal also reverses
the bytes to get the data back in its original order. Note that in this method you return
the data instead of writing it to a stream.

TIP As a best practice, use the Camel type converters instead of typecasting
or converting between types yourself. We’ll cover Camel’s type converters in
section 3.6.

To use this new data format in a route, all you have to do is define it as a Spring bean
and refer to it from <marshal> and <unmarshal> as follows:

<bean id="reverse" class="camelinaction.ReverseDataFormat"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:marshal"/>
 <marshal ref="reverse"/>
 <to uri="log:marshal"/>
 </route>

 <route>
 <from uri="direct:unmarshal"/>
 <unmarshal ref="reverse"/>
 <to uri="log:unmarshal"/>
 </route>
</camelContext>

You’ll find this example in the chapter3/order directory, and you can try it by using
the following Maven goal:

mvn test –Dtest=ReverseDataFormatTest

You’ve now learned all about data formats and even how to develop your own. It’s
time to say goodbye to data formats and take a look at how you can use templating
with Camel for data transformation. Templating is extremely useful when you need to
generate automatic reply emails.

3.5 Transforming with templates
Camel provides slick integration with two different template languages:

■ Apache Velocity—Probably the best known templating language (http://camel.
apache.org/velocity.html)

■ FreeMarker—Another popular templating language that may be a bit more
advanced than Velocity (http://camel.apache.org/freemarker.html)

 www.it-ebooks.info

http://camel.apache.org/velocity.html
http://camel.apache.org/velocity.html
http://camel.apache.org/freemarker.html
http://www.it-ebooks.info/

87Transforming with templates

These two templating languages are fairly similar to use, so we’ll only discuss Velocity
here.

3.5.1 Using Apache Velocity

Rider Auto Parts has implemented a new order system that must send an email reply
when a customer has submitted an order. Your job is to implement this feature.

 The reply email could look like this:

Dear customer

Thank you for ordering X piece(s) of XXX at a cost of XXX.

This is an automated email, please do not reply.

There are three pieces of information in the email that must be replaced at runtime
with real values. What you need to do is adjust the email to use the Velocity template
language, and then place it into the source repository as src/test/resources/email.vm:

Dear customer

Thank you for ordering ${body.amount} piece(s) of ${body.name} at a cost of
${body.price}.

This is an automated email, please do not reply.

Notice that we’ve inserted ${ } placeholders in the template, which instructs Velocity
to evaluate and replace them at runtime. Camel prepopulates the Velocity context
with a number of entities that are then available to Velocity. Those entities are listed in
table 3.6.

NOTE The entities in table 3.6 also apply for other templating languages,
such as FreeMarker.

Table 3.6 Entities prepopulated in the Velocity context and that are available at runtime

Entity Type Description

camelContext org.apache.camel.CamelContext The CamelContext.

exchange org.apache.camel.Exchange The current exchange.

in org.apache.camel.Message The input message. This can clash
with a reserved word in some lan-
guages; use request instead.

request org.apache.camel.Message The input message.

body java.lang.Object The input message body.

headers java.util.Map The input message headers.

response org.apache.camel.Message The output message.

out org.apache.camel.Message The output message. This can clash
with a reserved word in some lan-
guages; use response instead.

 www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 3 Transforming data with Camel

Using Velocity in a Camel route is as simple as this:

from("direct:sendMail")
 .setHeader("Subject", constant("Thanks for ordering"))
 .setHeader("From", constant("donotreply@riders.com"))
 .to("velocity://rider/mail.vm")
 .to("smtp://mail.riders.com?user=camel&password=secret");

All you have to do is route the message to the Velocity endpoint that’s configured with
the template you want to use, which is the rider/mail.vm file that’s loaded from the
classpath by default. All the template components in Camel leverage the Spring
resource loader, which allows you to load templates from the classpath, file paths, and
other such locations. You can use the same prefixes listed in table 3.2.

 You can try this example by going to the chapter3/order directory in the book’s
source code and running the following Maven goal:

mvn test -Dtest=PurchaseOrderVelocityTest

TIP For more details on the Camel Velocity component, consult the online
documentation (http://camel.apache.org/velocity.html).

We’ll now leave data transformation and look at type conversion. Camel has a powerful
type-converter mechanism that removes all need for boilerplate type-converter code.

3.6 About Camel type converters
Camel provides a built-in type-converter system that automatically converts between
well-known types. This system allows Camel components to easily work together with-
out having type mismatches. And from the Camel user’s perspective, type conversions
are built into the API in many places without being invasive. For example, you used it
in listing 3.1:

String custom = exchange.getIn().getBody(String.class);

The getBody method is passed the type you want to have returned. Under the covers,
the type-converter system converts the returned type to a String if needed.

 In this section, we’ll take a look at the insides of the type-converter system. We’ll
explain how Camel scans the classpath on startup to register type converters dynami-
cally. We’ll also show how you can use it from a Camel route, and how to build your
own type converters.

3.6.1 How the Camel type-converter mechanism works
To understand the type-converter system, you first need to know what a type converter
in Camel is. Figure 3.7 illustrates the relationship between the TypeConverterRegis-
try and the TypeConverters it holds.

TypeConverter
Registry TypeConverter

0..n

Figure 3.7
The TypeConverterRegistry
contains many TypeConverters

 www.it-ebooks.info

http://camel.apache.org/velocity.html
http://www.it-ebooks.info/

89About Camel type converters

The TypeConverterRegistry is where all the type converters are registered when
Camel is started. At runtime, Camel uses the TypeConverterRegistry’s lookup
method to look up a suitable TypeConverter:

TypeConverter lookup(Class<?> toType, Class<?> fromType);

By using the TypeConverter, Camel can then convert one type to another using
TypeConverter’s convertTo method, which is defined as follows:

<T> T convertTo(Class<T> type, Object value);

NOTE Camel implements about 150 or more type converters out of the box,
which are capable of converting to and from the most commonly used types.

LOADING TYPE CONVERTERS INTO THE REGISTRY

On startup, Camel loads all the type converters into the TypeConverterRegistry by
using a classpath-scanning solution. This allows Camel to pick up not only type con-
verters from camel-core but also from any of the other Camel components, including
your Camel applications—you’ll see this in section 3.6.3 when you build your own
type converter.

 To scan and load the type converters, Camel uses org.apache.camel.impl.con-
verter.AnnotationTypeConverterLoader. To avoid scanning zillions of classes, it
reads a service discovery file in the META-INF folder: META-INF/services/org/apache/
camel/TypeConverter. This is a plain text file that has a list of packages that contain
Camel type converters. The special file is needed to avoid scanning every possible JAR
and all their packages, which would be time consuming. This special file tells Camel
whether or not the JAR file contains type converters. For example, the file in camel-
core contains the following three entries:

org.apache.camel.converter
org.apache.camel.component.bean
org.apache.camel.component.file

The AnnotationTypeConverterLoader will scan those packages and their subpack-
ages for classes that have been annotated with @Converter, and it searches within
them for public methods that are annotated with @Converter. Each of those methods
is considered a type converter.

 This is best illustrated with an example. The following code is a snippet from
IOConverter class from camel-core JAR:

@Converter
public final class IOConverter {

 @Converter
 public static InputStream toInputStream(URL url) throws IOException {
 return url.openStream();
 }
}

Camel will go over each method annotated with @Converter and look at the method sig-
nature. The first parameter is the from type, and the return type is the to type—in this
example you have a TypeConverter that can convert from a URL to an InputStream. By

 www.it-ebooks.info

http://www.it-ebooks.info/

90 CHAPTER 3 Transforming data with Camel

doing this, Camel loads all the built-in type converters, including those from the Camel
components in use.

 Now that you know how the Camel type converters are loaded, let’s look at using
them.

3.6.2 Using Camel type converters

As we mentioned, the Camel type converters are used throughout Camel, often auto-
matically. But you might want to use them to force a specific type to be used in a route,
such as before sending data back to a caller or a JMS destination. Let’s look at how to
do that.

 Suppose you need to route files to a JMS queue using javax.jmx.TextMessage. To
do so, you can convert each file to a String, which forces the JMS component to use
TextMessage. This is easy to do in Camel—you use the convertBodyTo method, as
shown here:

from("file://riders/inbox")
 .convertBodyTo(String.class)
 .to("activemq:queue:inbox");

If you’re using Spring XML, you provide the type as an attribute instead, like this:

<route>
 <from uri="file://riders/inbox"/>
 <convertBodyTo type="java.lang.String"/>
 <to uri="activemq:queue:inbox"/>
</route>

You can omit the java.lang. prefix on the type, which can shorten the syntax a bit:
<convertBodyTo type="String"/>.

 Another reason for using convertBodyTo is to read files using a fixed encoding
such as UTF-8. This is done by passing in the encoding as the second parameter:

from("file://riders/inbox")
 .convertBodyTo(String.class, "UTF-8")
 .to("activemq:queue:inbox");

TIP If you have trouble with a route because of the payload or its type, try
using .convertBodyTo(String.class) at the start of the route to convert to a
String type, which is a well-supported type. If the payload cannot be con-
verted to the desired type, a NoTypeConversionAvailableException excep-
tion is thrown.

That’s all there is to using type converters in Camel routes. Before we wrap up this
chapter, though, let’s take a look at how you can write your own type converter.

3.6.3 Writing your own type converter

Writing your own type converter is easy in Camel. You already saw what a type con-
verter looks like in section 3.6.1, when we looked at how type converters work.

 www.it-ebooks.info

http://www.it-ebooks.info/

91About Camel type converters

 Suppose you wanted to write a custom type converter that can convert a byte[]
into a PurchaseOrder model object (an object you used in listing 3.7). As you saw ear-
lier, you need to create a @Converter class containing the type-converter method.

@Converter
public final class PurchaseOrderConverter

 @Converter
 public static PurchaseOrder toPurchaseOrder(byte[] data,
 Exchange exchange) {
 TypeConverter converter = exchange.getContext()
 .getTypeConverter();
 String s = converter.convertTo(String.class, data);
 if (s == null || s.length() < 30) {
 throw new IllegalArgumentException("data is invalid");
 }
 s = s.replaceAll("##START##", "");
 s = s.replaceAll("##END##", "");

 String name = s.substring(0, 9).trim();

 String s2 = s.substring(10, 19).trim();
 BigDecimal price = new BigDecimal(s2);
 price.setScale(2);

 String s3 = s.substring(20).trim();
 Integer amount = converter
 .convertTo(Integer.class, s3);

 return new PurchaseOrder(name, price, amount);
 }
}

In listing 3.12, the Exchange gives you access to the CamelContext and thus to the par-
ent TypeConverter B, which you use in this method to convert between strings and
numbers. The rest of the code is the logic for parsing the custom protocol and return-
ing the PurchaseOrder C. Notice how you can use the converter to easily convert
between well-known types.

 All you need to do now is add the service discovery file, named TypeConverter, in
the META-INF directory. As explained previously, this file contains one line identifying
each package to be scanned for @Converter classes.

 If you cat the magic file, you’ll see this:

cat src/main/resources/META-INF/services/org/apache/camel/TypeConverter
camelinaction

This example can be found in the chapter3/converter directory of the book’s source
code, which you can try using the following Maven goal:

mvn test -Dtest=PurchaseOrderConverterTest

And that completes this chapter on transforming data with Camel.

Listing 3.12 A custom type converter to convert from byte[] to PurchaseOrder type

Grabs
TypeConverter

 to reuse

B

Converts
from String to
PurchaseOrder

C

 www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 3 Transforming data with Camel

3.7 Summary and best practices
Data transformation is the cornerstone of any integration kit; it bridges the gap
between different data types and formats. It’s also essential in today’s industry because
more and more disparate systems need to be integrated to support the ever-changing
businesses and world we live in.

 This chapter covered many of the possibilities Camel offers for data transforma-
tion. You learned how to format messages using EIPs and beans. You also learned that
Camel provides special support for transforming XML documents using XSLT compo-
nents and XML-capable data formats. Camel provides data formats for well-known
data models, which you learned to use, and it even allows you to build your own data
formats. We also took a look into the templating world, which can be used to format
data in specialized cases, such as generating email bodies. Finally, we looked at how
the Camel type-converter mechanism works and learned that it’s used internally to
help all the Camel components work together. You learned how to use it in routes and
how to write your own converters.

 Here are a few key tips you should take away from this chapter:

■ Data transformation is often required. Integrating IT systems often requires you to
use different data formats when exchanging data. Camel can act as the media-
tor and has strong support for transforming data in any way possible. Use the
various features in Camel to aid with your transformation needs.

■ Java is powerful. Using Java code isn’t a worse solution than using a fancy mapping
tool. Don’t underestimate the power of the Java language. Even if it takes 50 lines
of grunt boilerplate code to get the job done, you have a solution that can easily
be maintained by fellow engineers.

■ Prefer to use beans over processors. If you’re using Java code for data transforma-
tion, you can use beans or processors. Processors are more dependent on the
Camel API, whereas beans allow loose coupling. We’ll cover how to use beans
in chapter 4.

In the preceding two chapters, we’ve covered two crucial features of integration kits:
routing and transformation. The next chapter dives into the world of beans, and
you’ll see how Camel can easily adapt to and leverage your existing beans. This allows
a higher degree of reuse and loose coupling, so you can keep your business and inte-
gration logic clean and apart from Camel and other middleware APIs.

 www.it-ebooks.info

http://www.it-ebooks.info/

93

Using beans with Camel

If you’ve been developing software for five years or longer, you’ve likely worked
with different component models, such as CORBA, EJB, JBI, SCA, and lately OSGi.
Some of these models, especially the earlier ones, imposed a great deal on the pro-
gramming model, dictating what you could and couldn’t do, and they often
required complex packaging and deployment models. This left the everyday engi-
neer with a lot of concepts to learn and master. In some cases, much more time was
spent working around the restrictive programming and deployment models than
on the business application itself.

 Because of this growing complexity and the resulting frustrations, a simpler,
more pragmatic programming model arose from the open source community: the
POJO model. Later this was formalized as the Spring Framework.

 The Spring Framework has opened the door to the enterprise, proving
that the POJO programming model and a lightweight container indeed meet the

This chapter covers
■ Understanding the Service Activator EIP
■ How Camel looks up beans using registries
■ How Camel selects bean methods to invoke
■ Bean parameter binding with single and

multiple parameters

 www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 4 Using beans with Camel

expectations of today’s businesses. In fact, the simple programming model and light-
weight container concept proved superior to the heavyweight and over-complex
enterprise application and integration servers that were used before.

 So what does this have to do with Camel? Well, Camel doesn’t mandate using a spe-
cific component or programming model. It doesn’t mandate a heavy specification
that you must learn and understand to be productive. Camel doesn’t require you to
repackage any of your existing libraries or require you to use the Camel API to fulfill
your integration needs. Camel is on the same page as the Spring Framework, with
both of them being lightweight containers favoring the POJO programming model.

 In fact, Camel recognizes the power of the POJO programming model and goes
great lengths to work with your beans. By using beans, you fulfill an important goal in
the software industry, which is to reduce coupling. Camel not only offers reduced cou-
pling with beans, but you get the same loose coupling with Camel routes. For exam-
ple, three teams can work simultaneously on their own sets of routes, which can easily
be combined into one system.

 We’ll start this chapter by showing you how not to use beans with Camel, which will
make it clearer how you should use beans. After that, we’ll take a look at the theory
behind the Service Activator EIP and dive inside Camel to see how this pattern is
implemented. Finally, we’ll look at the bean-binding process, which gives you fine-
grained control over binding information to the parameters on the invoked method
from within Camel and the currently routed message. It may sound confusing at first,
but don’t worry—it will make sense shortly.

4.1 Using beans the hard way and the easy way
In this section, we’ll walk through an example that shows how not to use beans with
Camel—the hard way to use beans. Then we’ll look at how to use beans the easy way.

 Suppose you have an existing bean that offers an operation (a service) you need to
use in your integration application. For example, HelloBean offers the hello method
as its service:

public class HelloBean {

 public String hello(String name) {
 return "Hello " + name;
 }
}

Let’s look at some different ways you could use this bean in your application.

4.1.1 Invoking a bean from pure Java
By using a Camel Processor, you can invoke a bean from Java code.

public class InvokeWithProcessorRoute extends RouteBuilder {

public void configure() throws Exception {
 from("direct:hello")
 .process(new Processor() {

Listing 4.1 Using a Processor to invoke the hello method on the HelloBean

Uses a
processor

B

 www.it-ebooks.info

http://www.it-ebooks.info/

95Using beans the hard way and the easy way

 public void process(Exchange exchange) throws Exception {
 String name = exchange.getIn().getBody(String.class);

 HelloBean hello = new HelloBean();
 String answer = hello.hello(name);

 exchange.getOut().setBody(answer);
 }
 });
}

Listing 4.1 shows a RouteBuilder, which defines the route. You use an inlined Camel
Processor B, which gives you the process method, in which you can work on the
message with Java code. First, you must extract the message body from the input mes-
sage, which is the parameter you’ll use when you invoke the bean later. Then you
need to instantiate the bean and invoke it C. Finally you must set the output from the
bean on the output message.

 Now that you’ve done it the hard way using the Java DSL, let’s take a look at using
Spring XML.

4.1.2 Invoking a bean defined in Spring

You’ll often use Spring as a bean container and define beans using its XML files. List-
ings 4.2 and 4.3 show how to revise listing 4.1 to work with a Spring bean this way.

<bean id="helloBean" class="camelinaction.HelloBean"/>

<bean id="route" class="camelinaction.InvokeWithProcessorSpringRoute"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <routeBuilder ref="route"/>
</camelContext>

First you define HelloBean in the Spring XML file with the id helloBean B. You still
want to use the Java DSL to build the route, so you need to declare a bean that con-
tains the route. Finally, you define a CamelContext, which is the way you get Spring
and Camel to work together.

 Now let’s take a closer look at the route.

public class InvokeWithProcessorSpringRoute extends RouteBuilder {

 @Autowired
 private HelloBean hello;

 public void configure() throws Exception {
 from("direct:hello")
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 String name = exchange.getIn().getBody(String.class);
 String answer = hello.hello(name);
 exchange.getOut().setBody(answer);

Listing 4.2 Setting up Spring to use a Camel route that uses the HelloBean

Listing 4.3 A Camel route using a Processor to invoke HelloBean

C Invokes
HelloBean

Defines B Defines HelloBean

Injects
HelloBeanB

Invokes
HelloBeanC

 www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 4 Using beans with Camel

 }
 });
 }
}

The route in listing 4.3 is nearly identical to the route in listing 4.1. The difference is
that now the bean is injected using the Spring @Autowired annotation B, and instead
of instantiating the bean, you use the injected bean directly C.

 You can try these examples on your own; they’re in the chapter4/bean directory of
the book’s source code. Run Maven with these goals to try the last two examples:

mvn test -Dtest=InvokeWithProcessorTest
mvn test -Dtest=InvokeWithProcessorSpringTest

So far you’ve seen two examples of using beans with a Camel route, and there’s a bit of
plumbing to get it all to work. Here are some reasons why it’s hard to work with beans:

■ You must use Java code to invoke the bean.
■ You must use the Camel Processor, which clutters the route, making it harder

to understand what happens (route logic is mixed in with implementation
logic).

■ You must extract data from the Camel message and pass it to the bean, and you
must move any response from the bean back into the Camel message.

■ You must instantiate the bean yourself, or have it dependency-injected.

Now let’s look at the easy way of doing it.

4.1.3 Using beans the easy way

Suppose you were to define the Camel route in the Spring XML file instead of using a
RouteBuilder class. The following snippet shows how this might be done:

<bean id="helloBean" class="camelinaction.HelloBean"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 < What goes here >
 </route>
</camelContext>

First you define the bean as a Spring bean, and then you define the Camel route with
the direct:start input. At B you want to invoke HelloBean, but you’re in trouble—
this is XML, and you can’t add Java code in the XML file.

 In Camel, the easy way to use beans is to use the <bean> tag at B:

<bean ref="helloBean" method="hello"/>

That gives you the following route:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>

Insert something
here to use beans

B

 www.it-ebooks.info

http://www.it-ebooks.info/

97The Service Activator pattern

 <bean ref="helloBean" method="hello"/>
 </route>
</camelContext>

Camel offers the same solution when using the Java DSL. You can simplify the route in
listing 4.3 like this:

public void configure() throws Exception {
 from("direct:hello").beanRef("helloBean", "hello");
}

That’s a staggering reduction from eight lines of code to one. And on top of that, the
one code line is much easier to understand. It’s all high-level abstraction, containing
no low-level code details, which were required when using inlined Processors.

 You could even omit the hello method, because the bean only has a single
method:

public void configure() throws Exception {
 from("direct:hello").beanRef("helloBean");
}

Using the <bean> tag is an elegant solution for working with beans. Without using that
tag, you had to use a Camel Processor to invoke the bean, which is a tedious solution.

TIP In the Java DSL, you don’t have to preregister the bean in the registry.
Instead, you can provide the class name of the bean, and Camel will instanti-
ate the bean on startup. The previous example could be written simply as
from("direct:hello").bean(HelloBean.class);.

Now let’s look at how you can work with beans in Camel from the EIP perspective.

4.2 The Service Activator pattern
The Service Activator pattern is an enterprise pattern described in Hohpe and Woolf’s
Enterprise Integration Patterns book (http://www.enterpriseintegrationpatterns.com/). It
describes a service that can be invoked easily from both messaging and non-messaging
services. Figure 4.1 illustrates this principle.

 Figure 4.1 shows a service activator component that invokes a service based on an
incoming request and returns an outbound reply. The service activator acts as a medi-
ator between the requester and the POJO service. The requester sends a request to the
service activator B, which is responsible for adapting the request to a format the
POJO service understands (mediating) and passing the request on to the service C.

Requester POJO
service

Service
activator

Request

Reply

B C

DE
Figure 4.1 The
service activator
mediates between
the requestor and
the POJO service.

 www.it-ebooks.info

http://www.enterpriseintegrationpatterns.com/
http://www.it-ebooks.info/

98 CHAPTER 4 Using beans with Camel

The POJO service then returns a reply to the service activator D, which passes it back
(requiring no translation on the way back) to the waiting requester E.

 As you can see in figure 4.1, the service is the POJO and the service activator is some-
thing in Camel that can adapt the request and invoke the service. That something is the
Camel Bean component, which eventually uses the org.apache.camel.compo-
nent.bean.BeanProcessor to do the work. We’ll look at how this BeanProcessor
works in section 4.4. You should regard the Camel Bean component as the Camel
implementation of the Service Activator pattern.

 Compare the Service Activator pattern in figure 4.1 to the Camel route example
we looked at in section 4.1.3, as illustrated in figure 4.2.

Figure 4.2 shows how the Camel route maps to the Service Activator EIP. The
requester is the node that comes before the bean—it’s the from("direct:hello") in
our example. The service activator itself is the bean node, which is represented by the
BeanProcessor in Camel. And the POJO service is the HelloBean bean itself.

 You now know the theory behind how Camel works with beans—the Service Activa-
tor pattern. But before you can use a bean, you need to know where to look for it. This
is where the registry comes into the picture. Let’s look at how Camel works with differ-
ent registries.

4.3 Camel’s bean registries
When Camel works with beans, it looks them up in a registry to locate them. Camel’s
philosophy is to leverage the best of the available frameworks, so it uses a pluggable
registry architecture to integrate them. Spring is one such framework, and figure 4.3
illustrates how the registry works.

Requester POJO
service

Service
activator

Request

Reply

from("direct:hello") bean(HelloBean.class) HelloBean

Figure 4.2
Relationship
between a
Camel route
and the Service
Activator EIP

Requester Registry ApplicationContext

lookup

getBeanB
C

D

Figure 4.3
A requester looks up a bean
using the Camel registry,
which then uses the Spring
ApplicationContext
to determine where the
bean resides.

 www.it-ebooks.info

http://www.it-ebooks.info/

99Camel’s bean registries

Figure 4.3 shows that the Camel registry is an abstraction that sits between the caller
and the real registry. When a requester needs to look up a bean B, it uses the Camel
Registry. The Camel Registry then does the lookup via the real registry C. The
bean is then returned to the requester D. This structure allows loose coupling but
also a pluggable architecture that integrates with multiple registries. All the requester
needs to know is how to interact with the Camel Registry.

 The registry in Camel is merely a Service Provider Interface (SPI) defined in the
org.apache.camel.spi.Registry interface, as follows:

Object lookup(String name);

<T> T lookup(String name, Class<T> type)

<T> Map<String, T> lookupByType(Class<T> type)

You’ll most often use one of the first two methods to look up a bean by its name. For
example, to look up the HelloBean, you would do this:

HelloBean hello = (HelloBean) context.getRegistry().lookup("helloBean");

To get rid of that ugly typecast, you can use the second method instead:

HelloBean hello = context.getRegistry()
 .lookup("helloBean", HelloBean.class);

NOTE The second method offers typesafe lookups because you provide the
expected class as the second parameter. Under the hood, Camel uses its type-
converter mechanism to convert the bean to the desired type, if necessary.

The last method, lookupByType, is mostly used internally by Camel to support conven-
tion over configuration—it allows Camel to look up beans by type without knowing
the bean name.

 The registry itself is an abstraction and thus an interface. Table 4.1 lists the four
implementations shipped with Camel.

Table 4.1 Registry implementations shipped with Camel

Registry Description

SimpleRegistry A simple implementation to be used when unit testing or run-
ning Camel in the Google App engine, where only a limited
number of JDK classes are available.

JndiRegistry An implementation that uses an existing Java Naming and
Directory Interface (JNDI) registry to look up beans.

ApplicationContextRegistry An implementation that works with Spring to look up beans in the
Spring ApplicationContext. This implementation is auto-
matically used when you’re using Camel in a Spring environment.

OsgiServiceRegistry An implementation capable of looking up beans in the OSGi
service reference registry. This implementation is automati-
cally used when using Camel in an OSGi environment.

 www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 4 Using beans with Camel

In the following sections, we’ll go over each of these four registries.

4.3.1 SimpleRegistry

The SimpleRegistry is a Map-based registry that’s used for testing or when running
Camel standalone.

 For example, if you wanted to unit test the HelloBean example, you could use the
SimpleRegistry to enlist the HelloBean and refer to it from the route.

public class SimpleRegistryTest extends TestCase {
 private CamelContext context;
 private ProducerTemplate template;

 protected void setUp() throws Exception {
 SimpleRegistry registry = new SimpleRegistry();
 registry.put("helloBean", new HelloBean());

 context = new DefaultCamelContext(registry);
 template = context.createProducerTemplate();

 context.addRoutes(new RouteBuilder() {
 public void configure() throws Exception {
 from("direct:hello").beanRef("helloBean");
 }
 });
 context.start();
 }

 protected void tearDown() throws Exception {
 template.stop();
 context.stop();
 }

 public void testHello() throws Exception {
 Object reply = template.requestBody("direct:hello", "World");
 assertEquals("Hello World", reply);
 }
}

First you create an instance of SimpleRegistry and populate it with HelloBean under
the helloBean name B. Then, to use this registry with Camel, you pass the registry as
a parameter to the DefaultCamelContext constructor C. To aid when testing, you
create a ProducerTemplate, which makes it simple to send messages to Camel, as can
be seen in the test method. Finally, when the test is done, you clean up the resources
by stopping Camel D. In the route, you use the beanRef method to invoke HelloBean
by the helloBean name you gave it when it was enlisted in the registry B.

 You can try this test by going to the chapter4/bean directory and running this
Maven goal:

mvn test -Dtest=SimpleRegistryTest

Now let’s look at the next registry: JndiRegistry.

Listing 4.4 Using SimpleRegistry to unit test a Camel route

Uses SimpleRegistry
with CamelC

Cleans up resources
after test

D

 www.it-ebooks.info

http://www.it-ebooks.info/

101Camel’s bean registries

4.3.2 JndiRegistry

The JndiRegistry, as its name implies, integrates with a JNDI-based registry. It was the
first registry that Camel integrated, so it’s also the default registry if you create a
Camel instance without supplying a specific registry, as this code shows:

CamelContext context = new DefaultCamelContext();

The JndiRegistry (like the SimpleRegistry) is often used for testing or when run-
ning Camel standalone. Many of the unit tests in Camel use the JndiRegistry
because they were created before the SimpleRegistry was added to Camel.

 The JndiRegistry is useful when you use Camel together with a Java EE applica-
tion server that provides a JNDI-based registry out of the box. Suppose you need to
leverage the JNDI registry of a WebSphere Application Server—you would have to set
up the pieces as follows:

protected CamelContext createCamelContext() throws Exception {
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.ibm.websphere.naming.WsnInitialContextFactory");
 env.put(Context.PROVIDER_URL,
 "corbaloc:iiop:myhost.mycompany.com:2809");
 env.put(Context.SECURITY_PRINCIPAL, "username");
 env.put(Context.SECURITY_CREDENTIALS, "password");

 Context ctx = new InitialContext(env);
 JndiRegistry jndi = new JndiRegistry(ctx);

 return new DefaultCamelContext(jndi);
}

You need to use a Hashtable B to store information about the JNDI registry you wish
to use. After this, it’s a matter of creating the javax.naming.Context that the
JndiRegistry should use C.

 Camel also allows you to use the JndiRegistry with Spring XML. All you have to
do is define it as a Spring bean and Camel will automatically pick it up:

<bean id="registry" class="org.apache.camel.impl.JndiRegistry"/>

You can use the usual Spring lingo to pass the Hashtable parameter in the JndiReg-
istry constructor.

 The next registry is for when you use Spring together with Camel.

4.3.3 ApplicationContextRegistry

The ApplicationContextRegistry is the default registry when Camel is used with
Spring. More precisely, it’s the default when you set up Camel in the Spring XML, as
this snippet illustrates:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>

Creates Hashtable containing
JNDI configuration

B

C Creates
JndiRegistry

 www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 4 Using beans with Camel

 <bean ref="helloBean" method="hello"/>
 </route>
</camelContext>

Defining Camel using the <camelContext> tag will automatically let Camel use the
ApplicationContextRegistry. This registry allows you to define beans in Spring XML
files as you would normally do when using Spring. For example, you could define the
helloBean bean as follows:

<bean id="helloBean" class="camelinaction.HelloBean"/>

It can hardly be simpler than that. When you use Camel with Spring, you can keep on
using Spring beans as you would normally, and Camel will use those beans seamlessly
without any configuration.

 The final registry applies when you use Camel with OSGi.

4.3.4 OsgiServiceRegistry

When Camel is used in an OSGi environment, Camel uses a two-step lookup process.
First, it will look up whether a service with the name exists in the OSGi service registry.
If not, Camel will fall back and look up the name in the regular registry, such as the
Spring ApplicationContextRegistry.

 Suppose you want to expose HelloBean as an OSGi service. You could do it as
follows:

<osgi:service id="helloService" interface="camelinaction.HelloBean"
 ref="helloBean"/>

 <bean id="helloBean" class="camelinaction.HelloBean"/>

With help from the osgi:service namespace provided by Spring Dynamic Modules
(Spring DM; http://www.springsource.org/osgi), you export the HelloBean into the
OSGi registry under the name helloService. You can use the HelloBean from a Camel
route the same way you’ve already learned, by referring to its OSG service name:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <bean ref="helloService" method="hello"/>
 </route>
</camelContext>

It’s that simple. All you have to remember is the name with which the bean was
exported. Camel will look it up in the OSGi service registry and the Spring bean con-
tainer for you. This is convention over configuration.

NOTE We’ll look at OSGi again when we cover Camel deployment in chapter 13.

This concludes our tour of registries. Next we’ll focus on how Camel selects which
method to invoke on a given bean.

 www.it-ebooks.info

http://www.springsource.org/osgi
http://www.it-ebooks.info/

103Selecting bean methods

4.4 Selecting bean methods
You’ve seen how Camel works with beans from the route perspective. Now it’s time to
dig down and see the moving parts in action. You first need to understand the mecha-
nism Camel uses to selects the method to invoke.

 Remember, Camel acts as a service activator using the BeanProcessor, which sits
between the caller and the actual bean. At compile time there are no direct bindings,
and the JVM can’t link the caller to the bean—Camel must resolve this at runtime.

 Figure 4.4 illustrates how the BeanProcessor leverages the registry to look up the
bean to invoke.

 At runtime, a Camel exchange is routed, and at a given point in the route, it
reaches the BeanProcessor. The BeanProcessor then processes the exchange, per-
forming these general steps:

1 Looks up the bean in the registry
2 Selects the method to invoke on the bean
3 Binds to the parameters of the selected method (for example, using the body of

the input message as a parameter; this is covered in detail in section 4.5)
4 Invokes the method
5 Handles any invocation errors that occur (any exceptions thrown from the

bean will be set on the Camel exchange for further error handling)
6 Sets the method’s reply (if there is one) as the body on the output message on

the Camel exchange

We’ve covered how registry lookups are done in section 4.3. The next two steps
(steps 2 and 3 in the preceding list) are more complex, and we’ll cover them in the
remainder of this chapter. The reason why this is more complex in Camel is because
Camel has to compute which bean and method to invoke at runtime, whereas Java
code is linked at compile time.

Registry

BeanProcessor
(Service activator)

Bean

Method A
Method B

...
Method Z

Input message

Output message

Exchange
Lookup

Lookup

Invoke

Request

Reply

Figure 4.4 To invoke a bean in Camel, the BeanProcessor looks it up
in the registry, selects and adapts a method, invokes it, and passes the
returned value as the reply to the Camel exchange.

 www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 4 Using beans with Camel

We’ll first take a look at the algorithm Camel uses to select the method. Then we’ll
look at a couple of examples and see what could go wrong and how to avoid problems.

4.4.1 How Camel selects bean methods

Unlike at compile time, when the Java compiler can link method invocations together,
the Camel BeanProcessor has to select the method to invoke at runtime.

 Suppose you have the following class:

public class EchoBean {
 String echo(String name) {
 return name + " " + name;
 }
}

At compile time, you can express your code to invoke the echo method like this:

EchoBean echo = new EchoBean();
String reply = echo.echo("Camel");

This will ensure that the echo method is invoked at runtime.
 On the other hand, suppose you use the EchoBean in Camel in a route as follows:

from("direct:start").bean(EchoBean.class, "echo").to("log:reply");

When the compiler compiles this code, it can’t see that you want to invoke the echo
method on the EchoBean. From the compiler’s point of view, EchoBean.class and
"echo" are parameters to the bean method. All the compiler can check is that the
EchoBean class exists; if you had misspelled the method name, perhaps typing "ekko",
the compiler could not catch this mistake. The mistake would end up being caught at
runtime, when the BeanProcessor would throw a MethodNotFoundException stating
that the method named ekko does not exists.

 Camel also allows you not to explicitly name a method. For example, you could
write the previous route as follows:

Why does Camel need to select a method?
Why is there more than one possible method name when you invoke a method? The
answer is that beans can have overloaded methods, and in some cases the method
name isn’t specified either, which means Camel has to pick among all methods on
the bean.

Suppose you have the following methods:

String echo(String s);
int echo(int number);
void doSomething(String something);

There are a total of three methods for Camel to select among. If you explicitly tell Camel
to use the echo method, you’re still left with two methods to choose from. We’ll look
at how Camel resolves this dilemma.

 www.it-ebooks.info

http://www.it-ebooks.info/

105Selecting bean methods

from("direct:start").bean(EchoBean.class).to("log:reply");

Regardless of whether the method name is explicitly given or not, Camel has to com-
pute which method to invoke. Let’s look at how Camel chooses.

4.4.2 Camel’s method-selection algorithm

The BeanProcessor uses a complex algorithm to select which method to invoke on a
bean. You won’t need to understand or remember every step in this algorithm—we
simply want to outline what goes on inside Camel to make working with beans as sim-
ple as possible for you.

 Figure 4.5 shows the first part of this algorithm, and it’s continued in figure 4.6.
 Here’s how the algorithm selects the method to invoke:

1 If the Camel message contains a header with the key CamelBeanMethodName, its
value is used as the explicit method name. Go to step 5.

2 If a method is explicitly defined, Camel uses it, as we mentioned at the start of
this section. Go to step 5.

1

2

invoke
Processor

3

4 invoke
bean

5

No

No

No

No

Yes

Yes

Yes

Yes

Start

Does it have a CamelBeanMethodName header?

Is the method name explicitly given?

Can message body be converted to a Processor?

Is message body a BeanInvocation instance?

Continue to select best method
Figure 4.5 How Camel selects which
method to invoke (part 1, continued in
figure 4.6)

 www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 4 Using beans with Camel

3 If the bean can be converted to a Processor using the Camel type-converter
mechanism, the Processor is used to process the message. This may seem a bit
odd, but it allows Camel to turn any bean into a message-driven bean equiva-
lent. For example, with this technique Camel allows any javax.jms.Message-
Listener bean to be invoked directly by Camel without any integration glue.
This method is rarely used by end users of Camel, but it can be a useful trick.

4 If the body of the Camel message can be converted into an org.apache.
camel.component.bean.BeanInvocation, that’s used to invoke the method and
pass the arguments to the bean. This is also rarely used by end users of Camel.

5 Continued in the second part of the algorithm, shown in figure 4.6.

5

6 Throw
MethodNotFoundException

7

8

10
Find best

matching method

11

Return selected
method

Throw
AmbigiousMethodCallException

No

No

Yes

Yes

If an explicit method name was given,
does at least one method exist with that name?

Is there only one method
marked with @Handler annotation?

Is there only one method marked with
other kinds of Camel annotations?

Is there a single best matching method?

Yes

9Yes

Is there only one method
with a single parameter?

Figure 4.6 How Camel selects which method
to invoke (part 2, continued from figure 4.5)

 www.it-ebooks.info

http://www.it-ebooks.info/

107Selecting bean methods

Figure 4.6 is a bit more complex, but its main goal is to narrow down the number of
possible methods and select a method if one stands out. Don’t worry if you don’t
entirely understand the algorithm; we’ll look at a couple of examples shortly that
should make it much clearer.

 Let’s continue with the algorithm and cover the last steps:

6 If a method name was given and no methods exist with that name, a Method-
NotFoundException exception is thrown.

7 If only a single method has been marked with the @Handler annotation, it’s
selected.

8 If only a single method uses any of the other Camel bean parameter-binding
annotations, such as @Body, @Header, and so on, it’s selected. (We’ll look at how
Camel binds to method parameters using annotations in section 4.5.3.)

9 If, among all the methods on the bean, there’s only one method with exactly
one parameter, that method is selected. For example, this would be the situa-
tion for the EchoBean bean we looked at in section 4.4.1, which has only the
echo method with exactly one parameter. Single parameter methods are pre-
ferred because they map easily with the payload from the Camel exchange.

10 Now the computation gets a bit complex. There are multiple candidate meth-
ods, and Camel must determine whether there’s a single method that stands
out as the best fit. The strategy is to go over the candidate methods and filters
out methods that don’t fit. Camel does this by trying to match the first parame-
ter of the candidate method; if the parameter isn’t the same type and it’s not
possible to coerce the types, the method is filtered out. In the end, if there is
only a single method left, that method is selected.

11 If Camel can’t select a method, an AmbigiousMethodCallException exception
is thrown with a list of ambiguous methods.

Clearly Camel goes through a lot to select the method to invoke on your bean. Over time
you’ll learn to appreciate all this—it’s convention over configuration to the fullest.

NOTE The algorithm laid out in this book is based on Apache Camel ver-
sion 2.5. This method-selection algorithm may change in the future to
accommodate new features.

Now it’s time to take a look at how this algorithm applies in practice.

4.4.3 Some method-selection examples
To see how this algorithm works, we’ll use the EchoBean from section 4.4.1 as an exam-
ple, but we’ll add another method to it—the bar method—to better explain what hap-
pens when there are multiple candidate methods.

public class EchoBean {

 public String echo(String echo) {
 return echo + " " + eco;
 }

 www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 4 Using beans with Camel

 public String bar() {
 return "bar";
 }
}

And we’ll start with this route:

from("direct:start").bean(EchoBean.class).to("log:reply");

If you send the String message "Camel" to the Camel route, the reply logger will
surely output "Camel Camel" as expected. Despite the fact that EchoBean has two meth-
ods, echo and bar, only the echo method has a single parameter. This is what step 9 in
figure 4.6 ensures—Camel will pick the method with a single parameter if there is only
one of them.

 To make the example a bit more challenging, let’s change the bar method as follows:

public String bar(String name) {
 return "bar " + name;
}

What do you expect will happen now? You now have two identical method signatures
with a single method parameter. In this case, Camel can’t pick one over the other,
so it throws an AmbigiousMethodCallException exception, according to step 11 in
figure 4.6.

 How can you resolve this? One solution would be to provide the method name in
the route, such as specifying the bar method:

from("direct:start").bean(EchoBean.class, "bar").to("log:reply");

But there’s another solution that doesn’t involve specifying the method name in the
route. You can use the @Handler annotation to select the method. This solution is
dealt with in step 7 of figure 4.6. The @Handler is a Camel-specific annotation that you
can add to a method. It simply tells Camel to use this method by default.

@Handler
public String bar(String name) {
 return "bar " + name;
}

Now the AmbigiousMethodCallException won’t be thrown because the @Handler
annotation tells Camel to select the bar method.

TIP It’s a good idea either to declare the method name in the route or to use
the @Handler annotation. This ensures that Camel picks the method you
want, and you won’t be surprised if Camel chooses another method.

Suppose you change EchoBean to include two methods with different parameter types:

public class EchoBean {

 public String echo(String echo) {
 return echo + " " + echo;
 }

 www.it-ebooks.info

http://www.it-ebooks.info/

109Selecting bean methods

 public Integer double(Integer num) {
 return num.intValue() * num.intValue();
 }
}

The echo method works with a String, and the double method with an Integer. If
you don’t specify the method name, the BeanProcessor will have to choose between
these two methods at runtime.

 Step 10 in figure 4.6 allows Camel to be smart about deciding which method stands
out. It does so by inspecting the message payloads of two or more candidate methods
and comparing those with the message body type, checking whether there is an exact
type match in any of the methods.

 Suppose you send in a message to the route that contains a String body with
the word "Camel". It’s not hard to guess that Camel will pick the echo method,
because it works with a String. On the other hand, if you send in a message with the
Integer value of 5, Camel will select the double method, because it uses the Inte-
ger type.

 Despite this, things can still go wrong, so let’s go over a couple of common situations.

4.4.4 Potential method-selection problems

There are a few things that can go wrong when invoking beans at runtime:

■ Specified method not found—If Camel can’t find any method with the specified
name, a MethodNotFoundException exception is thrown. This only happens
when you have explicitly specified the method name.

■ Ambiguous method—If Camel can’t single out a method to call, an Ambigious-
MethodCallException exception is thrown with a list of the ambiguous meth-
ods. This can happen even when an explicit method name was defined because
the method could potentially be overloaded, which means the bean would
have multiple methods with the same name; only the number of parameters
would vary.

■ Type conversion failure—Before Camel invokes the selected method, it must con-
vert the message payload to the parameter type required by the method. If this
fails, a NoTypeConversionAvailableException exception is thrown.

Let’s take a look at examples of each of these three situations using the following
EchoBean:

public class EchoBean {

 public String echo(String name) {
 return name + name;
 }

 public String hello(String name) {
 return "Hello " + name;
 }
}

 www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 4 Using beans with Camel

First, you could specify a method that doesn’t exist by doing this:

<bean ref="echoBean" method="foo"/>

Here you try to invoke the foo method, but there is no such method, so Camel throws
a MethodNotFoundException exception.

 On the other hand, you could omit specifying the method name:

<bean ref="echoBean"/>

In this case, Camel can’t single out a method to use because both the echo and hello
methods are ambiguous. When this happens, Camel throws an AmbigiousMethod-
CallException exception containing a list of the ambiguous methods.

 The last situation that could happen is when the message contains a body that
can’t be converted to the type required by the method. Suppose you have the follow-
ing OrderServiceBean:

public class OrderServiceBean {

 public String handleXML(Document xml) {
 ...
 }
}

And suppose you need to use that bean in this route:

from("jms:queue:orders")
 .beanRef("orderService", "handleXML")
 .to("jms:queue:handledOrders");

The handleXML method requires a parameter to be of type org.w3c.dom.Document,
which is an XML type, but what if the JMS queue contains a javax.jms.TextMessage
not containing any XML data, but just a plain text message, such as "Camel rocks". At
runtime you’ll get the following stracktrace:

Caused by: org.apache.camel.NoTypeConversionAvailableException: No type
converter available to convert from type: java.lang.byte[] to the
required type: org.w3c.dom.Document with value [B@b3e1c9
 at
org.apache.camel.impl.converter.DefaultTypeConverter.mandatoryConvertTo
(DefaultTypeConverter.java:115)
 at
org.apache.camel.impl.MessageSupport.getMandatoryBody(MessageSupport.java
:101)
 ... 53 more
Caused by: org.apache.camel.RuntimeCamelException:
org.xml.sax.SAXParseException: Content is not allowed in prolog.
 at
org.apache.camel.util.ObjectHelper.invokeMethod(ObjectHelper.java:724)
 at
org.apache.camel.impl.converter.InstanceMethodTypeConverter.convertTo
(InstanceMethodTypeConverter.java:58)
 at
org.apache.camel.impl.converter.DefaultTypeConverter.doConvertTo

 www.it-ebooks.info

http://www.it-ebooks.info/

111Bean parameter binding

(DefaultTypeConverter.java:158)
 at
org.apache.camel.impl.converter.DefaultTypeConverter.mandatoryConvertTo
(DefaultTypeConverter.java:113)
 ... 54 more

What happened is that Camel tried to convert the javax.jms.TextMessage to a org.
w3c.dom.Document type, but it failed. In this situation, Camel wraps the error and
throws it as a NoTypeConverterException exception.

 By further looking into this stacktrace, you may notice that the cause of this prob-
lem is that the XML parser couldn’t parse the data to XML. It reports, “Content is not
allowed in prolog,” which is a common error indicating that the XML declaration
(<?xml version="1.0"?>) is missing.

 You may wonder what would happen if such a situation occurred at runtime. In
this case, the Camel error-handling system would kick in and handle it. Error han-
dling is covered thoroughly in chapter 5.

 That’s all you need to know about how Camel selects methods at runtime. Now we
need to look at the bean parameter-binding process, which happens after Camel has
selected the method.

4.5 Bean parameter binding
In the last section, we covered the process that selects which method to invoke on a bean.
This section covers what happens next—how Camel adapts to the parameters on the
method signature. Any bean method can have multiple parameters and Camel must
somehow pass in meaningful values. This process is known as bean parameter binding.

 We’ve already seen parameter binding in action in the many examples so far in
this chapter. What those examples had in common was using a single parameter to
which Camel bound the input message body. Figure 4.7 illustrates this using Echo-
Bean as an example.

BeanProcessor
(Service activator)

EchoBean

String echo(String name)
Invoke

Input message

Output message

Exchange

Use Bound toB
C

D

Figure 4.7 How BeanProcessor binds
the input message to the first parameter
of the method being invoked

 www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 4 Using beans with Camel

The BeanProcessor uses the input message B to bind its body to the first parameter
of the method C, which happens to be the String name parameter. Camel does this
by creating an expression that type-converts the input message body to the String
type. This ensures that when Camel invokes the echo method D, the parameter
matches the expected type.

 This is important to understand, because most beans have methods with a single
parameter. The first parameter is expected to be the input message body, and Camel
will automatically convert the body to the same type as the parameter.

 So what happens when a method has multiple parameters? That’s what we’ll look
at in the remainder of the chapter.

4.5.1 Binding with multiple parameters

Figure 4.8 illustrates the principle of bean parameter binding when multiple parame-
ters are used.

 At first, figure 4.8 may seem a bit overwhelming. Many new types come into play
when you deal with multiple parameters. The big box entitled “Bean parameter bind-
ings” contains the following four boxes:

BeanProcessor
(Service activator)

EchoBean

String echo(String name,
 TypeConverter converter,
 @Header("foo") Integer foo)

Camel built-in types

CamelContext

TypeConverter

Registry

...

Camel annotations

@Body
@Header

...
@Headers

Camel language
annotations

@Bean
@XPath

...
@Groovy
@Ognl

Bean parameter bindings

Use
Bound to

Invoke

Input message

Output message

Exchange

Figure 4.8 Parameter binding with multiple parameters involves a lot more options than with
single parameters.

 www.it-ebooks.info

http://www.it-ebooks.info/

113Bean parameter binding

■ Camel built-in types—Camel provides special bindings for a series of Camel con-
cepts. We’ll cover them in section 4.5.2.

■ Exchange—This is the Camel exchange, which allows binding to the input mes-
sage, such as its body and headers. The Camel exchange is the source of the val-
ues that must be bound to the method parameters. It will be covered in the
sections to come.

■ Camel annotations—When dealing with multiple parameters, you use annota-
tions to distinguish them. This is covered in section 4.5.3.

■ Camel language annotations—This is a less commonly used feature that allows
you to bind parameters to languages. It’s ideal when working with XML mes-
sages that allow you to bind parameters to XPath expressions. This is covered in
section 4.5.4.

Let’s start by looking at using the Camel built-in types.

4.5.2 Binding using built-in types

Camel provides a set of fixed types that are always bound. All you have to do is declare
a parameter of one of the types listed in table 4.2.

Table 4.2 Parameter types that Camel automatically binds

Type Description

Exchange The Camel exchange. This contains the values that will be bound to the method
parameters.

Message The Camel input message. It contains the body that is often bound to the first
method parameter.

CamelContext The CamelContext. This can be used in special circumstances when you need
access to all Camel’s moving parts.

TypeConverter The Camel type-converter mechanism. This can be used when you need to convert
types. We covered the type-converter mechanism in section 3.6.

Working with multiple parameters
Using multiple parameters is more complex than using single parameters. It’s gener-
ally a good idea to follow these rules of thumb:

■ Use the first parameter as the message body, which may or may not use the
@Body annotation.

■ Use either a built-in type or add Camel annotations for subsequent parameters.

In our experience, it becomes complicated when multiple parameters don’t follow
these guidelines, but Camel will make its best attempt to adapt the parameters to
the method signature.

 www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 4 Using beans with Camel

Let’s look at a couple of examples using the types from table 4.2. First, suppose you
add a second parameter that’s one of the built-in types to the echo method:

public string echo(String echo, CamelContext context)

In this example, you bind the CamelContext, which gives you access to all the moving
parts of Camel.

 Or you could bind the registry, in case you need to look up some beans:

public string echo(String echo, Registry registry) {
 OtherBean other = registry.lookup("other", OtherBean.class);
 ...
}

You aren’t restricted to having only one additional parameter; you can have as many
as you like. For example, you could bind both the CamelContext and the registry:

public string echo(String echo, CamelContext context, Registry registry)

So far, you’ve always bound to the message body; how would you bind to a message
header? The next section will explain that.

4.5.3 Binding using Camel annotations
Camel provides a range of annotations to help bind from the exchange to bean
parameters. You should use these annotations when you want more control over the
bindings. For example, without these annotations, Camel will always try to bind the
method body to the first parameter, but with the @Body annotation you can bind the
body to any parameter in the method.

 Suppose you have the following bean method:

public String orderStatus(Integer customerId, Integer orderId)

And you have a Camel message that contains the following data:

■ Body, with the order ID, as a String type
■ Header with the customer ID as an Integer type

With the help of Camel annotations, you can bind the Exchange to the method signa-
ture as follows:

public String orderStatus(@Header("customerId") Integer customerId,
 @Body Integer orderId)

Notice how you can use the @Header annotation to bind the message header to the
first parameter and @Body to bind the message body to the second parameter.

 Table 4.3 lists all the Camel parameter-binding annotations.

Registry The bean registry. This allows you to look up beans in the registry.

Exception An exception, if one was thrown. Camel will only bind to this if the exchange has
failed and contains an exception. This allows you to use beans to handle errors.

Table 4.2 Parameter types that Camel automatically binds (continued)

Type Description

 www.it-ebooks.info

http://www.it-ebooks.info/

115Bean parameter binding

You’ve already seen the first two types in action, so let’s try a couple of examples with
the other annotations. For example, you could use @Headers to bind the input head-
ers to a Map type:

public String orderStatus(@Body Integer orderId, @Headers Map headers) {
 Integer customerId = (Integer) headers.get("customerId");
 String customerType = (String) headers.get("customerType");
 ...
}

You would use this when you have many headers, so you don’t have to add a parame-
ter for every single header.

 The @OutHeaders annotation is used when you’re working with request-response
messaging (also identified as the InOut Message Exchange pattern). @OutHeaders
provides direct access to the output message headers, which means you can manipu-
late these headers directly from the bean. Here’s an example:

public String orderStatus(@Body Integer orderId, @OutHeaders Map headers) {
 ...
 headers.put("status", "APPROVED");
 headers.put("confirmId", "444556");
 return "OK";
}

Notice that you use @OutHeaders as the second parameter. Unlike @Headers, @Out-
Headers is empty when the method is invoked. The idea is that you put the headers
that you want to preserve in the output message into this map.

 Finally, let’s look at Camel’s language annotations, which bind parameters to a
language.

4.5.4 Binding using Camel language annotations
Camel provides additional annotations that allow you to use other languages as
parameters. This may sound a bit strange, but it will become clearer with an example.

Table 4.3 Parameter-binding annotations provided by Camel

Annotation Description

@Attachments Binds the parameter to the message attachments. The parameter must be a
java.util.Map type.

@Body Binds the parameter to the message body.

@Header(name) Binds the parameter to the given message header.

@Headers Binds the parameter to all the input headers. The parameter must be a
java.util.Map type.

@OutHeaders Binds the parameter to the output headers. The parameter must be a java.
util.Map type. This allows you to add headers to the output message.

@Property(name) Binds the parameter to the given exchange property.

@Properties Binds the parameter to all the exchange properties. The parameter must be a
java.util.Map type.

 www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 4 Using beans with Camel

 The most common language to use is XPath, which allows you to evaluate XPath
expressions on the message body. For example, suppose the message contains the fol-
lowing XML document:

<order customerId="123">
 <status>in progress</status>
</order>

By using XPath expressions, you can extract parts of the document and bind them to
parameters, like this:

public void updateStatus(@XPath("/order/@customerId") Integer customerId,
 @XPath("/order/status/text()") String status)

You can bind as many parameters as you like—the preceding example binds two
parameters using the @XPath annotations. You can also mix and match annotations, so
you can use @XPath for one parameter and @Header for another.

 Table 4.4 lists the language annotations provided in Camel 2.5. In the future, we
may add additional languages to Camel, which often also means that a corresponding
annotation for bean parameter binding is added as well.

It may seem a bit magical that you can use a @Bean annotation when invoking a method,
because the @Bean annotation itself also invokes a method. Let’s try out an example.

 Suppose you already have a service that must be used to stamp unique order IDs on
incoming orders. The service is implemented as follows.

Table 4.4 Camel’s language-based bean binding annotations

Annotation Description Dependency

@Bean Invokes a method on a bean camel-core

@BeanShell Evaluates a bean shell script camel-script

@EL Evaluates an EL script (unified JSP and JSF scripts) camel-juel

@Groovy Evaluates a Groovy script camel-script

@JavaScript Evaluates a JavaScript script camel-script

@MVEL Evaluates a MVEL script camel-mvel

@OGNL Evaluates an OGNL script camel-ognl

@PHP Evaluates a PHP script camel-script

@Python Evaluates a Python script camel-script

@Ruby Evaluates a Ruby script camel-script

@Simple Evaluates a Simple expression (Simple is a built-in language
provided with Camel; see appendix A for more details)

camel-core

@XPath Evaluates an XPath expression camel-core

@XQuery Evaluates an XQuery expression camel-saxon

 www.it-ebooks.info

http://www.it-ebooks.info/

117Bean parameter binding

public Document handleIncomingOrder(Document xml, int customerId,
 int orderId) {
 Attr attr = xml.createAttribute("orderId");
 attr.setValue("" + orderId);

 Node node = xml.getElementsByTagName("order").item(0);
 node.getAttributes().setNamedItem(attr);

 return xml;
}

As you can see, the service creates a new XML attribute with the value of the given
order ID B. Then it inserts this attribute in the XML document C using the rather
clumsy XML API from Java C.

 To generate the unique order ID, you have the following class:

public final class GuidGenerator {
 public static int generate() {
 Random ran = new Random();
 return ran.nextInt(10000000);
 }
}

(In a real system, you’d generate unique order IDs based on another scheme.)
 In Camel, you have the following route that listens for new order files and invokes

the service before sending the orders to a JMS destination for further processing:

<bean id="xmlOrderService" class="camelinaction.XmlOrderService"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="file://riderautoparts/order/inbox"/>
 <bean ref="xmlOrderService"/>
 <to uri="jms:queue:order"/>
 </route>
</camelContext>

What is missing is the step that generates a unique ID and provides that ID in the handle-
IncomingOrder method (shown in listing 4.5). To do this, you need to declare a bean
in the spring XML file with the ID generator, as follows:

<bean id="guid" class="camelinaction.GuidGenerator"/>

Now you’re ready to connect the last pieces of the puzzle. You need to tell Camel that
it should invoke the generate method on the guid bean when it invokes the hand-
leIncomingOrder method from listing 4.5. To do this, you use the @Bean annotation
and change the method signature to the following:

public Document handleIncomingOrder(@Body Document xml,
 @XPath("/order/@customerId") int customerId,
 @Bean(ref = "guid", method="generate") int orderId);

We’ve prepared a unit test you can use to run this example. Use the following Maven
goal from the chapter4/bean directory:

mvn test -Dtest=XmlOrderTest

Listing 4.5 A service that stamps an order ID on an XML document

Creates orderId
attributeB

Adds orderId attribute
to order nodeC

 www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 4 Using beans with Camel

When it’s running, you should see two log lines that output the XML order before and
after the service has stamped the order ID. Here’s an example:

2009-10-28 16:18:58,485 [: FileComponent] INFO before
Exchange[BodyType:org.apache.camel.component.file.GenericFile,
Body:<order customerId="4444"><item>Camel in action</item></order>]
2009-10-28 16:18:58,564 [: FileComponent] INFO after
Exchange[BodyType:com.sun.org.apache.xerces.internal.dom.
DeferredDocumentImpl, Body:<order customerId="4444"
orderId="7303381"><item>Camel in action</item></order>]

Here you can see that the second log line has an orderId attribute with the value
of 7303381, whereas the first doesn’t. If you run it again, you’ll see a different order ID
because it’s a random value. You can experiment with this example, perhaps changing
how the order ID is generated.

USING NAMESPACES WITH @XPATH
In the preceding example the XML order did not include a namespace. When using
namespaces the bean parameter binding must include the namespace(s) in the
method signature as highlighted:

public Document handleIncomingOrder(
 @Body Document xml,
 @XPath(
 value = "/c:order/@customerId",
 namespaces = @NamespacePrefix(
 prefix = "c",
 uri = "http://camelinaction.com/order")) int customerId,
 @Bean(ref = "guid", method = "generate") int orderId);

The namespace is defined using the @NamespacePrefix annotation embedded in the
@XPath annotation. Notice the XPath expression value must use the prefix, which means
the expression is changed from /order/@customerId to /c:order/@customerId.

 The prefix value isn’t required to be a certain value; instead of c you can use any
value you like.

 The source code for the book contains this example in the chapter4/bean direc-
tory; you can try using the following Maven goal:

mvn test -Dtest=XmlOrderNamespaceTest

If your XML document includes multiple namespaces, you can define those as well in
the @XPath annotation as it accepts an array of @NamespacePrefix.

Bean binding summary
Camel’s rules for bean parameter binding can be summarized as follows:

■ All parameters having a Camel annotation will be bound (table 4.3 and 4.4)
■ All parameters of a Camel built-in type will be bound (table 4.2)
■ The first parameter is assumed to be the message IN body (if not already bound)
■ All remaining parameters will be unbound, and Camel will pass in empty values

 www.it-ebooks.info

http://www.it-ebooks.info/

119Summary and best practices

You’ve seen all there is to bean binding. Camel has a flexible mechanism that adapts
to your existing beans, and when you have multiple parameters, Camel provides anno-
tations to bind the parameters properly.

4.6 Summary and best practices
We’ve now covered another cornerstone of using beans with Camel. It’s important
that end users of Camel can use the POJO programming model and have Camel easily
leverage those beans (POJOs). Beans are just Java code, which is a language you’re
likely to feel comfortable using. If you hit a problem that you can’t work around or fig-
ure out how to resolve using Camel and EIPs, you can always resort to using a bean
and letting Camel invoke it.

 We unlocked the algorithm used by Camel to select which method to invoke on a
bean. You learned why this is needed—Camel must resolve method selection at run-
time, whereas regular Java code can link method invocations at compile time.

 We also covered what bean parameter binding is and how you can bind a Camel
exchange to any bean method and its parameters. You learned how to use annota-
tions to provide fine-grained control over the bindings, and even how Camel can
help bind XPath expressions to parameters, which is a great feature when working
with XML messages.

 Let’s pull out some of the key practices you should take away from this chapter:

■ Use beans. Beans are Java code and they give you all the horsepower of Java.
■ Use loose coupling. Prefer using beans that don’t have a strong dependency on the

Camel API. Camel is capable of adapting to existing bean method signatures, so
you can leverage any existing API you may have, even if it has no dependency on
the Camel API. Unit testing is also easier because your beans don’t depend on any
Camel API. You can even have developers with no Camel experience develop the
beans, and then have developers with Camel experience use those beans.

■ Prefer simple method signatures. Camel bean binding is much simpler when
method signatures have as few parameters as possible.

■ Specify method names. Tell Camel which method you intend to invoke, so Camel
doesn’t have to figure this out itself. You can also use @Handler in the bean to
tell Camel which method it should pick and use.

■ Use bean parameter annotations. Use the powers that the various Camel bean
parameter annotations offer.

We’ve now covered three crucial features of integration kits: routing, transformations,
and using beans. We’ll now take a leap into another world, one that’s often tackled as
an afterthought in integration projects: how to handle situations when things go wrong.
We’ve devoted an entire chapter to Camel’s extensive support for error handling.

 www.it-ebooks.info

http://www.it-ebooks.info/

120

Error handling

In the last three chapters, we’ve covered three key functions that any integration kit
should provide: routing, transformation, and mediation. In this chapter, we turn
our focus to what happens when things go wrong. We want to introduce you to
error handling early in this book, because we firmly believe that error handling
should not be an afterthought but a key piece in your design from the start.

 Writing applications that integrate disparate systems are a challenge when it
comes to handling unexpected events. In a single system that you fully control, you
can handle these events and recover. But systems that are integrated over the net-
work have additional risks: the network connection could be broken, a remote sys-
tem might not respond in a timely manner, or it might even fail for no apparent

This chapter covers
■ The difference between recoverable and

irrecoverable errors
■ Where and when Camel’s error handling applies
■ The different error handlers in Camel
■ Using redelivery policies
■ Handling and ignoring exceptions with onException
■ Fine-grained control of error handling

 www.it-ebooks.info

http://www.it-ebooks.info/

121Understanding error handling

reason. Even on your local server, unexpected events can occur, such as the server’s
disk filling up or the server running out of memory. Regardless of which errors occur,
your application should be prepared to handle them.

 In these situations, log files are often the only evidence of the unexpected event, so
logging is important. Camel has extensive support for logging and for handling errors
to ensure your application can continue to operate.

 In this chapter, you’ll discover how flexible, deep, and comprehensive Camel’s
error handling is and how to tailor it to deal with most situations. We’ll cover all the
error handlers Camel provides out of the box, and when they’re best used, so you can
pick the ones best suited to your applications. You’ll also learn how to configure and
master redelivery, so Camel can try to recover from particular errors. We’ll also look at
exception policies, which allow you to differentiate among errors and handle specific
ones, and at how scopes can help you define general rules for implementing route-
scoped error handling. Finally, we’ll look at what Camel offers when you need fine-
grained control over error handling, so that it only reacts under certain conditions.

5.1 Understanding error handling
Before jumping into the world of error handling with Camel, we need to take a step
back and look at errors more generally. There are two main categories of errors,
recoverable and irrecoverable, and we need to look at where and when error handling
starts, because there are some prerequisites that must happen beforehand.

5.1.1 Recoverable and irrecoverable errors

When it comes to errors, we can divide them into recoverable and irrecoverable errors, as
illustrated in figure 5.1.

 An irrecoverable error is an error that remains an error now matter how many times
you try to perform the same action again. In the integration space, that could mean
trying to access a database table that doesn’t exist, which would cause the JDBC driver
to throw an SQLException.

 A recoverable error, on the other hand, is a temporary error that might not cause a
problem on the next attempt. A good example of such an error is a problem with the
network connection resulting in a java.io.IOException. On a subsequent attempt,
the network issue could be resolved and your application could continue to operate.

...

...

Irrecoverable error

Recoverable error

Figure 5.1 Errors can be categorized as either recoverable or irrecoverable. Irrecoverable errors
continue to be errors on subsequent attempts; recoverable errors may be quickly resolved on their own.

 www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 5 Error handling

In your daily life as a Java developer, you won’t encounter this division of errors into
recoverable and irrecoverable often. Generally, exception handling code uses one of
the two patterns illustrated in the following two code snippets.

 The first snippet illustrates a common error-handling idiom, where all kinds of
exceptions are considered irrecoverable and you give up immediately, throwing the
exception back to the caller, often wrapped:

public void handleOrder(Order order) throws OrderFailedException {
 try {
 service.sendOrder(order);
 } catch (Exception e) {
 throw new OrderFailedException(e);
 }
}

The next snippet improves on this situation by adding a bit of logic to handle redeliv-
ery attempts before eventually giving up:

public void handleOrder(Order order) throws OrderFailedException {
 boolean done = false;
 int retries = 5;
 while (!done) {
 try {
 service.sendOrder(order);
 done = true;
 } catch (Exception e) {
 if (--retries == 0) {
 throw new OrderFailedException(e);
 }
 }
 }
}

Around the invocation of the service is the logic that attempts redelivery, in case an
error occurs. After five attempts, it gives up and throws the exception.

 What the preceding example lacks is logic to determine whether the error is recov-
erable or irrecoverable, and to react accordingly. In the recoverable case, you could
try again, and in the irrecoverable case, you could give up immediately and rethrow
the exception.

 In Camel, a recoverable error is represented as a plain Throwable or Exception
that can be set or accessed from org.apache.camel.Exchange using one of the follow-
ing two methods:

void setException(Throwable cause);

or

Exception getException();

NOTE The setException method on Exchange accepts a Throwable type,
whereas the getException method returns an Exception type. getException
also doesn’t return a Throwable type because of API compatibility.

Attempts
redelivery

B

 www.it-ebooks.info

http://www.it-ebooks.info/

123Understanding error handling

An irrecoverable error is represented as a message with a fault flag that can be set or
accessed from org.apache.camel.Exchange. For example, to set "Unknown customer"
as a fault message, you would do the following:

Message msg = Exchange.getOut();
msg.setFault(true);
msg.setBody("Unknown customer");

The fault flag must be set using the setFault(true) method.
 So why are the two types of errors represented differently? There are two reasons:

First, the Camel API was designed around the Java Business Integration (JBI) specifica-
tion, which includes a fault message concept. Second, Camel has error handling built
into its core, so whenever an exception is thrown back to Camel, it catches it and sets
the thrown exception on the Exchange as a recoverable error, as illustrated here:

try {
 processor.process(exchange);
} catch (Throwable e) {
 exchange.setException(e);
}

Using this pattern allows Camel to catch and handle all exceptions that are thrown.
Camel’s error handling can then determine how to deal with the errors—retry, propa-
gate the error back to the caller, or do something else. End users of Camel can set irre-
coverable errors as fault messages, and Camel can react accordingly and stop routing
the message.

 Now that you’ve seen recoverable and irrecoverable errors in action, let’s summa-
rize how they’re represented in Camel:

■ Exceptions are represented as recoverable errors.
■ Fault messages are represented as irrecoverable errors.

Now let’s look at when and where Camel’s error handling applies.

5.1.2 Where Camel’s error handling applies

Camel’s error handling doesn’t apply everywhere. To understand why, take a look at
figure 5.2.

File File
consumer

Message
translator

File producer

Exchange

Camel

Camel error-handling boundaries

Changed
file

Figure 5.2 Camel’s error handling only applies within the lifecycle of an exchange.

 www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 5 Error handling

Figure 5.2 shows a simple route that translates files. You have a file consumer and pro-
ducer as the input and output facilities, and in between is the Camel routing engine,
which routes messages encompassed in an exchange. It’s during the lifecycle of this
exchange that the Camel error handling applies. That leaves a little room on the
input side where this error handling can’t operate—the file consumer must be able to
successfully read the file, instantiate the Exchange, and start the routing before the
error handling can function. This applies to any kind of Camel consumer.

 So what happens if the file consumer can’t read the file? The answer is component-
specific, and each Camel component must deal with this in its own way. Some compo-
nents will ignore and skip the message, others will retry a number of times, and others
will gracefully recover.

NOTE There are a number of Camel components that provide minor error-
handling features: File, FTP, Mail, iBATIS, RSS, Atom, JPA, and SNMP. These
components are based on the ScheduledPollConsumer class, which offers a
pluggable PollingConsumerPollStrategy that you can use to create your
own error-handling strategy. You can learn more about this on the Camel
website, at http://camel.apache.org/polling-consumer.html.

That’s enough background information—let’s dig into how error handling in Camel
works. In the next section, we’ll start by looking at the different error handlers Camel
provides.

5.2 Error handlers in Camel
In the previous section you learned that Camel regards all exceptions as recoverable
and stores them on the exchange using the setException(Throwable cause)
method. This means error handlers in Camel will only react to exceptions set on the
exchange. By default, they won’t react if an irrecoverable error has been set as a fault
message. The rule of thumb is that error handlers in Camel only trigger when
exchange.getException() != null.

NOTE In section 5.3.4, you’ll learn how you can instruct Camel error han-
dlers to react to fault messages as well.

Camel provides a range of error handlers. They’re listed in table 5.1.

Table 5.1 The error handlers provided in Camel

Error handler Description

DefaultErrorHandler This is the default error handler that’s automatically enabled, in
case no other has been configured.

DeadLetterChannel This error handler implements the Dead Letter Channel EIP.

TransactionErrorHandler This is a transaction-aware error handler extending the default error
handler. Transactions are covered in chapter 9 and are only briefly
touched on in this chapter. We’ll revisit this error handler in chapter 9.

 www.it-ebooks.info

http://camel.apache.org/polling-consumer.html
http://www.it-ebooks.info/

125Error handlers in Camel

At first glance, having five error handlers may seem overwhelming, but you’ll learn
that the default error handler is used in most cases.

 The first three error handlers in table 5.1 all extend the RedeliveryErrorHandler
class. That class contains the majority of the error-handling logic that the first three
error handlers all leverage. The latter two error handlers have limited functionality
and don’t extend RedeliveryErrorHandler.

 We’ll look at each of these error handlers in turn.

5.2.1 The default error handler

Camel is preconfigured to use the DefaultErrorHandler, which covers most use cases.
To understand it, consider the following route:

from("direct:newOrder")
 .beanRef("orderService, "validate")
 .beanRef("orderService, "store");

The default error handler is preconfigured and doesn’t need to be explicitly declared
in the route. So what happens if an exception is thrown from the validate method
on the order service bean?

 To answer this, we need to dive into Camel’s inner processing, where the error
handler lives. In every Camel route, there is a Channel that sits between each node in
the route graph, as illustrated in figure 5.3.

 The Channel is in between each node of the route path, which ensures it can act as
a controller that monitors and controls the routing at runtime. This is the feature that
allows Camel to enrich the route with error handling, message tracing, interceptors, and
much more. For now, you just need to know that this is where the error handler lives.

 Turning back to the example route, imagine that an exception was thrown from
the order service bean during invocation of the validate method. In figure 5.3, the
processor D would throw an exception, which would be propagated back to the previ-
ous channel C, where the error handler would catch it. This gives Camel the chance
to react accordingly. For example, Camel could try again (redeliver), or it could route

NoErrorHandler This handler is used to disable error handling altogether.

LoggingErrorHandler This error handler just logs the exception.

Table 5.1 The error handlers provided in Camel (continued)

Error handler Description

Consumer Channel Processor Channel Processor

from("direct:newOrder") beanRef("orderSerive",
 "validate")

beanRef("orderService",
 "store")

B C D E F

Figure 5.3 A detailed view of a route path, where channels act as controllers between the processors

 www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 5 Error handling

the message to another route path (detour using exception policies), or it could give
up and propagate the exception back to the caller. With the default settings, Camel
will propagate the exception back to the caller.

 The default error handler is configured with these settings:

■ No redelivery
■ Exceptions are propagated back to the caller

These settings match what happens when you’re working with exceptions in Java, so
Camel’s behavior won’t surprise Camel end users.

 Let’s continue with the next error handler, the dead letter channel.

5.2.2 The dead letter channel error handler

The DeadLetterChannel error handler is similar to the default error handler except
for the following differences:

■ The dead letter channel is the only error handler that supports moving failed
messages to a dedicated error queue, which is known as the dead letter queue.

■ Unlike the default error handler, the dead letter channel will, by default, han-
dle exceptions and move the failed messages to the dead letter queue.

■ The dead letter channel supports using the original input message when a mes-
sage is moved to the dead letter queue.

Let’s look at each of these in a bit more detail.

THE DEAD LETTER CHANNEL

The DeadLetterChannel is an error handler that implements the principles of the
Dead Letter Channel EIP. This pattern states that if a message can’t be processed or
delivered, it should be moved to a dead letter queue. Figure 5.4 illustrates this pattern.

 As you can see, the consumer B consumes a new message that is supposed to be
routed to the processor D. The channel C controls the routing between B and D,
and if the message can’t be delivered to D, the channel invokes the deal letter chan-
nel error handler, which moves the message to the dead letter queue E. This keeps
the message safe and allows the application to continue operating.

 This pattern is often used with messaging. Instead of allowing a failed message to
block new messages from being picked up, the message is moved to a dead letter
queue to get it out of the way.

Consumer Channel Processor

Dead letter queue

B C D

E

Figure 5.4 The Dead Letter Channel
EIP moves failed messages to a dead
letter queue.

 www.it-ebooks.info

http://www.it-ebooks.info/

127Error handlers in Camel

The same idea applies to the dead letter channel error handler in Camel. This error
handler has an associated dead letter queue, which is based on an endpoint, allowing
you to use any Camel endpoint you choose. For example, you can use a database, a
file, or just log the failed messages.

 When you choose to use the dead letter channel error handler, you must configure
the dead letter queue as an endpoint so the handler knows where to move the failed
messages. This is done a bit differently in the Java DSL and Spring XML. For example,
here is how you’d log the message at ERROR level in Java DSL:

errorHandler(deadLetterChannel("log:dead?level=ERROR"));

And here is how you’d do it in Spring XML:

<errorHandler id="myErrorHandler" type="DeadLetterChannel"
 deadLetterUri="log:dead?level=ERROR"/>

Now, let’s look at how the dead letter channel error handler handles exceptions when
it moves the message to the dead letter queue.

HANDLING EXCEPTIONS BY DEFAULT

By default, Camel handles exceptions by suppressing them; it removes the exceptions
from the exchange and stores them as properties on the exchange. After a message
has been moved to the dead letter queue, Camel stops routing the message and the
caller regards it as processed.

 When a message is moved to the dead letter queue, you can obtain the exception
from the exchange using the Exchange.CAUSED_EXCEPTION property.

Exception e = exchange.getProperty(Exchange.CAUSED_EXCEPTION,
 Exception.class);

Now let’s look at using the original message.

USING THE ORIGINAL MESSAGE WITH THE DEAD LETTER CHANNEL

Suppose you have a route in which the message goes through a series of processing
steps, each altering a bit of the message before it reaches its final destination, as in the
following code:

errorHandler(deadLetterChannel("jms:queue:dead"));

from("jms:queue:inbox")
 .beanRef("orderService", "decrypt")
 .beanRef("orderService", "validate")
 .beanRef("orderService", "enrich")
 .to("jms:queue:order");

Now imagine that an exception occurs at the validate method, and the dead letter
channel error handler moves the message to the dead letter queue. Suppose a new
message arrives and an exception occurs at the enrich method, and this message is
also moved to the same dead letter queue. If you want to retry those messages, can you
just drop them into the inbox queue?

 In theory, you could do this, but the messages that were moved to the dead letter
queue no longer match the messages that originally arrived at the inbox queue—they

 www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 5 Error handling

were altered as the messages were routed. What you want instead is for the original
message content to have been moved to the dead letter queue, so that you have the
original message to retry.

 The useOriginalMessage option instructs Camel to use the original message when
it moves messages to the dead letter queue. You configure the error handler to use the
useOriginalMessage option as follows:

errorHandler(deadLetterChannel("jms:queue:dead").useOriginalMessage());

In Spring XML, you would do this:

<errorHandler id="myErrorHandler" type="DeadLetterChannel"
 deadLetterUri="jms:queue:dead" useOriginalMessage="true"/>

Let’s move on to the transaction error handler.

5.2.3 The transaction error handler

The TransactionErrorHandler is built on top of the default error handler and offers
the same functionality, but it’s tailored to support transacted routes. Chapter 9 focuses
on transactions and discusses this error handler in detail, so we won’t say much about
it here. For now, you just need to know that it exists and it’s a core part of Camel.

 The remaining two error handlers are seldom used and are much simpler.

5.2.4 The no error handler

The NoErrorHandler is used to disable error handling. The current architecture of
Camel mandates that an error handler must be configured, so if you want to disable
error handling, you need to provide an error handler that’s basically an empty shell
with no real logic. That’s the NoErrorHandler.

5.2.5 The logging error handler

The LoggingErrorHandler logs the failed message along with the exception. The log-
ger uses standard log format from log kits such as log4j, commons logging, or the Java
Util Logger.

 Camel will, by default, log the failed message and the exception using the log
name org.apache.camel.processor.LoggingErrorHandler at ERROR level. You can,
of course, customize this.

 That covers the five error handlers provided with Camel. Let’s now look at the
major features these error handlers provide.

5.2.6 Features of the error handlers

The default, dead letter channel, and transaction error handlers are all built on the
same base, org.apache.camel.processor.RedeliveryErrorHandler, so they all have
several major features in common. These features are listed in table 5.2.

 At this point, you may be eager to see the error handlers in action. In sec-
tion 5.4.6 we’ll build a use case that introduces error handling, so there will be

 www.it-ebooks.info

http://www.it-ebooks.info/

129Using error handlers with redelivery

plenty of opportunities to try this on your own. But first, let’s look at the major fea-
tures. We’ll look at redelivery and scope in section 5.3. Exception policies and error
handling will be covered in section 5.4.

5.3 Using error handlers with redelivery
Communicating with remote servers relies on network connectivity that can be unreli-
able and have outages. Luckily these disruptions cause recoverable errors—the net-
work connection could be reestablished in a matter of seconds or minutes. Remote
services can also be the source of temporary problems, such as when the service is
restarted by an administrator. To help address these problems, Camel supports a rede-
livery mechanism that allows you to control how recoverable errors are dealt with.

 In this section, we’ll take a look at a real-life error-handling scenario, and then
focus on how Camel controls redelivery and how you can configure and use it. We’ll
also take a look at how you can use error handlers with fault messages. We’ll end this
section by looking at error-handling scope and how it can be used to support multiple
error handlers scoped at different levels.

5.3.1 An error-handling use case

Suppose you have developed an integration application at Rider Auto Parts that once
every hour should upload files from a local directory to an HTTP server, and your boss
asks why the files haven’t been updated in the last few days. You’re surprised, because
the application has been running for the last month without a problem. This could
well be a situation where neither error handling nor monitoring was in place.

 Here’s the Java file that contains the integration route:

from("file:/riders/files/upload?delay=1h")
 .to("http://riders.com?user=gear&password=secret");

This route will periodically scan for files in the /riders/files/upload folder, and if any
files exist, it will upload them to the receiver’s HTTP server using the HTTP endpoint.

Table 5.2 Noteworthy features provided by the error handlers

Feature Description

Redelivery policies Redelivery policies allow you to define policies for whether or not redelivery should
be attempted. The policies also define settings such as the maximum number of
redelivery attempts, delays between attempts, and so on.

Scope Camel error handlers have two possible scopes: context (high level) and route (low
level). The context scope allows you to reuse the same error handler for multiple
routes, whereas the route scope is used for a single route only.

Exception policies Exception policies allow you to define special policies for specific exceptions.

Error handling This option allows you to specify whether or not the error handler should handle
the error. You can let the error handler deal with the error or leave it for the caller
to handle.

 www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 5 Error handling

 But there is no explicit error handling configured, so if an error occurs, the
default error handler is triggered. That handler doesn’t handle the exception but
instead propagates it back to the caller. Because the caller is the file consumer, it will
log the exception and do a file rollback, meaning that any picked-up files will be left
on the file system, ready to be picked up in the next scheduled poll.

 At this point, you need to reconsider how errors should be handled in the appli-
cation. You aren’t in major trouble, because you haven’t lost any files—Camel will
only move successfully processed files out of the upload folder—failed files will just
stack up.

 The error occurs when sending the files to the HTTP server, so you look into the
log files and quickly determine that Camel can’t connect to the remote HTTP server
due to network issues. Your boss decides that the application should retry uploading
the files if there’s an error, so the files won’t have to wait for the next hourly upload.

 To implement this, you can configure the error handler to redeliver up to 5 times
with 10-second delays:

errorHandler(defaultErrorHandler()
 .maximumRedeliveries(5).redeliveryDelay(10000));

Configuring redelivery can hardly get any simpler than that. But let’s take a closer
look at how to use redelivery with Camel.

5.3.2 Using redelivery

The first three error handlers in table 5.1 all support redelivery. This is implemented
in the RedeliveryErrorHandler class, which they extend. The RedeliveryError-
Handler must then know whether or not to attempt redelivery; this is what the redeliv-
ery policy is for.

 A redelivery policy defines how and whether redelivery should be attempted.
Table 5.3 outlines the options supported by the redelivery policy and what the default
settings are.

Table 5.3 Options provided in Camel for configuring redelivery

Option Type Default Description

MaximumRedeliveries int 0 Maximum number of redelivery attempts
allowed. 0 is used to disable redelivery,
and -1 will attempt redelivery forever until
it succeeds.

RedeliveryDelay long 1000 Fixed delay in milliseconds between each
redelivery attempt.

MaximumRedeliveryDelay long 60000 An upper bound in milliseconds for redelivery
delay. This is used when you specify non-
fixed delays, such as exponential backoff, to
avoid the delay growing too large.

 www.it-ebooks.info

http://www.it-ebooks.info/

131Using error handlers with redelivery

AsyncDelayedRedelivery boolean false Dictates whether or not Camel should use
asynchronous delayed redelivery. When a
redelivery is scheduled to be redelivered in
the future, Camel would normally have to
block the current thread until it’s time for
redelivery. By enabling this option, you let
Camel use a scheduler so that an asynchro-
nous thread will perform the redelivery. This
ensures that no thread is blocked while wait-
ing for redelivery.

BackOffMultiplier double 2.0 Exponential backoff multiplier used to multi-
ply each consequent delay.
RedeliveryDelay is the starting delay.
Exponential backoff is disabled by default.

CollisionAvoidanceFactor double 0.15 A percentage to use when calculating a ran-
dom delay offset (to avoid using the same
delay at the next attempt). Will start with the
RedeliveryDelay as the starting delay.
Collision avoidance is disabled by default.

DelayPattern String - A pattern to use for calculating the delay. The
pattern allows you to specify fixed delays for
interval groups.

For example, the pattern "0:1000;
5:5000;10:30000" will use a 1 second
delay for attempts 0 to 4, 5 seconds for
attempts 5 to 9, and 30 seconds for subse-
quent attempts.

RetryAttemptedLogLevel LoggingLevel DEBUG Log level used when a redelivery attempt is
performed.

RetriesExhaustedLogLevel LoggingLevel ERROR Log level used when all redelivery attempts
have failed.

LogStackTrace boolean true Specifies whether or not stacktraces should
be logged when all redelivery attempts have
failed.

LogRetryStackTrace boolean false Specifies whether or not stacktraces should
be logged when a delivery has failed.

LogRetryAttempted boolean true Specifies whether or not redelivery attempts
should be logged.

LogExhausted boolean true Specifies whether or not the exhaustion of
redelivery attempts (when all redelivery
attempts have failed) should be logged.

LogHandled boolean false Specifies whether or not handled exceptions
should be logged.

Table 5.3 Options provided in Camel for configuring redelivery (continued)

Option Type Default Description

 www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 5 Error handling

In the Java DSL, Camel has fluent builder methods for configuring the redelivery pol-
icy on the error handler. For instance, if you want to redeliver up to five times, use
exponential backoff, and have Camel log at WARN level when it attempts a redelivery,
you could use this code:

errorHandler(defaultErrorHandler()
 .maximumRedeliveries(5)
 .backOffMultiplier(2)
 .retryAttemptedLogLevel(LoggingLevel.WARN));

Configuring this in Spring XML is done as follows:

<errorHandler id="myErrorHandler" type="DefaultErrorHandler"
 <redeliveryPolicy maximumRedeliveries="5"
 retryAttemptedLogLevel="WARN"
 backOffMultiplier="2"
 useExponentialBackOff="true"/>
</errorHandler>

There are two things to notice in this Spring XML configuration. By using the type
option on the <errorHandler> tag, you select which type of error handler to use. In
this example, it’s the default error handler. You also have to enable exponential back-
off explicitly by setting the useExponentialBackOff option to true.

 We’ve now established that Camel uses the information from the redelivery policy
to determine whether and how to do redeliveries. But what happens inside Camel? As
you’ll recall from figure 5.3, Camel includes a Channel between every processing step
in a route path, and there is functionality in these Channels, such as error handlers.
The error handler detects every exception that occurs and acts on it, deciding what to
do, such as redeliver or give up.

 Now that you know a lot about the DefaultErrorHandler, it’s time to try a little
example.

USING THE DEFAULTERRORHANDLER WITH REDELIVERY

In the source code for the book, you’ll see an example in the chapter5/errorhandler
directory. The example uses the following route configuration:

errorHandler(defaultErrorHandler()
 .maximumRedeliveries(2)
 .redeliveryDelay(1000)
 .retryAttemptedLogLevel(LoggingLevel.WARN));

 from("seda:queue.inbox")
 .beanRef("orderService", "validate")
 .beanRef("orderService", "enrich")
 .log("Received order ${body}")
 .to("mock:queue.order");

This configuration first defines a context-scoped error handler B that will attempt at
most two redeliveries using a 1-second delay. When it attempts the redelivery, it will
log this at the WARN level (as you’ll see in a few seconds). The example is constructed
to fail when the message reaches the enrich method C.

Configures
error handlerB

Invokes enrich
method

C

 www.it-ebooks.info

http://www.it-ebooks.info/

133Using error handlers with redelivery

 You can run this example using the following Maven goal from the chapter5/
errorhandler directory:

mvn test -Dtest=DefaultErrorHandlerTest

When running the example, you’ll see the following log entries outputted on the con-
sole. Notice how Camel logs the redelivery attempts:

2009-12-16 14:28:16,959 [a://queue.inbox] WARN DefaultErrorHandler
- Failed delivery for exchangeId: 64bc46c0-5cb0-4a78-a4a8-9159f5273601.
On delivery attempt: 0 caught: camelinaction.OrderException: ActiveMQ in
Action is out of stock

2009-12-16 14:28:17,960 [a://queue.inbox] WARN DefaultErrorHandler
- Failed delivery for exchangeId: 64bc46c0-5cb0-4a78-a4a8-9159f5273601.
On delivery attempt: 1 caught: camelinaction.OrderException: ActiveMQ in
Action is out of stock

These log entries show that Camel failed to deliver a message, which means the entry
is logged after the attempt is made. On delivery attempt: 0 identifies the first
attempt; attempt 1 is the first redelivery attempt. Camel also logs the exchangeId
(which you can use to correlate messages) and the exception that caused the problem
(without the stacktrace, by default).

 When Camel performs a redelivery attempt it does this at the point of origin. In the
preceding example the error occurred when invoking the enrich method C, which
means Camel will redeliver by retrying the .beanRef("orderService", "enrich") step
in the route.

 After all redelivery attempts have failed, we say it’s exhausted, and Camel logs this at
the ERROR level by default. (You can customize this with the options listed in table 5.3.)
When the redelivery attempts are exhausted, the log entry is similar to the previous ones,
but Camel explains that it’s exhausted after three attempts:

2009-12-16 14:28:18,961 [a://queue.inbox] ERROR DefaultErrorHandler
- Failed delivery for exchangeId: 64bc46c0-5cb0-4a78-a4a8-9159f5273601.
Exhausted after delivery attempt: 3 caught:
camelinaction.OrderException: ActiveMQ in Action is out of stock

TIP The default error handler has many options, which are listed in table 5.3.
We encourage you to try loading this example into your IDE and playing with
it. Change the settings on the error handler and see what happens.

The preceding log output identifies the number of redelivery attempts, but how does
Camel know this? Camel stores this information on the Exchange. Table 5.4 reveals
where this information is stored.

Table 5.4 Headers on the Exchange related to error handling

Header Type Description

Exchange.REDELIVERY_COUNTER int The current redelivery attempt.

Exchange.REDELIVERED boolean Whether this Exchange is being redelivered.

Exchange.REDELIVERY_EXHAUSTED boolean Whether this Exchange has attempted
(exhausted) all redeliveries and has still failed.

 www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 5 Error handling

The information in table 5.4 is only available when Camel performs a redelivery; these
headers are absent on the regular first attempt. It’s only when a redelivery is triggered
that these headers are set on the exchange.

USING ASYNCHRONOUS DELAYED REDELIVERY

In the previous example, the error handler was configured to use delayed redelivery
with a 1-second delay between attempts. When a redelivery is to be conducted, Camel
will wait for 1 second before carrying out the redelivery.

 If you look at the console output, you can see the redelivery log entries are 1 sec-
ond apart, and it’s the same thread processing the attempts; this can be identified by
the [a://queue.inbox] being logged. This is known as synchronous delayed redelivery.
There will also be situations where you want to use asynchronous delayed redelivery. So
what does that mean?

 Suppose two orders are sent to the seda:queue:inbox endpoint. The consumer
will pick up the first order from the queue and process it. If it fails, it’s scheduled for
redelivery. In the synchronous case, the consumer thread is blocked while waiting to
carry out the redelivery. This means the second order on the queue can only be pro-
cessed when the first order has been completed.

 This isn’t the case in asynchronous mode. Instead of the consumer thread being
blocked, it will break out and be able to pick up the second order from the queue
and continue processing it. This helps achieve higher scalability because threads
aren’t blocked and doing nothing. Instead the threads are being put to use servicing
new requests.

TIP We’ll cover the threading model in chapter 10, which will explain how
Camel can schedule redeliveries for the future to be processed by other
threads. The Delayer and Throttler EIPs have similar asynchronous delayed
modes, which you can leverage by enabling the asyncDelayed option.

The source code for the book contains an example that illustrates the difference
between synchronous and asynchronous delayed redelivery, in the chapter5/
errorhandler directory. You can try it using the following Maven goal:

mvn test -Dtest=SyncVSAsyncDelayedRedeliveryTest

The example contains two methods: one for the synchronous mode and another for
the asynchronous.

 The console output for the synchronous mode should be displayed in the follow-
ing order:

[a://queue.inbox] INFO - Received input amount=1,name=ActiveMQ in Action
[a://queue.inbox] WARN - Failed delivery for exchangeId: xxxx
[a://queue.inbox] WARN - Failed delivery for exchangeId: xxxx
[a://queue.inbox] WARN - Failed delivery for exchangeId: xxxx
[a://queue.inbox] INFO - Received input amount=1,name=Camel in Action
[a://queue.inbox] INFO - Received order amount=1,name=Camel in

Action,id=123,status=OK

 www.it-ebooks.info

http://www.it-ebooks.info/

135Using error handlers with redelivery

Compare that with the following output from the asynchronous mode:

[a://queue.inbox] INFO - Received input amount=1,name=ActiveMQ in Action
[a://queue.inbox] WARN - Failed delivery for exchangeId: xxxx
[a://queue.inbox] INFO - Received input amount=1,name=Camel in Action
[a://queue.inbox] INFO - Received order amount=1,name=Camel in

Action,id=123,status=OK
[rRedeliveryTask] WARN - Failed delivery for exchangeId: xxxx
[rRedeliveryTask] WARN - Failed delivery for exchangeId: xxxx

Notice how the Camel in Action order is processed immediately when the first order
fails and is scheduled for redelivery. Also pay attention to the thread name that exe-
cutes the redelivery, identified by [rRedeliveryTask] being logged. As you can see,
it’s not the consumer anymore; its a redelivery task.

5.3.3 Error handlers and scopes
Scopes can be used to define error handlers at different levels. Camel supports two
scopes: a context scope and a route scope.

 Camel allows you to define a global context-scoped error handler that’s used by
default, and, if needed, you can also configure a route-scoped error handler that
applies only for a particular route. This is illustrated in listing 5.1.

errorHandler(defaultErrorHandler()
 .maximumRedeliveries(2)
 .redeliveryDelay(1000)
 .retryAttemptedLogLevel(LoggingLevel.WARN));

from("file://target/orders?delay=10000")
 .beanRef("orderService", "toCsv")
 .to("mock:file")
 .to("seda:queue.inbox");

from("seda:queue.inbox")
 .errorHandler(deadLetterChannel("log:DLC")
 .maximumRedeliveries(5).retryAttemptedLogLevel(LoggingLevel.INFO)
 .redeliveryDelay(250).backOffMultiplier(2))
 .beanRef("orderService", "validate")
 .beanRef("orderService", "enrich")
 .to("mock:queue.order");

Listing 5.1 is an improvement over the previous error-handling example. The default
error handler is configured as in the previous example B, but you have a new route
that picks up files, processes them, and sends them to the second route. This first
route will use the default error handler B because it doesn’t have a route-scoped
error handler configured, but the second route has a route-scoped error handler C.
It’s a Dead Letter Channel that will send failed messages to a log. Notice that it has dif-
ferent options configured than the former error handler.

 The source code for the book includes this example, which you can run using the
following Maven goal from the chapter5/errorhandler directory:

mvn test -Dtest=RouteScopeTest

Listing 5.1 Using two error handlers at different scopes

Defines context-scoped
error handlerB

Defines route-scoped
error handler

C

Invokes enrich
method

D

 www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 5 Error handling

This example should fail for some messages when the enrich D method is invoked.
This demonstrates how the route-scoped error handler is used as error handler.

 The most interesting part of this test class is the testOrderActiveMQ method, which
will fail in the second route and therefore show the Dead Letter Channel in action.
There are a couple of things to notice about this, such as the exponential backoff, which
causes Camel to double the delay between redelivery attempts, starting with 250 milli-
seconds and ending with 4 seconds.

 The following snippets show what happens at the end when the error handler is
exhausted.

2009-12-16 17:03:44,534 [a://queue.inbox] INFO DeadLetterChannel
- Failed delivery for exchangeId: e80ed4ba-12b3-472c-9b35-31beed4ff51b.
On delivery attempt: 5 caught: camelinaction.OrderException: ActiveMQ in
Action is out of stock

2009-12-16 17:03:44,541 [a://queue.inbox] INFO DLC
- Exchange[BodyType:String, Body:amount=1,name=ActiveMQ in
Action,id=123]

2009-12-16 17:03:44,542 [a://queue.inbox] ERROR DeadLetterChannel
- Failed delivery for exchangeId: e80ed4ba-12b3-472c-9b35-31beed4ff51b.
Exhausted after delivery attempt: 6 caught:
camelinaction.OrderException: ActiveMQ in Action is out of stock.
Processed by failure processor: sendTo(Endpoint[log://DLC])

As you can see, the Dead Letter Channel moves the message to its dead letter queue,
which is the log://DLC endpoint. After this, Camel also logs an ERROR line indicating
that this move was performed.

 We encourage you to try this example and adjust the configuration settings on the
error handlers to see what happens.

 So far, the error-handling examples we’ve looked at have used the Java DSL. Let’s
take a look at configuring error handling with Spring XML.

USING ERROR HANDLING WITH SPRING XML

Let’s revise the example in listing 5.1 to use Spring XML. Here’s how that’s done.

<bean id="orderService" class="camelinaction.OrderService"/>

<camelContext id="camel" errorHandlerRef="defaultEH"
 xmlns="http://camel.apache.org/schema/spring">

<errorHandler id="defaultEH">
 <redeliveryPolicy maximumRedeliveries="2" redeliveryDelay="1000"
 retryAttemptedLogLevel="WARN"/>
</errorHandler>

<errorHandler id="dlc"
 type="DeadLetterChannel" deadLetterUri="log:DLC">
 <redeliveryPolicy maximumRedeliveries="5" redeliveryDelay="250"
 retryAttemptedLogLevel="INFO"
 backOffMultiplier="2" useExponentialBackOff="true"/>
</errorHandler>

Listing 5.2 Using error handling with Spring XML

Specifies
context-scoped
error handler

B

Sets up route-scoped
error handler

D Sets up context-
scoped error

handler C

 www.it-ebooks.info

http://www.it-ebooks.info/

137Using error handlers with redelivery

<route>
 <from uri="file://target/orders?delay=10000"/>
 <bean ref="orderService" method="toCsv"/>
 <to uri="mock:file"/>
 <to uri="seda:queue.inbox"/>
</route>

<route errorHandlerRef="dlc">
 <from uri="seda:queue.inbox"/>
 <bean ref="orderService" method="validate"/>
 <bean ref="orderService" method="enrich"/>
 <to uri="mock:queue.order"/>
</route>

</camelContext>

To use a context-scoped error handler in Spring XML, you must configure it using
an errorHandlerRef attribute B on the camelContext tag. The errorHandlerRef
refers to an <errorHandler>, which in this case is the default error handler with id
"defaultEH" C. There’s another error handler, a DeadLetterChannel error han-
dler D, that is used at route scope in the second route E.

 As you can see, the differences between the Java DSL and Spring XML mostly result
from using the errorHandlerRef attribute to reference the error handlers in Spring
XML, whereas Java DSL can have route-scoped error handlers within the routes.

 You can try this example by running the following Maven goal from the chapter5/
errorhandler directory:

mvn test -Dtest=SpringRouteScopeTest

The Spring XML file is located in the src/test/resources/camelinaction directory.
 This concludes our discussion of scopes and redelivery. We’ll now look at how you

can use Camel error handlers to handle faults.

5.3.4 Handling faults

In the introduction to section 5.2, we mentioned that by default the Camel error han-
dlers will only react to exceptions. Because a fault isn’t represented as an exception
but as a message that has the fault flag enabled, faults will not be recognized and han-
dled by Camel error handlers.

 There may be times when you want the Camel error handlers handle faults as
well. Suppose a Camel route invokes a remote web service that returns a fault mes-
sage, and you want this fault message to be treated like an exception and moved to a
dead letter queue.

 We’ve implemented this scenario as a unit test, simulating the remote web service
using a bean:

errorHandler(deadLetterChannel("mock:dead"));

from("seda:queue.inbox")
 .beanRef("orderService", "toSoap")
 .to("mock:queue.order");

Specifies route-scoped
error handler

E

 www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 5 Error handling

Now, imagine that the orderService bean returns the following SOAP fault:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:Envelope xmlns:ns2="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns3="http://www.w3.org/2003/05/soap-envelope">
 <ns2:Body>
 <ns2:Fault>
 <faultcode>ns3:Receiver</faultcode>
 <faultstring>ActiveMQ in Action is out of stock</faultstring>
 </ns2:Fault>
 </ns2:Body>
</ns2:Envelope>

Under normal situations, the Camel error handler won’t react when the SOAP fault
occurs. To make it do so, you have to instruct Camel by enabling fault handling.

 To enable fault handling on the CamelContext (context scope), you simply do this:

getContext().setHandleFault(true);

To enable it on a per route basis (route scope), do this:

from("seda:queue.inbox").handleFault()
 .beanRef("orderService", "toSoap")
 .to("mock:queue.order");

Once fault handling is enabled, the Camel errors handlers will recognize the SOAP
faults and react. Under the hood, the SOAP fault is converted into an Exception with
the help of an interceptor.

 You can enable fault handling in Spring XML as follows:

<route handleFault="true">
 <from uri="seda:queue.inbox"/>
 <bean ref="orderService" method="toSoap"/>
 <to uri="mock:queue.order"/>
</route>

The source code for the book contains this example in the chapter5/errorhandler
directory, which you can try using the following Maven goals:

mvn test -Dtest=HandleFaultTest
mvn test -Dtest=SpringHandleFaultTest

TIP You can enable fault handling to let Camel error handlers react to faults
returned from components such as CXF, SOAP, JBI, or NMR.

We’ll continue in the next section to look at the other two major features that error
handlers provide, as listed in table 5.2: exception policies and error handling.

5.4 Using exception policies
Exception policies are used to intercept and handle specific exceptions in particular
ways. For example, exception policies can influence, at runtime, the redelivery poli-
cies the error handler is using. They can also handle an exception or even detour
a message.

 www.it-ebooks.info

http://www.it-ebooks.info/

139Using exception policies

NOTE In Camel, exception policies are specified with the onException
method in the route, so we’ll use the term onException interchangeably with
“exception policy.”

We’ll cover exception policies piece by piece, looking at how they catch exceptions,
how they works with redelivery, and how they handle exceptions. Then we’ll take a
look at custom error handling and put it all to work in an example.

5.4.1 Understanding how onException catches exceptions

We’ll start by looking at how Camel inspects the exception hierarchy to determine
how to handle the error. This will give you a better understanding of how you can use
onException to your advantage.

 Imagine you have this exception hierarchy being thrown:

org.apache.camel.RuntimeCamelException (wrapper by Camel)
+ com.mycompany.OrderFailedException
 + java.net.ConnectException

The real cause is a ConnectException, but it’s wrapped in an OrderFailedException
and yet again in a RuntimeCamelException.

 Camel will traverse the hierarchy from the bottom up to the root searching for an
onException that matches the exception. In this case, Camel will start with
java.net.ConnectException, move on to com.mycompany.OrderFailedException,
and finally reach RuntimeCamelException. For each of those three exceptions, Camel
will compare the exception to the defined onExceptions to select the best matching
onException policy. If no suitable policy can be found, Camel relies on the configured
error handler settings. We’ll drill down and look at how the matching works, but for
now you can think of this as Camel doing a big instanceof check against the exceptions
in the hierarchies, following the order in which the onExceptions were defined.

 Suppose you have a route with the following onException:

onException(OrderFailedException.class).maximumRedeliveries(3);

The aforementioned ConnectException is being thrown, and the Camel error han-
dler is trying to handle this exception. Because you have an exception policy defined,
it will check whether the policy matches the thrown exception or not. The matching is
done as follows:

1 Camel starts with the java.net.ConnectException and compares it to onExcep-
tion(OrderFailedException.class). Camel checks whether the two excep-
tions are exactly the same type, and in this case they’re not—Connection-
Exception and OrderFailedException aren’t the same type.

2 Camel checks whether ConnectException is a subclass of OrderFailedExcep-
tion, and this isn’t true either. So far, Camel has not found a match.

3 Camel moves up the exception hierarchy and compares again with Order-
FailedException. This time there is an exact match, because they’re both of
the type OrderFailedException.

 www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 5 Error handling

No more matching takes place—Camel got an exact match, and the exception policy
will be used.

 When an exception policy has been selected, its configured policy will be used by
the error handler. In this example, the policy defines the maximum redeliveries to
be 3, so the error handler will attempt at most 3 redeliveries when this kind of excep-
tion is thrown.

 Any value configured on the exception policy will override options configured on
the error handler. For example, suppose the error handler had the maximumRedeliv-
eries option configured as 5. Because the onException has the same option config-
ured, its value of 3 will be used instead.

NOTE The book’s source code has an example that demonstrates what you’ve
just learned. Take a look at the OnExceptionTest class in chapter5/onexcep-
tion. It has multiple test methods, each showing a scenario of how onExcep-
tion works.

Let’s make the example a bit more interesting and add a second onException definition:

onException(OrderFailedException.class).maximumRedeliveries(3);
onException(ConnectException.class).maximumRedeliveries(10);

If the same exception hierarchy is thrown as in the previous example, Camel would
select the second onException because it directly matches the ConnectionException.
This allows you to define different strategies for different kinds of exceptions. In this
example, it is configured to use more redelivery attempts for connection exceptions
than for order failures.

TIP This example demonstrates how onException can influence the redeliv-
ery polices the error handler uses. If an error handler was configured to per-
form only 2 redelivery attempts, the preceding onException would overload
this with 10 redelivery attempts in the case of connection exceptions.

But what if there are no direct matches? Let’s look at another example. This time,
imagine that a java.io.IOException exception was thrown. Camel will do its match-
ing, and because OrderFailedException isn’t a direct match, and IOException isn’t a
subclass of it, it’s out of the game. The same applies for the ConnectException. In this
case, there are no onException definitions that match, and Camel will fall back to
using the configuration of the current error handler.

 You can see this in action by running the following Maven goal from chapter 5/
onexception directory:

mvn test -Dtest=OnExceptionFallbackTest

ONEXCEPTION AND GAP DETECTION

Can Camel do better if there isn’t a direct hit? Yes, it can, because Camel uses a gap-
detection mechanism that calculates the gaps between a thrown exception and the
onExceptions and then selects the onException with the lowest gap as the winner.
This may sound confusing, so let’s look at an example.

 www.it-ebooks.info

http://www.it-ebooks.info/

141Using exception policies

 Suppose you have these three onException definitions, each having a different
redelivery policy:

onException(ConnectException.class)
 .maximumRedeliveries(5);
onException(IOException.class)
 .maximumRedeliveries(3).redeliveryDelay(1000);
onException(Exception.class)
 .maximumRedeliveries(1).redeliveryDelay(5000);

And imagine this exception is thrown:

org.apache.camel.OrderFailedException
+ java.io.FileNotFoundException

Which of those three onExceptions would be selected?
 Camel starts with the java.io.FileNotFoundException and compares it to the

onException definitions. Because there are no direct matches, Camel uses gap detec-
tion. In this example, only onException(IOException.class) and onExcep-
tion(Exception.class) partly match, because java.io.FileNotFoundException is a
subclass of java.io.IOException and java.lang.Exception.

 Here’s the exception hierarchy for FileNotFoundException:

java.lang.Exception
+ java.io.IOException
 + java.io.FileNotFoundException

Looking at this exception hierarchy, you can see that java.io.FileNotFoundExcep-
tion is a direct subclass of java.io.Exception, so the gap is computed as 1. The gap
between java.lang.Exception and java.io.FileNotFoundException is 2. At this
point, the best candidate has a gap of 1.

 Camel will then go the same process with the next exception from the thrown
exception hierarchy, which is OrderFailedException. This time, it’s only the onEx-
ception(Exception.class) that partly matches, and the gap between OrderFailed-
Exception and Exception is also 1:

java.lang.Exception
+ OrderNotFoundException

So what now? You have two gaps, both calculated as 1. In the case of a tie, Camel will
always pick the first match, because the cause exception is most likely the last in the
hierarchy. In this case, it’s a FileNotFoundException, so the winner will be onExcep-
tion(IOException.class).

 This example is provided in the source code for the book in the chapter5/onex-
ception directory. You can try it using the following Maven goal:

mvn test -Dtest=OnExceptionGapTest

Gap detection allows you to define coarse-grained policies and also to have a few fine-
grained policies that overrule the coarse-grained ones. Does this sound familiar? Yes,
it’s related to the scoping that we covered in section 5.3.

 www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 5 Error handling

MULTIPLE EXCEPTIONS PER ONEXCEPTION

So far, you’ve only seen examples with one exception per onException, but you can
define multiple exceptions in the same onException:

onException(XPathException.class, TransformerException.class)
 .to("log:xml?level=WARN");

onException(IOException.class, SQLException.class, JMSException.class)
 .maximumRedeliveries(5).redeliveryDelay(3000);

Here’s the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <onException>
 <exception>javax.xml.xpath.XPathException</exception>
 <exception>javax.xml.transform.TransformerException</exception>
 <to uri="log:xml?level=WARN"/>
 </onException>

 <onException>
 <exception>java.io.IOException</exception>
 <exception>java.sql.SQLException</exception>
 <exception>javax.jms.JmsException</exception>
 <redeliverPolicy maximumRedeliveries="5" redeliveryDelay="3000"/>
 </onException>
</camelContext>

Our next topic is how onException works with redelivery. Even though we’ve touched
on this already in our examples, we’ll go into the details in the next section.

5.4.2 Understanding how onException works with redelivery

onException works with redeliveries, but there are a couple of things you need to be
aware of that might not be immediately obvious.

 Suppose you have the following route:

from("jetty:http://0.0.0.0/orderservice")
 .to("mina:tcp://erp.rider.com:4444?textline=true")
 .beanRef("orderBean", "prepareReply");

You use the Camel Jetty component to expose an HTTP service where statuses of pend-
ing orders can be queried. The order status information is retrieved from a remote
ERP system by the MINA component using low-level socket communication. You’ve
learned how to configure this on the error handler itself, but it’s also possible to con-
figure this on the onException.

 Suppose you want Camel to retry invoking the external TCP service, in case there
has been an IO-related error, such as a lost network connection. To do this, you can
simply add the onException and configure the redelivery policy as you like. In the fol-
lowing example, the redelivery tries at most 5 times:

onException(IOException.class).maximumRedeliveries(5);

You’ve already learned that onException(IOException.class) will catch those IO-
related exceptions and act accordingly. But what about the delay between redeliveries?

 www.it-ebooks.info

http://www.it-ebooks.info/

143Using exception policies

 In this example, the delay will be 1 second. Camel will use the default redelivery
policy settings outlined in table 5.3 and then override those values with values defined
in the onException. Because the delay was not overridden in the onException, the
default value of 1 second is used.

TIP When you configure redelivery policies, they override the existing rede-
livery policies set in the current error handler. This is convention over config-
uration, because you only need to configure the differences, which is often
just the number of redelivery attempts or a different redelivery delay.

Now let’s make it a bit more complicated:

errorHandler(defaultErrorHandler().maximumRedeliveries(3).delay(3000));

onException(IOException.class).maximumRedeliveries(5);

from("jetty:http://0.0.0.0/orderservice")
 .to("mina:tcp://erp.rider.com:4444?textline=true")
 .beanRef("orderBean", "prepareReply");

What would the redelivery delay be if an IOException were thrown? Yes, it’s 3 seconds,
because onException will fall back and use the redelivery policies defined by the error
handler, and its value is configured as delay(3000).

 Now let’s remove the maximumRedeliveries(5) option from the onException, so
it’s defined as onException(IOException.class):

errorHandler(defaultErrorHandler().maximumRedeliveries(3).delay(3000));

onException(IOException.class);

from("jetty:http://0.0.0.0/orderservice")
 .to("mina:tcp://erp.rider.com:4444?textline=true")
 .beanRef("orderBean", "prepareReply");

What would the redelivery delay be now, if an IOException were thrown? I am sure
you’ll say the answer is 3—the value defined on the error handler. In this case,
though, the answer is 0. Camel won’t attempt to do any redelivery because any onEx-
ception will override the maximumRedeliveries to 0 by default (redelivery is disabled
by default) unless you explicitly set the maximumRedeliveries option.

 The reason why Camel implements this behavior is our next topic: using onExcep-
tion to handle exceptions.

5.4.3 Understanding how onException can handle exceptions

Suppose you have a complex route that processes a message in multiple steps. Each
step does some work on the message, but any step can throw an exception to indicate
that the message can’t be processed and that it should be discarded. This is where
handling exceptions with onException comes into the game.

 Handling an exception with onException is similar to exception handling in Java
itself. You can think of it as being like using a try ... catch block.

 www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 5 Error handling

 This is best illustrated with an example. Imagine you need to implement an ERP
server-side service that serves order statuses. This is the ERP service you called from
the previous section:

public void configure() {
 try {
 from("mina:tcp://0.0.0.0:4444?textline=true")
 .process(new ValidateOrderId())
 .to("jms:queue:order.status")
 .process(new GenerateResponse());
 } catch (JmsException e) {
 .process(new GenerateFailureResponse());
 }
}

This snippet of pseudocode involves multiple steps in generating the response. If
something goes wrong, you catch the exception and return a failure response B.

 We call this pseudocode because it shows your intention but the code won’t compile.
This is because the Java DSL uses the fluent builder syntax, where method calls are
stacked together to define the route. The regular try ... catch mechanism in Java
works at runtime to catch exceptions that are thrown when the configure() method is
executed, but in this case the configure() method is only invoked once, when Camel
is started (when it initializes and builds up the route path to use at runtime).

 Don’t despair. Camel has a counterpart to the classic try ... catch ... finally
block in its DSL: doTry ... doCatch ... doFinally.

USING DOTRY, DOCATCH, AND DOFINALLY

Listing 5.3 shows how you can make the code compile and work at runtime as you
would expect with a try ... catch block.

public void configure() {
 from("mina:tcp://0.0.0.0:4444?textline=true")
 .doTry()
 .process(new ValidateOrderId())
 .to("jms:queue:order.status")
 .process(new GenerateResponse());
 .doCatch(JmsException.class)
 .process(new GenerateFailureResponse())
 .end();
}

The doTry ... doCatch block was a bit of a sidetrack, but it’s useful because it helps
bridge the gap between thinking in regular Java code and thinking in EIPs.

USING ONEXCEPTION TO HANDLE EXCEPTIONS

The doTry ... doCatch block has one limitation—it’s only route scoped. The blocks
only work in the route in which they’re defined. OnException, on the other hand,
works in both context and route scopes, so you can try revising listing 5.3 using onEx-
ception. This is illustrated in listing 5.4.

Listing 5.3 Using doTry ... doCatch with Camel routing

Rethrows caught
exception

B

 www.it-ebooks.info

http://www.it-ebooks.info/

145Using exception policies

onException(JmsException.class)
 .handled(true)
 .process(new GenerateFailueResponse());

from("mina:tcp://0.0.0.0:4444?textline=true")
 .process(new ValidateOrderId())
 .to("jms:queue:order.status")
 .process(new GenerateResponse());

A difference between doCatch and onException is that doCatch will handle the excep-
tion, whereas onException will, by default, not handle it. That’s why you use han-
dled(true) B to instruct Camel to handle this exception. As a result, when a
JmsException is thrown, the application acts as if the exception were caught in a
catch block using the regular Java try ... catch mechanism.

 In listing 5.4, you should also notice how the concerns are separated and the normal
route path is laid out nicely and simply; it isn’t mixed up with the exception handling.

 Imagine that a message arrives on the TCP endpoint, and the Camel application
routes the message. The message passes the validate processor and is about to be sent
to the JMS queue, but this operation fails and a JmsException is thrown. Figure 5.5 is a
sequence diagram showing the steps that take place inside Camel in such a situation.
It shows how onException is triggered to handle the exception.

 Figure 5.5 shows how the JmsProducer throws the JmsException to the Channel,
which is where the error handler lives. The route has an OnException defined that reacts
when a JmsException is thrown, and it processes the message. The GenerateFailure-
Response processor generates a custom failure message that is supposed to be returned

Listing 5.4 Using onException in context scope

Handles all
JmsExceptionsB

JmsProducerValidate
Processor Channel OnException

Generate
FailureResponse

JmsException

Process
Process

onException(JmsException.class)
Process

Handled and break out

Break out

Return

Exception
thrown

Figure 5.5 Sequence diagram of a message being routed and a JmsException being thrown from the
JmsProducer, which is handled by the onException. OnException generates a failure that is to
be returned to the caller.

 www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 5 Error handling

to the caller. Because the OnException was configured to handle exceptions—
handled(true)—Camel will break out from continuing the routing and will return the
failure message to the initial consumer, which in turn returns the custom reply message.

NOTE OnException doesn’t handle exceptions by default, so listing 5.4 uses han-
dled(true) to indicate that onException should handle the exception. This is
important to remember, because it must be specified when you want to handle the
exception. Handling an exception will not continue routing from the point where
the exception was thrown. Camel will break out of the route and continue routing
on the onException. If you want to ignore the exception and continue routing,
you must use continued(true), which will be discussed in section 5.4.5.

Before we move on, let’s take a minute to look at the example from listing 5.4 revised
to use Spring XML. The syntax is a bit different, as you can see:

<camelContext xmlns="http://camel.apache.org/schemas/spring">

 <onException>
 <exception>javax.jms.JmsException</exception>
 <handled><constant>true</constant></handled>
 <process ref="failureResponse"/>
 </onException>

 <route>
 <from uri="mina:tcp://0.0.0.0:4444?textline=true"/>
 <process ref="validateOrder"/>
 <to uri="jms:queue:order.status"/>
 <process ref="generateResponse"/>
 </route>

</camelContext>

<bean id="failureResponse"
 class="camelinaction.FailureResponseProcessor"/>

<bean id="validateOrder" class="camelinaction.ValidateProcessor"/>

<bean id="generateResponse" class="camelinaction.ResponseProcessor"/>

Notice how onException is set up—you must define the exceptions in the exception
tag. Also, handled(true) B is a bit longer because you must enclose it in the <con-
stant> expression. There are no other noteworthy differences in the rest of the route.

 Listing 5.5 uses a custom processor to generate a failure response C. Let’s take a
closer look at that.

5.4.4 Custom exception handling

Suppose you want to return a custom failure message, as in listing 5.5, that indicates
not only what the problem was but that also includes details from the current Camel
Message. How can you do that?

 Listing 5.5 laid out how to do this using onException. Listing 5.6 shows how the
failure Processor could be implemented.

Listing 5.5 Spring XML revision of listing 5.4

Handles all
JmsExceptionsB

Processor generates
failure response

C

 www.it-ebooks.info

http://www.it-ebooks.info/

147Using exception policies

public class FailureResponseProcessor implements Processor {

 public void process(Exchange exchange) throws Exception {
 String body = exchange.getIn().getBody(String.class);
 Exception e = exchange.getProperty(Exchange.EXCEPTION_CAUGHT,
 Exception.class);

 StringBuilder sb = new StringBuilder();
 sb.append("ERROR: ");
 sb.append(e.getMessage());
 sb.append("\nBODY: ");
 sb.append(body);

 exchange.getIn().setBody(sb.toString());
 }
}

First, you grab the information you need: the message body and the exception B. It
may seem a bit odd that you get the exception as a property and not using
exchange.getException(). You do that because you’ve marked onException to han-
dle the exception; this was done at B in listing 5.5. When you do that, Camel moves the
exception from the Exchange to the Exchange.EXCEPTION_CAUGHT property. The rest of
the processor builds the custom failure message that’s to be returned to the caller.

 You may wonder whether there are other properties Camel sets during error han-
dling, and there are. They’re listed in table 5.5. But from an end-user perspective, it’s
only the first two properties in table 5.5 that matter. The other two properties are used
internally by Camel in its error-handling and routing engine.

 One example of when the FAILURE_ENDPOINT property comes in handy is when
you route messages through the Recipient List EIP, which sends a copy of the message
to a dynamic number of endpoints. Without this information, you wouldn’t know pre-
cisely which of those endpoints failed.

It’s worth noting that in listing 5.6 you use a Camel Processor, which forces you to
depend on the Camel API. You can use a bean instead, as follows:

Listing 5.6 Using a processor to create a failure response to be returned to the caller

Table 5.5 Properties on the Exchange related to error handling

Property Type Description

Exchange.EXCEPTION_
CAUGHT

Exception The exception that was caught.

Exchange.FAILURE_
ENDPOINT

String The URL of the endpoint that failed if a failure occurred
when sending to an endpoint. If the failure did not occur
while sending to an endpoint, this property is null.

Exchange.ERRORHANDLER_
HANDLED

Boolean Whether or not the error handler handled the
exception.

Exchange.FAILURE_
HANDLED

Boolean Whether or not onException handled the excep-
tion. Or true if the Exchange was moved to a
dead letter queue.

Gets the
exceptionB

 www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 5 Error handling

public class FailureResponseBean {

 public String failMessage(String body, Exception e) {
 StringBuilder sb = new StringBuilder();
 sb.append("ERROR: ");
 sb.append(e.getMessage());
 sb.append("\nBODY: ");
 sb.append(body);
 return sb.toString();
 }
}

As you can see, you can use Camel’s parameter binding B to declare the parameter
types you want to use. The first parameter is the message body, and the second is the
exception.

 There will be situations where you’ll want to simply ignore the exception and con-
tinue routing.

5.4.5 Ignoring exceptions
In section 5.4.3 we learned about how onException can handle exceptions. Han-
dling an exception means that Camel will break out of the route. But there are times
when all you want is to catch the exception and continue routing. This is possible to
do in Camel using continued. All you have to do is to use continued(true) instead
of handled(true).

 Suppose we want to ignore any ValidationException which may be thrown in the
route, laid out in listing 5.4. Listing 5.7 shows how we can do this.

onException(JmsException.class)
 .handled(true)
 .process(new GenerateFailueResponse());

onException(ValidationException.class)
 .continued(true);

from("mina:tcp://0.0.0.0:4444?textline=true")
 .process(new ValidateOrderId())
 .to("jms:queue:order.status")
 .process(new GenerateResponse());

As you can see, all you have to do is add another onException that leverages contin-
ued(true) B.

NOTE You can’t use both handled and continued on the same onException;
continued automatically implies handled.

Now imagine that a message once again arrives on the TCP endpoint, and the Camel
application routes the message. But this time the validate processor throws a Valida-
tionException. This situation is illustrated in figure 5.6.

 When the ValidateProcessor throws the ValidationException, it’s propagated
back to the Channel, which lets the error handler kick in. The route has an onException
defined that instructs the Channel to continue routing the message—continued(true).

Listing 5.7 Using continued to ignore ValidationExceptions

Exception
provided as
parameterB

Ignores all
ValidationExceptions

B

 www.it-ebooks.info

http://www.it-ebooks.info/

149Using exception policies

When the message arrives at the next Channel, it’s as if the exception were not thrown.
This is much different from what you saw in section 5.4.3 when using handled(true),
which causes the processing to break out and not continue routing.

 You’ve learned a bunch of new stuff, so let’s continue with the error handler exam-
ple and put your knowledge into practice.

5.4.6 Implementing an error handler solution

Suppose your boss brings you a new problem. This time, the remote HTTP server used
for uploading files is unreliable, and he wants you to implement a secondary failover
to transfer the files by FTP to a remote FTP server.

 You have been studying Camel in Action, and you’ve learned that Camel has exten-
sive support for error handling and that you could leverage onException to provide
this kind of feature. With great confidence, you fire up the editor and alter the route
as shown in listing 5.8.

errorHandler(defaultErrorHandler()
 .maximumRedeliveries(5).redeliveryDelay(10000));

onException(IOException.class).maximumRedeliveries(3)
 .handled(true)
 .to("ftp://gear@ftp.rider.com?password=secret");

from("file:/rider/files/upload?delay=3600000")
 .to("http://rider.com?user=gear&password=secret");

This listing adds an onException B to the route, telling Camel that in the case of an
IOException, it should try redelivering up to 3 times using a 10-second delay. If there
is still an error after the redelivery attempts, Camel will handle the exception and

Listing 5.8 Route using error handling with failover to FTP

ValidateProcessorMinaConsumer Channel OnException

ValidationException

Process
Process

onException(ValidationException.class)

Continued

Channel

Process

Exception
thrown

Figure 5.6 Sequence diagram of a message being routed and a ValidationException being thrown
from the ValidateProcessor. The exception is handled and continued by the onException policy,
causing the message to continue being routed as if the exception were not thrown.

Exception
policy

B

 www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 5 Error handling

reroute the message to the FTP endpoint instead. The power and flexibility of the
Camel routing engine shines here. The onException is just another route, and Camel
will continue on this route instead of the original route.

NOTE In listing 5.8, it’s only when onException is exhausted that it will
reroute the message to the FTP endpoint B. The onException has been con-
figured to redeliver up till 3 times before giving up and being exhausted.

The book’s source code contains this example in the chapter5/usecase directory, and
you can try it out yourself. The example contains a server and a client that you can
start using Maven:

mvn exec:java -PServer
mvn exec:java -PClient

Both the server and client output instructions on the console about what to do next,
such as copying a file to the target/rider folder to get the ball rolling.

 Before we finish up this chapter, we must take a look at a few more error-handling
features. They’re used rarely, but they provide power in situations where you need
more fine-grained control.

5.5 Other error-handling features
We’ll end this chapter by looking at some of the other features Camel provides for
error handling:

■ onWhen—Allows you to dictate when an exception policy is in use
■ onRedeliver—Allows you to execute some code before the message is

redelivered
■ retryWhile—Allows you, at runtime, to determine whether or not to continue

redelivery or to give up

We’ll look at each in turn.

5.5.1 Using onWhen
The onWhen predicate filter allows more fine-grained control over when an onExcep-
tion should be triggered.

 Suppose a new problem has emerged with your application in listing 5.8. This time
the HTTP service rejects the data and returns an HTTP 500 response with the constant
text “ILLEGAL DATA”. Your boss wants you to handle this by moving the file to a spe-
cial folder where it can be manually inspected to see why it was rejected.

 First, you need to determine when an HTTP error 500 occurs and whether it con-
tains the text “ILLEGAL DATA”. You decide to create a Java method that can test this, as
shown in listing 5.9.

public final class MyHttpUtil {

 public static boolean isIllegalDataError(
 HttpOperationFailedException cause) {

Listing 5.9 A helper to determine whether an HTTP error 500 occurred

 www.it-ebooks.info

http://www.it-ebooks.info/

151Other error-handling features

 int code = cause.getStatusCode();
 if (code != 500) {
 return false;
 }
 return "ILLEGAL DATA".equals(cause.getResponseBody().toString());
 }
}

When the HTTP operation isn’t successful, the Camel HTTP component will throw
an org.apache.camel.component.http.HttpOperationFailedException exception,
containing information why it failed. The getStatusCode() method on HttpOpera-
tionFailedException B, returns the HTTP status code. This allows you to determine
if it’s an HTTP error code 500 with the “ILLEGAL DATA” body text.

 Next, you need to use the utility class from listing 5.9 in your existing route from
listing 5.8. But first you add the onException to handle the HttpOperationFailed-
Exception and detour the message to the illegal folder:

onException(HttpOperationFailedException.class)
 .handled(true)
 .to("file:/rider/files/illegal");

Now, whenever an HttpOperationFailedException is thrown, Camel moves the mes-
sage to the illegal folder.

 It would be better if you had more fine-grained control over when this onException
triggers. How could you incorporate your code from listing 5.9 with the onException?

 I am sure you have guessed where we’re going—yes, you can use the onWhen predicate.
All you need to do is insert the onWhen into the onException, as shown here:

onException(HttpOperationFailedException.class)
 .onWhen(bean(MyHttpUtil.class, "isIllegalData"))
 .handled(true)
 .to("file:/acme/files/illegal");

Camel adapts to your POJO classes and uses them as is, thanks to the power of Camel’s
parameter binding, which we covered in the previous chapter. This is a powerful way
to develop your application without being tied to the Camel API. onWhen is a general
function that also exists in other Camel features, such as interceptors and onComple-
tion, so you can use this technique in various situations.

 Next, let’s look at onRedeliver, which allows fine-grained control when a redeliv-
ery is about to occur.

5.5.2 Using onRedeliver

The purpose of onRedeliver is to allow some code to be executed before a redelivery
is performed. This gives you the power to do custom processing on the Exchange
before Camel makes a redelivery attempt. You can, for instance, use it to add custom
headers to indicate to the receiver that this is a redelivery attempt. OnRedeliver uses
an org.apache.camel.Processor, in which you implement the code to be executed.

OnRedeliver can be configured on the error handler, on onException, or on both,
as follows:

Gets HTTP
status codeB

 www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 5 Error handling

errorHandler(defaultErrorHandler()
 .maximumRedeliveries(3)
 .onRedeliver(new MyOnRedeliveryProcessor());

onException(IOException.class)
 .maximumRedeliveries(5)
 .onRedeliver(new MyOtherOnRedeliveryProcessor());

OnRedeliver is also scoped, so if an onRedeliver is set on an onException, it over-
rules any onRedeliver set on the error handler.

 In Spring DSL, onRedeliver is configured as a reference to a spring bean, as follows:

<onException onRedeliveryRef="myOtherRedelivery">
 <exception>java.io.IOException</exception>
</onException>

<bean id="myOtherRedelivery"
 class="com.mycompany.MyOtherOnRedeliveryProceossor"/>

Finally, let’s look at one last feature: RetryWhile.

5.5.3 Using retryWhile
RetryWhile is used when you want fine-grained control over the number of redelivery
attempts. It’s also a predicate that’s scoped, so you can define it on the error handler
or on onException.

 You can use retryWhile to implement your own generic retry ruleset that deter-
mines how long it should retry. Listing 5.10 shows some skeleton code demonstrating
how this can be done.

public class MyRetryRuleset {

public boolean shouldRetry(
 @Header(Exchange.REDELIVERY_COUNTER) Integer counter,
 Exception causedBy) {
 ...
}

Using your own MyRetryRuleset class, you can implement your own logic determin-
ing whether it should continue retrying or not. If the method returns true, a redeliv-
ery attempt is conducted; if it returns false, it give up.

 To use your ruleset, you configure retryWhile on the onException as follows:

onException(IOException.class).retryWhile(bean(MyRetryRuletset.class));

In Spring XML you configure retryWhile as shown:

<onException>
 <exception>java.io.IOException</exception>
 <retryWhile><method ref="myRetryRuleset"/></retryWhile>
</onException>

<bean id="myRetryRuleset" class="com.mycompany.MyRetryRuleset"/>

Listing 5.10 Skeleton code to illustrate principle of using retryWhile

 www.it-ebooks.info

http://www.it-ebooks.info/

153Summary and best practices

That gives you fine-grained control over the number of redelivery attempts performed
by Camel.

 That’s it! We’ve now covered all the features Camel provides for fine-grained con-
trol over error handling.

5.6 Summary and best practices
In this chapter, you saw how recoverable and irrecoverable errors are represented in
Camel. We also looked at all the provided error handlers, focusing on the most impor-
tant of them. You saw how Camel can control how exceptions are dealt with, using rede-
livery policies to set the scene and exception policies to handle specific exceptions
differently. Finally, we looked at what Camel has to offer when it comes to fine-grained
control over error handling, putting you in control of error handling in Camel.

 Let’s revisit some of the key ideas from this chapter, which you can take away and
apply to your own Camel applications:

■ Error handling is hard. Realize from the beginning that the unexpected can
happen and that dealing with errors is hard. The challenge keeps rising when
businesses have more and more of their IT portfolio integrated and operate
it 24/7/365.

■ Error handling isn’t an afterthought. When IT systems are being integrated, they
exchange data according to agreed-upon protocols. Those protocols should
also specify how errors will be dealt with.

■ Separate routing logic from error handling. Camel allows you to separate routing
logic from error-handling logic. This avoids cluttering up your logic, which oth-
erwise could become harder to maintain. Use Camel features such as error han-
dlers, onException, and doTry ... doCatch.

■ Try to recover. Some errors are recoverable, such as connection errors. You
should apply strategies to recover from these errors.

■ Use asynchronous delayed redelivery. If the order of messages processed from con-
sumers doesn’t matter, leverage asynchronous redelivery to achieve higher
scalability.

■ Handle fault messages. If you use components such as JBI, CXF, or SOAP, which
may return fault messages, you can enable fault handling in Camel to let the
error handlers react to those faults.

■ Use monitoring tooling. Use tooling to monitor your Camel applications so it can
react and alert personnel if severe errors occur. Chapter 12 covers such strategies.

■ Build unit tests. Build unit tests that simulate errors to see if your error-handling
strategies are up to the task. Section 6.3 shows how to do this.

In the next chapter, we’ll look at a topic that can help make you a successful integra-
tion specialist, and without it, you’ll almost certainly be in trouble: testing with Camel.
We’ll also look at how you can simulate errors to test whether your error handling
strategies work as expected.

 www.it-ebooks.info

http://www.it-ebooks.info/

154

Testing with Camel

In the last chapter, we covered error handling and learned that it’s hard to handle
and cater for all difficulties that can possibly arise. To help address this problem,
you can test as many situations as possible. In this chapter, we’ll look at how to test
with Camel—not only testing your projects when everything goes well, but also
simulating errors and testing whether your error handling strategies are up to
the job.

 Testing is vital to ensuring that your integration projects are successful. JUnit has
become the standard API for unit testing, and the Camel Test Kit builds on top of
JUnit, leveraging the existing JUnit tooling. If you aren’t familiar with JUnit, you can
read about it in JUnit in Action, second edition (http://www.manning.com/tahchiev).

This chapter covers
■ Introducing and using the Camel Test Kit
■ Testing using multiple environments
■ Using mocks
■ Simulating real components
■ Simulating errors
■ Testing without mocks

 www.it-ebooks.info

http://www.manning.com/tahchiev
http://www.it-ebooks.info/

155Introducing the Camel Test Kit

 A good way to perform unit testing
on a Camel application is to start the
application, send messages to the appli-
cation, and verify that the messages are
routed as expected. This is illustrated in
figure 6.1. You send a message to the
application, which transforms the mes-
sage to another format and returns the
output. You can then verify that the output is as expected.

 This is how the Camel Test Kit is used for testing. You’ll learn to set up expecta-
tions as preconditions for your unit tests, start the tests by sending in messages, and
verify the results to determine whether the tests passed. The Mock component is
based on this principle, and we’ll cover it thoroughly. Then we’ll look at several tech-
niques for simulating errors, so you can test your error handling as well.

 Let’s get started.

6.1 Introducing the Camel Test Kit
Camel provides rich facilities for testing your projects, and it includes a test kit that
gets you writing unit tests quickly in familiar waters using the regular JUnit API. In fact,
it’s the same test kit that Camel uses for testing itself. Figure 6.2 gives a high-level over-
view of the Camel Test Kit.

Figure 6.2 boils down to three parts. The JUnit extensions are a number of classes on
top of JUnit that make unit testing with Camel much easier. We’ll cover them in the
next section. The Mock component is covered in section 6.2. And you’re already
familiar with the ProducerTemplate—it’s a convenient feature that allows you to easily
send messages to Camel when testing.

 Let’s now look at the Camel JUnit extensions and see how to use them to write
Camel unit tests.

6.1.1 The Camel JUnit extensions

So what are the Camel JUnit extensions? They are six classes in a small JAR file, camel-
test.jar, that ships with Camel. The classes are listed in table 6.1.

 Of the six classes listed in table 6.1, you’ll often only use the ones suited for unit
testing either the older JUnit 3.x or the newer JUnit 4.x version. Let’s get started using
the Camel Test Kit.

camel-test camel-core

JUnit
extensions

Mock
component

Producer
template

Figure 6.2 The Camel
Test Kit is provided in
two JAR files containing
the JUnit extensions,
Mock component, and
producer template.

Application

XXX YYY

Figure 6.1 Testing a Camel application by sending
a message to the application and then verifying the
returned output

 www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 6 Testing with Camel

6.1.2 Using the Camel Test Kit
We’ll start simply and use the following route for testing:

from("file:inbox").to("file:outbox");

This is the “Hello World” example for integration kits that moves files from one folder
to another. So how do you go about unit testing this route?

 You could do it the traditional way and write unit test code with the plain JUnit API.
This would require at least 30 lines of code, because the API for file handling in Java is
very low level, and you need a fair amount of code when working with files.

 An easier solution is to use the Camel Test Kit. In the next couple of sections, you’ll
work with the CamelTestSupport class—it’s the easiest to get started with. Then in sec-
tion 6.1.5 you’ll try the CamelSpringTestSupport class and see how you can do unit
testing based on Spring routes.

6.1.3 Unit testing with the CamelTestSupport class
In this chapter, we’ve kept the dependencies low when using the Camel Test Kit. All
you need to include is the following dependency in the Maven pom.xml file:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-test</artifactId>
 <version>2.5.0</version>
 <scope>test</scope>
</dependency>

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>

Table 6.1 Classes in the Camel Test Kit, provided in camel-test.jar

Class Description

org.apache.camel.test.
TestSupport

JUnit 3.x abstract base test class with additional asser-
tion methods.

org.apache.camel.test.
CamelTestSupport

JUnit 3.x base test class prepared for testing Camel routes.
This is the test class you should use when using JUnit 3.x.

org.apache.camel.test.
CamelSpringTestSupport

JUnit 3.x base test class prepared for testing Camel routes
defined using Spring DSL. This class extends CamelTest-
Support and has additional Spring-related methods.

org.apache.camel.test.junit4.
TestSupport

JUnit 4.x abstract base test class with additional asser-
tion methods.

org.apache.camel.test.junit4.
CamelTestSupport

JUnit 4.x base test class prepared for testing Camel routes.
This is the test class you should use when using JUnit 4.x.

org.apache.camel.test.junit4.
CamelSpringTestSupport

JUnit 4.x base test class prepared for testing Camel routes
defined using Spring DSL. This class extends CamelTest-
Support and has additional Spring-related methods.

 www.it-ebooks.info

http://www.it-ebooks.info/

157Introducing the Camel Test Kit

 <version>4.8.1</version>
 <scope>test</scope>
</dependency>

WARNING Spring 2.5 only works with JUnit 4.4 or lower. Spring 3.0 works
with higher versions of JUnit such as 4.8.1, used in the preceding code.

We won’t go into detail here on how to set up your Java editor for developing with
Camel; chapter 11 will cover this in detail. For now, you just need to know that the
Camel Test Kit lives in the camel-test-2.5.jar file and that the other JARs needed are
JUnit and camel-core, which are implied.

 Let’s try it. You want to build a unit test to test a Camel route that copies files from
one directory to another. The unit test is shown in listing 6.1.

package camelinaction;

import java.io.File;
import org.apache.camel.Exchange;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.test.junit4.CamelTestSupport;
import org.junit.Test;

public class FirstTest extends CamelTestSupport {

@Override
protected RouteBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("file://target/inbox").to("file://target/outbox");
 }
 };
}

@Test
public void testMoveFile() throws Exception {
 template.sendBodyAndHeader("file://target/inbox", "Hello World",
 Exchange.FILE_NAME, "hello.txt");

 Thread.sleep(1000);

 File target = new File("target/outbox/hello.txt");
 assertTrue("File not moved", target.exists());
}
}

The FirstTest class must extend the org.apache.camel.junit4.CamelTestSupport
class to conveniently leverage the Camel Test Kit. By overriding the createRoute-
Builder method, you can provide any route builder you wish. You use an inlined
route builder, which allows you to write the route directly within the unit test class. All
you need to do is override the configure method B and include your route.

 The test methods are regular JUnit methods, so the method must be annotated
with @Test to be included when testing. You’ll notice that the code in this method is

Listing 6.1 A first unit test using the Camel Test Kit

Defines
route to test

B

Creates
hello.txt fileC

Verifies file
is movedD

 www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 6 Testing with Camel

fairly short. Instead of using the low-level Java File API, this example leverages Camel
as a client by using ProducerTemplate to send a message to a file endpoint C, which
writes the message as a file.

 In the test, you sleep one second after dropping the file in the inbox folder; this
gives Camel a bit of time to react and route the file. By default, Camel scans twice per
second for incoming files, so you wait one second to be on the safe side. Finally you
assert that the file was moved to the outbox folder D.

 The book’s source code includes this example. You can try it on your own by run-
ning the following Maven goal from the chapter6/firsttest directory:

mvn test -Dtest=FirstTest

When you run this example, it should output the result of the test as shown here:

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

This indicates that the test completed successfully; there are no failures or errors.

TIP From Camel 2.6 onward it’s now even easier to debug Camel routes
from within the IDE. See more details at http://camel.apache.org/debugger.

IMPROVING THE UNIT TEST

The unit test in listing 6.1 could be improved in a few areas, such as ensuring that the
starting directory is empty and that the written file’s content is what you expect.

 The former is easy, because the CamelTestSupport class has a method to delete a
directory. You can do this in the setUp method:

public void setUp() throws Exception {
 deleteDirectory("target/inbox");
 deleteDirectory("target/outbox");
 super.setUp();
}

Camel can also test the written file’s content to ensure it’s what you expect. You may
remember that Camel provides a very elaborate type converter system, and that this
system goes beyond converting between simple types and literals. The Camel type sys-
tem includes file-based converters, so there is no need to fiddle with the various cum-
bersome Java IO file streams. All you need to do is ask the type converter system to
grab the file and return it to you as a String.

 Just as you had access to the template in listing 6.1, the Camel Test Kit also gives
you direct access to the CamelContext. The testMoveFile method in listing 6.1 could
have been written as follows:

@Test
public void testMoveFile() throws Exception {
 template.sendBodyAndHeader("file://target/inbox", "Hello World",
 Exchange.FILE_NAME, "hello.txt");

 File target = new File("target/outbox/hello.txt");
 assertTrue("File not moved", target.exists());

 String content = context.getTypeConverter()

 www.it-ebooks.info

http://camel.apache.org/debugger
http://www.it-ebooks.info/

159Introducing the Camel Test Kit

 .convertTo(String.class, target);
 assertEquals("Hello World", content);
}

The preceding examples cover the case where the route is defined in the unit test
class as an anonymous inner class. But what if you have a route defined in another
class? How do you go about unit testing that route instead? Let’s look at that next.

6.1.4 Unit testing an existing RouteBuilder class

It’s common to define Camel routes in separate RouteBuilder classes, as in the File-
MoveRoute class here:

package camelinaction;

import org.apache.camel.builder.RouteBuilder;

public class FileMoveRoute extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("file://target/inbox").to("file://target/outbox");
 }
}

How could you unit test this route from the FileMoveRoute class? You don’t want to
copy the code from the configure method into a JUnit class. Fortunately, it’s quite
easy to set up unit tests that use the FileMoveRoute, as you can see here:

protected RouteBuilder createRouteBuilder() throws Exception {
 return new FileMoveRoute();
}

Yes, it’s that simple! Just return a new instance of your route class.
 Now you have learned how to use CamelTestSupport for unit testing routes based

on the Java DSL. But there is also a Spring-based CamelSpringTestSupport class to be
used for Spring XML routes. The next section shows how to test using Spring XML–
based routes.

6.1.5 Unit testing with the SpringCamelTestSupport class

SpringCamelTestSupport is a base test class that’s used to unit test routes based on
Spring XML.

 We’ll look at unit testing the route in listing 6.2, which is a Spring version of the
route in listing 6.1.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://camel.apache.org/schema/spring

Listing 6.2 A Spring-based version of the route in listing 6.1 (firststep.xml)

 www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 6 Testing with Camel

 http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="file://target/inbox"/>
 <to uri="file://target/outbox"/>
 </route>
 </camelContext>

</beans>

Notice that the route is the same route defined in listing 6.1. So how can you unit test
this route? Ideally you should be able to use unit tests regardless of the language used
to define the route.

 Camel is able to handle this; the difference between using SpringCamelTestSup-
port and CamelTestSupport is just a matter of how the route is loaded. The unit test
in listing 6.3 illustrates this point.

package camelinaction;

import java.io.File;

import org.apache.camel.Exchange;
import org.apache.camel.test.junit4.CamelSpringTestSupport;
import org.junit.Test;
import org.springframework.context.support.AbstractXmlApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class SpringFirstTest extends CamelSpringTestSupport {

 protected AbstractXmlApplicationContext createApplicationContext() {
 return new ClassPathXmlApplicationContext(
 "camelinaction/firststep.xml");
 }

 @Test
 public void testMoveFile() throws Exception {
 template.sendBodyAndHeader("file://target/inbox",
 "Hello World", Exchange.FILE_NAME, "hello.txt");

 Thread.sleep(1000);

 File target = new File("target/outbox/hello.txt");
 assertTrue("File not moved", target.exists());

 String content = context.getTypeConverter()
 .convertTo(String.class, target);
 assertEquals("Hello World", content);
 }
}

You extend the CamelSpringTestSupport class so you can unit test with Spring XML–
based routes. And unlike listing 6.1, you need to use a Spring-based mechanism to
load the routes B; you use the ClassPathXmlApplicationContext, which loads your
route from the classpath. This mechanism is entirely Spring-based, so you can also use

Listing 6.3 A first unit test using Spring XML routes

Loads Spring
XML fileB

 www.it-ebooks.info

http://www.it-ebooks.info/

161Introducing the Camel Test Kit

the FileSystemXmlApplicationContext, include multiple XML files, and so on—
Camel doesn’t impose any restrictions. The testMoveFile method is exactly the same
as it was in listing 6.1, which means you can use the same unit testing code regardless
of how the route is defined.

 In real life projects, you’ll have different deployment environments, such as local,
test, preproduction, and production. In the next section, we’ll look at how you can
test the same project in those different environments with minimal effort.

6.1.6 Unit testing in multiple environments

A Camel route is often tested in different environments—you may want to test it
locally on your laptop, then later on a dedicated test platform, and so forth. But you
don’t want to rewrite tests every time you move to a new environment. That’s why you
externalize dynamic parts.

 We’ll cover two solutions for externalizing dynamic parts using property files. The
first solution is based on the Camel Properties component and the second leverages
Spring property placeholders.

USING THE CAMEL PROPERTIES COMPONENT

Camel has a Properties component to support externalizing properties defined in the
routes. The Properties component works in much the same way as Spring property
placeholders, but it has a few noteworthy improvements:

■ It is built in the camel-core JAR, which means it can be leveraged without the
need for Spring or any third-party framework.

■ It can be used in all the DSLs, such as the Java DSL, and is not limited to Spring
XML files.

■ It supports using placeholders in property files.

NOTE For more details on the Properties component, see the Camel docu-
mentation: http://camel.apache.org/properties.html.

Suppose you wanted to test the file-move unit test in two environments: production
and test. To use the Camel Properties component in Spring XML, you have to declare
it as a Spring bean with the id properties, as shown:

<bean id="properties"
 class="org.apache.camel.component.properties.PropertiesComponent">
 <property name="location" value="classpath:rider-prod.properties"/>
</bean>

In the rider-prod.properties file, you define the externalized properties as key/value
pairs:

file.inbox=rider/files/inbox
file.outbox=rider/files/outbox

The camelContext element can then take advantage of the externalized properties
directly in the endpoint URI, as shown in bold in this route:

 www.it-ebooks.info

http://camel.apache.org/properties.html
http://www.it-ebooks.info/

162 CHAPTER 6 Testing with Camel

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="{{file.inbox}}"/>
 <to uri="{{file.outbox}}"/>
 </route>
</camelContext>

You should notice that the Camel syntax for property placeholders is a bit different
than for Spring property placeholders. The Camel Properties component uses the
{{key}} syntax, whereas Spring uses ${key}.

 Instead of using a Spring bean to define the Camel Properties component, you can
use a specialized <propertyPlaceholder> within the camelContext, as follows:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <propertyPlaceholder id="properties"
 location="classpath:rider-prod.properties"/>
 <route>
 <from uri="{{file.inbox}}"/>
 <to uri="{{file.outbox}}"/>
 </route>
</camelContext>

Your next goal is to create a reusable unit test that, with minimal effort, can be config-
ured to test in either environment. Listing 6.4 shows how this can be done.

public class CamelRiderTest extends CamelSpringTestSupport {

private String inboxDir;
private String outboxDir;

@EndpointInject(uri = "file:{{file.inbox}}")
private ProducerTemplate inbox;

public void setUp() throws Exception {
 super.setUp();

 inboxDir = context.resolvePropertyPlaceholders(
 "{{file.inbox}}");
 outboxDir = context.resolvePropertyPlaceholders(
 "{{file.outbox}}");

 deleteDirectory(inboxDir);
 deleteDirectory(outboxDir);
}

@Override
protected AbstractXmlApplicationContext createApplicationContext() {
 return new ClassPathXmlApplicationContext(new String[]
 {"camelinaction/rider-camel-prod.xml",
 "camelinaction/rider-came-test.xml"});
}

@Test
public void testMoveFile() throws Exception {
 inbox.sendBodyAndHeader("Hello World",

Listing 6.4 A reusable unit test for the test and production environments

Injects
ProducerTemplate

B

C Looks up
properties used

Loads Spring
XML filesD

 www.it-ebooks.info

http://www.it-ebooks.info/

163Introducing the Camel Test Kit

 Exchange.FILE_NAME, "hello.txt");

 Thread.sleep(1000);

 File target = new File(outboxDir + "/hello.txt");
 assertTrue("File not moved", target.exists());

 String content = context.getTypeConverter()
 .convertTo(String.class, target);
 assertEquals("Hello World", content);
}
}

In the testMoveFile method, you start the unit test by creating a file in the inbox direc-
tory, and to help with that you retrieve the ProducerTemplate. Note that you use the
@EndpointInject annotation and refer to the inbox endpoint by the placeholder B.

 In the setUp method, you use the CamelContext to resolve the placeholders C,
because you’ll later need to know the actual values for file.inbox and file.outbox.

 The createApplicationContext method loads the Spring XML files. You load two
files D to minimize effort. Spring allows you to load multiple files and have the next
file override the previous file—the idea is to define the CamelContext once, in the
rider-camel-prod.xml file. Because rider-camel-test.xml is defined as the second file, it
will override identical beans from the former files. You leverage this to override the
properties bean and instruct it to load a different properties file, the rider-test.proper-
ties file.

 The rider-camel-test.xml file is short and simple:

<bean id="properties"
 class="org.apache.camel.component.properties.PropertiesComponent">
 <property name="location" value="classpath:rider-test.properties"/>
</bean>

 This way, CamelContext is only defined once. If you had the route defined in mul-
tiple files targeted for specific environments, you’d put the burden on yourself to syn-
chronize those routes if you change something in the route.

 By using this approach, you can unit test the route in different environments with
minimal effort. All you have to do is specify the files in the createApplicationCon-
text method targeted for the environment you’re testing.

 This example is included in the book’s source code in the chapter6/firsttest direc-
tory. You can try it using the following Maven goal:

mvn test -Dtest=CamelRiderTest

TIP If you’re not using Spring XML, you can still reuse Camel routes and
unit tests for multiple environments. You can use @EndpointInject in your
RouteBuilder class to dynamically inject endpoints for the environment you
wish to test.

The Camel Properties component can also be used without Spring. The following listing
sets up the Camel Properties component and uses it in a Java DSL–based route. The
setUp and testMoveFile methods are omitted because they’re the same as in listing 6.4.

 www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 6 Testing with Camel

public class CamelRiderJavaDSLProdTest extends CamelTestSupport {

 protected CamelContext createCamelContext() throws Exception {
 CamelContext context = super.createCamelContext();

 PropertiesComponent prop = context.getComponent("properties",
 PropertiesComponent.class);
 prop.setLocation("classpath:rider-prod.properties");

 return context;
 }

 protected RouteBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 public void configure() throws Exception {
 from("file:{{file.inbox}}").to("file:{{file.outbox}}");
 }
 };
 }
}

To ensure that the property placeholder is loaded and in use as early as possible, you
have to configure the PropertiesComponent when the CamelContext is created. You
can do this by overriding the createCamelContext method, which ensures the Proper-
ties component is available to the RouteBuilder when it encounters the property
placeholders in the endpoints used in the route.

 You can run try this example using the following Maven goals from the chapter6/
firsttest directory:

mvn test -Dtest=CamelRiderJavaDSLTest
mvn test -Dtest=CamelRiderJavaDSLProdTest

TIP You can use the Jasypt component to encrypt sensitive information in
the properties file. For example, you may not want to have passwords in clear
text in the properties file. You can read about the Jasypt component at the
Camel website: http://camel.apache.org/jasypt.

We’ll now cover the same example but using Spring property placeholders instead of
the Camel Properties component.

USING SPRING PROPERTY PLACEHOLDERS

The Spring Framework supports externalizing properties defined in the Spring XML
files using a feature known as Spring property placeholders. We’ll review the example
from the previous section using Spring property placeholders instead of the Camel
Properties component.

 The first thing you need to do is set up the route having the endpoint URIs exter-
nalized. This could be done as follows. Notice that Spring uses the ${key} syntax.

<context:property-placeholder properties-ref="properties"/>

<util:properties id="properties"
 location="classpath:rider-prod.properties"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>

Listing 6.5 Using the Camel Properties component with the Java DSL

 www.it-ebooks.info

http://camel.apache.org/jasypt
http://www.it-ebooks.info/

165Introducing the Camel Test Kit

 <from uri="${file.inbox}"/>
 <to uri="${file.outbox}"/>
 </route>

Unfortunately the Spring Framework doesn’t support using placeholders directly in
endpoint URIs in the route, so you must define endpoints that include those placehold-
ers by using the <endpoint> tag. The following code snippet shows how this is done:

<context:property-placeholder properties-ref="properties"/>

<util:properties id="properties"
 location="classpath:rider-prod.properties"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <endpoint id="inbox" uri="file:${file.inbox}"/>
 <endpoint id="outbox" uri="file:${file.outbox}"/>

 <route>
 <from ref="inbox"/>
 <to ref="outbox"/>
 </route>
</camelContext>

To use Spring property placeholders, you must declare the <context:property-place-
holder> tag where you refer to a properties bean B that will load the properties file
from the classpath. Note that this XML file is based on the production environment.

 In the camelContext element, you define two endpoints C that use placeholders
for dynamic file paths. The ${file.inbox} is a Spring property placeholder that
refers to a property with the key file.inbox. The same goes for ${file.outbox},
which refers to the file.outbox property.

 In the route, you must refer to these endpoints D instead of using the regular URI
notations. Notice the use of the ref attribute in the <from> and <to> tags.

 The rider-prod.properties properties file contains the following two lines:

file.inbox=rider/files/inbox
file.outbox=rider/files/outbox

This example is included in the book’s source code in the chapter6/firsttest directory.
You can try it using the following Maven goal:

mvn test -Dtest=SpringRiderTest

Loads prop-
erties from
external file

B

Defines endpoints
using property
placeholdersCRefers to

endpoints
in routeD

The Camel Properties component versus Spring property placeholders
The Camel Properties component is more powerful than the Spring property place-
holder mechanism. The latter only works when defining routes using Spring XML, and
you have to declare the endpoints in dedicated <endpoint> tags for the property
placeholders to work.

The Camel Properties component is provided out of the box, which means you can
use it without using Spring at all. And it supports the various DSL languages you can
use to define routes, such as Java, Spring XML, Groovy, and Scala. On top of that,
you can declare the placeholders anywhere in the route definitions.

 www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER 6 Testing with Camel

You have now seen the Camel Test Kit and learned to use its JUnit extension to write
your first unit tests. Camel helps a lot when working with files, but things get more
complex when you use more protocols—especially complex ones such as Java Message
Service (JMS) messaging. Testing an application that leverages many protocols has
always been challenging.

 This is why mocks were invented. By using mocks, you can simulate real compo-
nents and reduce the number of variables in your tests. Mock components are the
topic of the next section.

6.2 Using the Mock component
The Mock component is a cornerstone when testing with Camel—it makes testing
much easier. In much the same way as a car designer uses a crash test dummy to simu-
late vehicle impact on humans, the Mock component is used to simulate real compo-
nents in a controlled way.

 Mock components are useful in several situations:

■ When the real component doesn’t yet exist or isn’t reachable in the develop-
ment and test phases. For example, if you only have access to the component in
preproduction and production phases.

■ When the real component is slow or requires much effort to set up and initial-
ize, such as a database.

■ When you would have to incorporate special logic into the real component for
testing purposes, which isn’t practical or possible.

■ When the component returns nondeterministic results, such as the current
time, which would make it difficult to unit test at any given time of day.

■ When you need to simulate errors caused by network problems or faults from
the real component.

Without the Mock component, your only option would be to test using the real
component, which is usually much harder. You may already have used mocking
before; there are many frameworks out there that blend in well with testing frame-
works like JUnit.

 Camel takes testing very seriously, and the Mock component was included in the
first release of Camel. The fact that it resides in camel-core JAR indicates its impor-
tance—the Mock component is used rigorously in unit testing Camel itself.

 In this section, we’ll look at how to use the Mock component in unit tests and how
to add mocking to existing unit tests. Then we’ll spend some time on how you can
use mocks to set expectations to verify test results, as this is where the Mock compo-
nent excels.

 Let’s get started.

 www.it-ebooks.info

http://www.it-ebooks.info/

167Using the Mock component

6.2.1 Introducing the Mock component

The three basic steps of testing are illustrated in figure 6.3.

Before the test is started, you set the expectations of what should happen B. Then you
run the test C. Finally, you verify the outcome of the test against the expectations D.
The Camel Mock component allows you to easily implement these steps when testing
Camel applications. On the mock endpoints, you can set expectations that are used to
verify the test results when the test completes.

 Mock components can verify a rich variety of expectations, such as the following:

■ That the correct number of messages are received on each endpoint
■ That the messages arrive in the correct order
■ That the correct payloads are received
■ That the test ran within the expected time period

Mock components allow you to configure coarse- and fine-grained expectations and
to simulate errors such as network failures.

 Let’s get started and try using the Mock component.

6.2.2 Unit testing with the Mock component

As we look at how to use the Mock component, we’ll use the following basic route to
keep things simple:

from("jms:topic:quote").to("mock:quote");

This route will consume messages from a JMS topic, named quote, and route the mes-
sages to a mock endpoint with the name quote.

 The mock endpoint is implemented in Camel as the org.apache.camel.compo-
nent.mock.MockEndpoint class; it provides a large number of methods for setting
expectations. Table 6.2 lists the most commonly used methods on the mock endpoint.
The expectedMessageCount method is exactly what you need to set the expectation
that one message should arrive at the mock:quote endpoint. You can do this as shown
in listing 6.6.

Set expectations Run test Verify result

body == 'Hello'

header(foo) == 123

body == 'Hello'

header(foo) == 123

OK

OK

Input Output

test

B C D

Figure 6.3 Three steps for testing: set expectations, run the test, and verify the result.

 www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 6 Testing with Camel

package camelinaction;

import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.mock.MockEndpoint;
import org.apache.camel.test.junit4.CamelTestSupport;

public class FirstMockTest extends CamelTestSupport {

 @Override
 protected RouteBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("jms:topic:quote").to("mock:quote");
 }
 };
 }

 @Test
 public void testQuote() throws Exception {
 MockEndpoint quote = getMockEndpoint("mock:quote");
 quote.expectedMessageCount(1);

 template.sendBody("jms:topic:quote", "Camel rocks");

 quote.assertIsSatisfied();
 }
}

To obtain the MockEndpoint, you use the getMockEndpoint method from the Camel-
TestSupport class. Then you set your expectations—in this case, you expect one
message to arrive B. You start the test by sending a message to the JMS topic, and the
mock endpoint verifies whether the expectations were met or not by using the
assertIsSatisfied method C. If a single expectation fails, Camel throws a java.
lang. AssertionError stating the failure.

Table 6.2 Commonly used methods in the MockEndpoint class

Method Description

expectedMessageCount(int count) Specifies the expected number of messages arriving
at the endpoint

expectedMinimumMessageCount
(int count)

Specifies the expected minimum number of mes-
sages arriving on the endpoint

expectedBodiesReceived
(Object... bodies)

Specifies the expected message bodies and their
order arriving at the endpoint

expectedBodiesReceivedInAnyOrder
(Object... bodies)

Specifies the expected message bodies arriving at
the endpoint; ordering doesn’t matter

assertIsSatisfied() Validates that all expectations set on the endpoint are
satisfied

Listing 6.6 Using MockEndpoint in unit testing

Expects one
message

B

Verifies
expectations

C

 www.it-ebooks.info

http://www.it-ebooks.info/

169Using the Mock component

 You can compare what happens in listing 6.6 to what you saw in figure 6.3: you set
expectations, ran the test, and verified the results. It can’t get any simpler than that.

NOTE By default, the assertIsSatisfied method runs for 10 seconds
before timing out. You can change the wait time with the setResultWait-
Time(long timeInMillis) method if you have unit tests that run for a
long time.

REPLACING JMS WITH SEDA

Listing 6.6 uses JMS, but, for now, let’s keep things simple by simulating JMS using the
SEDA component. (We’ll look at testing JMS with ActiveMQ in section 6.4.)

NOTE For details about the SEDA component, see the Camel documentation:
http://camel.apache.org/seda.html.

You can simulate JMS by registering the SEDA component as the JMS component, like
this:

@Override
protected CamelContext createCamelContext() throws Exception {
 CamelContext context = super.createCamelContext();
 context.addComponent("jms", context.getComponent("seda"));
 return context;
}

You override the createCamelContext method and add the SEDA component as the
JMS component. By doing this, you fool Camel into using the SEDA component when
you refer to the JMS component.

 The book’s source code contains this test. You can try it by running the following
Maven goal from the chapter6/firsttest directory:

mvn test -Dtest=FirstMockTest

You may have noticed in listing 6.5 that the expectation was coarse-grained in the
sense that you just expected a message to arrive. You did not specify anything about
the message’s content or other characteristics, so you don’t know whether the mes-
sage that arrived was the same “Camel rocks” message that was sent. The next section
covers how to test this.

6.2.3 Verifying that the correct message arrived

The expectedMessageCount method can only be used to verify that a certain number
of messages arrived. It doesn’t dictate anything about the content of the message.
Let’s improve the unit test in listing 6.6 so that it expects the message being sent to
match the message that arrives at the mock endpoint.

 You can do this using the expectedBodiesReceived method, as follows:

@Test
public void testQuote() throws Exception {
 MockEndpoint mock = getMockEndpoint("mock:quote");

 www.it-ebooks.info

http://camel.apache.org/seda.html
http://www.it-ebooks.info/

170 CHAPTER 6 Testing with Camel

 mock.expectedBodiesReceived("Camel rocks");

 template.sendBody("jms:topic:quote", "Camel rocks");

 mock.assertIsSatisfied();
}

This is intuitive and easy to understand, but the method states bodies in plural as if
there could be more bodies. Camel does support expectations of multiple messages,
so you could send in two messages. Here’s a revised version of the test:

@Test
public void testQuotes() throws Exception {
 MockEndpoint mock = getMockEndpoint("mock:quote");
 mock.expectedBodiesReceived("Camel rocks", "Hello Camel");

 template.sendBody("jms:topic:quote", "Camel rocks");
 template.sendBody("jms:topic:quote", "Hello Camel");

 mock.assertIsSatisfied();
}

Camel now expects two messages to arrive in the specified order. Camel will fail the
test if the “Hello Camel” message arrives before the “Camel rocks” message.

 In cases where the order doesn’t matter, you can use the expectedBodiesReceived-
InAnyOrder method instead, like this:

mock.expectedBodiesReceivedInAnyOrder("Camel rocks", "Hello Camel");

It could hardly be any easier than that.
 But if you expect a much larger number of messages to arrive, the bodies you pass

in as an argument will be very large. How can you do that? The answer is to use a List
containing the expected bodies as a parameter:

List bodies = ...
mock.expectedBodiesReceived(bodies);

The Mock component has many other features we need to cover, so let’s continue and
see how you can use expressions to set fine-grained expectations.

6.2.4 Using expressions with mocks

Suppose you want to set an expectation that a message should contain the word
“Camel” in its content. One way of doing this is shown in listing 6.7.

@Test
public void testIsCamelMessage() throws Exception {
 MockEndpoint mock = getMockEndpoint("mock:quote");
 mock.expectedMessageCount(2);

 template.sendBody("jms:topic:quote", "Hello Camel");
 template.sendBody("jms:topic:quote", "Camel rocks");

Listing 6.7 Using expressions with MockEndpoint to set expectations

Expects 2
messagesB

 www.it-ebooks.info

http://www.it-ebooks.info/

171Using the Mock component

 assertMockEndpointsSatisfied();

 List<Exchange> list = mock.getReceivedExchanges();
 String body1 = list.get(0).getIn()
 .getBody(String.class);
 String body2 = list.get(1).getIn()
 .getBody(String.class);

 assertTrue(body1.contains("Camel"));
 assertTrue(body2.contains("Camel"));
}

First you set up your expectation that the mock:quote endpoint will receive two mes-
sages B. You then send in two messages to the JMS topic to start the test. Then you
assert that the mock received the two messages by using the assertMockEndpoints-
Satisfied method C, which is a one-stop method for asserting all mocks. This
method is more convenient to use than having to invoke the assertIsSatisfied
method on every mock endpoint you may have in use.

 At this point, you can use the getReceivedExchanges method to access all
the exchanges the mock:quote endpoint has received D. You use this method to
get hold of the two received message bodies so you can assert that they contain the
word “Camel”.

 At first you may think it a bit odd to define expectations in two places—before and
after the test has run. Is it not possible to define the expectations in one place, such as
before you run the test? Yes, of course it is, and this is where Camel expressions come
into the game.

NOTE The getReceivedExchanges method still has its merits. It allows you
to work with the exchanges directly, giving you the ability to do whatever you
want with them.

Table 6.3 lists some additional MockEndpoint methods that let you use expressions to
set expectations.

Table 6.3 Expression-based methods commonly used on MockEndpoint

Method Description

message(int index) Defines an expectation on the n’th
message received

allMessages() Defines an expectation on all messages
received

expectsAscending(Expression expression) Expects messages to arrive in ascend-
ing order

expectsDescending(Expression expression) Expects messages to arrive in descend-
ing order

expectsDuplicates(Expression expression) Expects duplicate messages

Verifies 2
messages
receivedC

D Verifies “Camel”
is in received
messages

 www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 6 Testing with Camel

You can use the message method to improve the unit test in listing 6.7 and group all
your expectations together, as shown here:

@Test
public void testIsCamelMessage() throws Exception {
 MockEndpoint mock = getMockEndpoint("mock:quote");
 mock.expectedMessageCount(2);
 mock.message(0).body().contains("Camel");
 mock.message(1).body().contains("Camel");

 template.sendBody("jms:topic:quote", "Hello Camel");
 template.sendBody("jms:topic:quote", "Camel rocks");

 assertMockEndpointsSatisfied();
}

Notice that you can use the message(int index) method to set an expectation that
the body of the message should contain the word “Camel”. Instead of doing this for
each message based on its index, you can use the allMessages() method to set the
same expectation for all messages:

mock.allMessages().body().contains("Camel");

So far you’ve only seen expectations based on the message body, but what if you want
to set an expectation based on a header? That’s easy—you use header(name), as fol-
lows:

mock.message(0).header("JMSPriority").isEqualTo(4);

You probably noticed the contains and isEqualTo methods we used in the preceding
couple of code snippets. They’re builder methods used to create predicates for expec-
tations. Table 6.4 lists all the builder methods available.

expectsNoDuplicates(Expression expression) Expects no duplicate messages

expects(Runable runable) Defines a custom expectation

Table 6.4 Builder methods for creating predicates to be used as expectations

Method Description

contains(Object value) Sets an expectation that the message body con-
tains the given value

isInstanceOf(Class type) Sets an expectation that the message body is an
instance of the given type

startsWith(Object value) Sets an expectation that the message body starts
with the given value

Table 6.3 Expression-based methods commonly used on MockEndpoint (continued)

Method Description

 www.it-ebooks.info

http://www.it-ebooks.info/

173Using the Mock component

At first it may seem odd that the methods in table 6.4 often use Object as the parame-
ter type—why not a specialized type such as String? This is because of Camel’s strong
type-converter mechanism, which allows you to compare apples to oranges—Camel
can regard both of them as fruit and evaluate them accordingly. You can compare
strings with numeric values without having to worry about type mismatches, as illus-
trated by the following two code lines:

mock.message(0).header("JMSPriority").isEqualTo(4);
mock.message(0).header("JMSPriority").isEqualTo("4");

Now suppose you want to create an expectation that all messages contain the word
“Camel” and end with a period. You could use a regular expression to set this in a sin-
gle expectation:

mock.allMessages().body().regex("^.*Camel.*\\.$");

This will work, but Camel allows you to enter multiple expectations, so instead of
using the regex method, you can create a more readable solution:

mock.allMessages().body().contains("Camel");
mock.allMessages().body().endsWith(".");

endsWith(Object value) Sets an expectation that the message body ends
with the given value

in(Object... values) Sets an expectation that the message body is
equal to any of the given values

isEqualTo(Object value) Sets an expectation that the message body is
equal to the given value

isNotEqualTo(Object value) Sets an expectation that the message body isn’t
equal to the given value

isGreaterThan(Object value) Sets an expectation that the message body is
greater than the given value

isGreaterThanOrEqual(Object value) Sets an expectation that the message body is
greater than or equal to the given value

isLessThan(Object value) Sets an expectation that the message body is less
than the given value

isLessThanOrEqual(Object value) Sets an expectation that the message body is less
than or equal to the given value

isNull(Object value) Sets an expectation that the message body is null

isNotNull(Object value) Sets an expectation that the message body isn’t
null

regex(String pattern) Sets an expectation that the message body
matches the given regular expression

Table 6.4 Builder methods for creating predicates to be used as expectations (continued)

Method Description

 www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 6 Testing with Camel

You have learned a lot about how to set expectations, including fine-grained ones
using the builder methods listed in table 6.4. Now it’s time to move on and test the
ordering of the messages received.

6.2.5 Testing the ordering of messages

Suppose you need to test that messages arrive in sequence-number order. For exam-
ple, messages arriving in the order 1, 2, 3 are accepted, whereas the order 1, 3, 2 is
invalid and the test should fail.

 The Mock component provides features to test ascending and descending orders.
For example, you can use the expectsAscending method like this:

mock.expectsAscending(header("Counter"));

The preceding expectation will test that the received messages are in ascending order,
judged by the Counter value in the message header, but it doesn’t dictate what the
starting value must be. If the first message that arrives has a value of 5, the expectation
tests whether or not the next message has a value greater than 5, and so on.

 What if you must test that the first message has a value of 1? In that case, you can
add another expectation that tests the first message, using message(0), as follows:

mock.message(0).header("Counter").isEqualTo(1);
mock.expectsAscending(header("Counter"));

Together these expectations test that messages arrive in the order 1, 2, 3, ..., but
orders such as 1, 2, 4, 5, 6, 8, 10, ... also pass the test. That’s because the expectsA-
scending and expectsDescending methods don’t detect whether there are gaps
between messages. These methods use generic comparison functions that work on any
types, not only numbers.

 To detect gaps in the sequence, you need to use a custom expression that imple-
ments gap-detection logic.

USING A CUSTOM EXPRESSION

When the provided expressions and predicates don’t cut it, you can use a custom
expression. By using a custom expression, you have the full power of Java code at your
fingertips to implement your assertions.

 Let’s look at the problem of gap detection. Camel doesn’t provide any expres-
sions for that, so you must do it with a custom expression. Listing 6.8 shows how this
can be done.

@Test
public void testGap() throws Exception {
 final MockEndpoint mock = getMockEndpoint("mock:quote");
 mock.expectedMessageCount(3);
 mock.expects(new Runnable() {
 public void run() {
 int last = 0;

Listing 6.8 Using a custom expression to detect gaps in message ordering

Custom expression
to detect gapsB

 www.it-ebooks.info

http://www.it-ebooks.info/

175Using the Mock component

 for (Exchange exchange : mock.getExchanges()) {
 int current = exchange.getIn()
 .getHeader("Counter", Integer.class);
 if (current <= last) {
 fail("Counter is not greater than last counter");
 } else if (current - last != 1) {
 fail("Gap detected: last: " + last
 + " current: " + current);
 }
 last = current;
 }
 }
 });

 template.sendBodyAndHeader("jms:topic:quote", "A", "Counter", 1);
 template.sendBodyAndHeader("jms:topic:quote", "B", "Counter", 2);
 template.sendBodyAndHeader("jms:topic:quote", "C", "Counter", 4);

 mock.assertIsNotSatisfied();
}

To set up a custom expression, you use the expects method, which allows you to pro-
vide your own logic as a Runnable B. In the Runnable, you can loop through the
exchanges received and extract the current counter header. Then you can verify
whether all the counters are incremented by one and don’t have any gaps. You can use
the JUnit fail method to fail when a gap is detected.

 To test whether this works, you send in three messages, each of which contains a
Counter. Notice that there is a gap in the sequence: 1, 2, 4. You expect this unit test to
fail, so you instruct the mock to not be satisfied using the assertIsNotSatisfied
method.

 Next, you test a positive situation where no gaps exist. To do so, you use the assert-
IsSatisfied method and send in three messages in sequence, as follows:

template.sendBodyAndHeader("seda:topic:quote", "A", "Counter", 1);
template.sendBodyAndHeader("seda:topic:quote", "B", "Counter", 2);
template.sendBodyAndHeader("seda:topic:quote", "C", "Counter", 3);

mock.assertIsSatisfied();

That’s all there is to developing and using a custom expression.
 Now let’s get back to the mock components and learn about using mocks to simu-

late real components. This is useful when the real component isn’t available or isn’t
reachable from a local or test environment.

6.2.6 Using mocks to simulate real components

Suppose you have a route like the following one, in which you expose an HTTP service
using Jetty so clients can obtain an order status:

from("jetty:http://web.rider.com/service/order")
 .process(new OrderQueryProcessor())
 .to("mina:tcp://miranda.rider.com:8123?textline=true")
 .process(new OrderResponseProcessor());

 www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 6 Testing with Camel

Clients send an HTTP GET, with the order ID as a query parameter, to the http://
web.rider.com/service/order URL. Camel will use the OrderQueryProcessor to trans-
form the message into a format that Rider Auto Parts’ mainframe (named Miranda)
understands. The message is then sent to Miranda using TCP, and Camel waits for the
reply to come back. The reply message is then processed using the OrderResponse-
Processor before it’s returned to the HTTP client.

 Now suppose you have been asked to write a unit test to verify that clients can
obtain the order status. The challenge is that you don’t have access to Miranda, which
contains the actual order status. You have been asked to simulate this server by reply-
ing with a canned response.

 Camel provides the two methods listed in table 6.5 to help simulate a real component.

You can simulate a real endpoint by mocking it with the Mock component and con-
trolling the reply using the methods in table 6.5. To do this, you need to replace the
actual endpoint in the route with the mocked endpoint, which is done by replacing it
with mock:miranda. Because you want to run the unit test locally, you also need to
change the HTTP hostname to localhost, allowing you to run the test locally on your
own laptop.

from("jetty:http://localhost:9080/service/order")
 .process(new OrderQueryProcessor())
 .to("mock:miranda")
 .process(new OrderResponseProcessor());

The unit test that leverages the preceding route follows.

public class MirandaTest extends CamelTestSupport {
 private String url = "http://localhost:9080/service/order?id=123";

 @Override
 protected RouteBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("jetty:http://localhost:9080/service/order")
 .process(new OrderQueryProcessor())
 .to("mock:miranda")
 .process(new OrderResponseProcessor());

Table 6.5 Methods to control responses when simulating a real component

Method Description

whenAnyExchangeReceived
(Processor processor)

Uses a custom processor to set a canned reply

whenExchangeReceived
(int index, Processor processor)

Uses a custom processor to set a canned reply
when the n’th message is received

Listing 6.9 Simulating a real component by using a mock endpoint

 www.it-ebooks.info

http://web.rider.com/service/order
http://web.rider.com/service/order
http://www.it-ebooks.info/

177Using the Mock component

 }
 };
 }

 @Test
 public void testMiranda() throws Exception {
 MockEndpoint mock = getMockEndpoint("mock:miranda");
 mock.expectedBodiesReceived("ID=123");
 mock.whenAnyExchangeReceived(new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getIn().setBody("ID=123,STATUS=IN PROGRESS");
 }
 });

 String out = template.requestBody(url, null, String.class);
 assertEquals("IN PROGRESS", out);

 assertMockEndpointsSatisfied();
 }

 private class OrderQueryProcessor
 implements Processor {
 public void process(Exchange exchange) throws Exception {
 String id = exchange.getIn().getHeader("id", String.class);
 exchange.getIn().setBody("ID=" + id);
 }
 }

 private class OrderResponseProcessor
 implements Processor {
 public void process(Exchange exchange) throws Exception {
 String body = exchange.getIn().getBody(String.class);
 String reply = ObjectHelper.after(body, "STATUS=");
 exchange.getIn().setBody(reply);
 }
 }
}

In the testMiranda method, you obtain the mock:miranda endpoint, which is the
mock that simulates the Miranda server, and you set an expectation that the input
message contains the body "ID=123". To return a canned reply, you use the
whenAnyExchangeReceived method B, which allows you to use a custom processor to
set the canned response. This response is set to be "ID=123,STATUS=IN PROGRESS".

 Then you start the unit test by sending a message to the http://localhost:9080/ser-
vice/order?id=123 endpoint; the message is an HTTP GET using the requestBody
method from the template instance. You then assert that the reply is "IN PROGRESS"
using the regular JUnit assertEquals method C. You use two processors (D and E)
to transform the data to and from the format that the Miranda server understands.

 You can find the code for this example in the chapter6/miranda folder of the
book’s source code, which you can try using the following Maven goal:

mvn test -Dtest=MirandaTest

You’ve now learned all about the Camel Test Kit and how to use it for unit testing with
Camel. We looked at using the Mock component to easily write tests with expectations,

Returns
canned
response

B

Verifies
expected
replyC

Transforms
to format
understood
by Miranda

D

Transforms
to response
format

E

 www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 6 Testing with Camel

run tests, and have Camel verify whether the expectations were satisfied. You also saw
how to use the Mock component to simulate a real component. You may wonder
whether there is a more cunning way to simulate a real component than by using a mock,
and there is. We’re going to look at how to simulate errors next, but the techniques
involved could also be applied to simulating a real component.

6.3 Simulating errors
In the previous chapter, you learned how to use error handling to act upon errors.
Now the question is how to test that your code works when errors happen.

 You could test for errors by unplugging network cables and swinging an axe at the
servers, but that’s a bit extreme. Instead we’ll look at how to simulate errors in unit
tests using the three different techniques listed in table 6.6.

The following three sections cover these three techniques.

6.3.1 Simulating errors using a processor

Errors are simulated in Camel by throwing exceptions, which is exactly how errors
occur in real life. For example, Java will throw an exception if it can’t connect to a
remote server. Throwing such an exception is easy—you can do that from any Java
code, such as from a Processor. That’s the topic of this section.

 To illustrate this, we’ll take the use case from the previous chapter—you’re upload-
ing reports to a remote server using HTTP, and you’re using FTP as a fallback method.
This allows you to simulate errors with HTTP connectivity.

 The route from listing 5.8 is repeated here.

errorHandler(defaultErrorHandler()
 .maximumRedeliveries(5).redeliveryDelay(10000));

onException(IOException.class).maximumRedeliveries(3)

Table 6.6 Three techniques for simulating errors

Technique Summary

Processor Using processors is easy, and they give you full control, as a developer.

This technique is covered in section 6.3.1.

Mock Using mocks is a good overall solution. Mocks are fairly easy to apply, and they provide a
wealth of other features for testing, as you saw in section 6.2.

This technique is covered in section 6.3.2.

Interceptor This is the most sophisticated technique because it allows you to use an existing route
without modifying it. Interceptors aren’t tied solely to testing; they can be used anywhere
and anytime.

We’ll cover interceptors in section 6.3.3.

Listing 6.10 Route using error handling with a failover to FTP

 www.it-ebooks.info

http://www.it-ebooks.info/

179Simulating errors

 .handled(true)
 .to("ftp://gear@ftp.rider.com?password=secret");

from("file:/rider/files/upload?delay=1h")
 .to("http://rider.com?user=gear&password=secret");

What you want to do now is simulate an error when sending a file to the HTTP service,
and you’ll expect that it will be handled by onException and uploaded using FTP
instead. This will ensure that the route is working correctly.

 Because you want to concentrate the unit test on the error-handling aspect and not
on the actual components used, you can just mock the HTTP and FTP endpoints. This
frees you from the burden of setting up HTTP and FTP servers, and leaves you with a
simpler route for testing:

errorHandler(defaultErrorHandler()
 .maximumRedeliveries(5).redeliveryDelay(1000));

onException(IOException.class).maximumRedeliveries(3)
 .handled(true)
 .to("mock:ftp");

from("direct:file")
 .to("mock:http");

This route also reduces the redelivery delay from 10 seconds to 1 second, to speed up
unit testing. Notice that the file endpoint is stubbed with a direct endpoint that allows
you to start the test by sending a message to the direct endpoint; this is much easier
than writing an actual file.

 To simulate a communication error when trying to send the file to the HTTP end-
point, you add a processor to the route that forces an error by throwing a Connect-
Exception exception:

from("direct:file")
 .process(new Processor()) {
 public void process(Exchange exchange) throws Exception {
 throw new ConnectException("Simulated connection error");
 }
 })
 .to("mock:http");

You then write a test method to simulate this connection error, as follows:

@Test
public void testSimulateConnectionError() throws Exception {
 getMockEndpoint("mock:http").expectedMessageCount(0);

 MockEndpoint ftp = getMockEndpoint("mock:ftp");
 ftp.expectedBodiesReceived("Camel rocks");

 template.sendBody("direct:file", "Camel rocks");

 assertMockEndpointsIsSatisfied();
}

You expect no messages to arrive at the HTTP endpoint because you predicted the error
would be handled and the message would be routed to the FTP endpoint instead.

 www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 6 Testing with Camel

 The book’s source code contains this example. You can try it by running the fol-
lowing Maven goal from the chapter6/error directory:

mvn test -Dtest=SimulateErrorUsingProcessorTest

Using the Processor is easy, but you have to alter the route to insert the Processor.
When testing your routes, you might prefer to test them as is without changes that
could introduce unnecessary risks. What if you could test the route without changing
it at all? The next two techniques do this.

6.3.2 Simulating errors using mocks
You saw in section 6.2.6 that the Mock component could be used to simulate a real
component. But instead of simulating a real component, you can use what you
learned there to simulate errors. If you use mocks, we don’t need to alter the route;
you write the code to simulate the error directly into the test method, instead of mix-
ing it in with the route. Listing 6.11 shows this.

@Test
public void testSimulateConnectionErrorUsingMock() throws Exception {
 getMockEndpoint("mock:ftp").expectedMessageCount(1);

 MockEndpoint http = getMockEndpoint("mock:http");
 http.whenAnyExchangeReceived(new Processor() {
 public void process(Exchange exchange) throws Exception {
 throw new ConnectException("Simulated connection error");
 }
 });

 template.sendBody("direct:file", "Camel rocks");

 assertMockEndpointsSatisfied();
}

To simulate the connection error, you need to get hold of the HTTP mock endpoint,
where you use the whenAnyExchangeReceived method to set a custom Processor.
That Processor can simulate the error by throwing the connection exception.

 By using mocks, you put the code that simulates the error into the unit test
method, instead of in the route, as is required by the processor technique.

 Now let’s look at the last technique for simulating errors.

6.3.3 Simulating errors using interceptors

Suppose your boss wants you to write integration tests for listing 6.10 that should,
among other things, test what happens when communication with the remote HTTP
server fails. How can you do that? This is tricky because you don’t have control over
the remote HTTP server, and you can’t easily force communication errors in the net-
work layer. Luckily, Camel provides features to address this problem. We’ll get to that
in a moment, but first we need to look at interceptors, which provide the means to
simulate errors.

Listing 6.11 Simulating an error by throwing an exception from the mock endpoint

 www.it-ebooks.info

http://www.it-ebooks.info/

181Simulating errors

In a nutshell, an interceptor allows you to intercept any given message and act upon
it. Figure 6.4 illustrates where the interception takes place in a route.

 Figure 6.4 shows a low-level view of a Camel route, where you route messages from
a file consumer to an HTTP producer. In between sits the channel, which acts as a con-
troller, and this is where the interceptors (among others) live.

The three types of interceptors that Camel provides out of the box are listed in table 6.7.

To write integration tests, you can use interceptSendToEndpoint to intercept mes-
sages sent to the remote HTTP server and redirect them to a processor that simulates
the error, as shown here:

interceptSendToEndpoint("http://rider.com/rider")
 .skipSendToOriginalEndpoint();
 .process(new SimulateHttpErrorProcessor());

When a message is about to be sent to the HTTP endpoint, it’s intercepted by Camel
and the message is routed to your custom processor, where you simulate an error.
When this detour is complete, the message would normally be sent to the originally
intended endpoint, but you instruct Camel to skip this step using the skipSendTo-
OriginalEndpoint method.

Table 6.7 The three flavors of interceptors provided out of the box in Camel

Interceptor Description

intercept Intercepts every single step a message takes. This interceptor
is invoked continuously as the message is routed.

interceptFromEndpoint Intercepts incoming messages arriving on a particular end-
point. This interceptor is only invoked once.

interceptSendToEndpoint Intercepts messages that are about to be sent to a particular
endpoint. This interceptor is only invoked once.

Channel to(http)from(file)

Interceptor

Channels play a key role
This may look familiar—we looked at channels in figure 5.3. It’s the same channel
that sits between every node in the route path and acts as a controller. Channels play
a key role in the Camel routing engine, handling such things as routing the message
to the next designated target, error handling, interception, tracing messages and gath-
ering metrics.

Figure 6.4 The channel
acts as a controller, and
it’s where messages are
intercepted during routing.

 www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 6 Testing with Camel

TIP The last two interceptors in table 6.7 support using wildcards (*) and
regular expressions in the endpoint URL. You can use these techniques to
intercept multiple endpoints or to be lazy and just match all HTTP endpoints.
We’ll look at this in a moment.

Because you’re doing an integration test, you want to keep the original route
untouched, which means you can’t add interceptors or mocks directly in the route.
Because you still want to use interceptors in the route, you need another way to some-
how add the interceptors. Camel provides the adviceWith method to address this.

USING ADVICEWITH TO ADD INTERCEPTORS TO AN EXISTING ROUTE

The adviceWith method is available during unit testing, and it allows you to add such
things as interceptors and error handling to an existing route.

 To see how this works, let’s look at an example. The following code snippet shows
how you can use adviceWith in a unit test method:

@Test
public void testSimulateErrorUsingInterceptors() throws Exception {
 RouteDefinition route = context.getRouteDefinitions().get(0);

 route.adviceWith(context, new RouteBuilder() {
 public void configure() throws Exception {
 interceptSendToEndpoint("http://*")
 .skipSendToOriginalEndpoint()
 .process(new SimulateHttpErrorProcessor());
 }
 });

The key issue when using adviceWith is to know which route to use. Because you only
have one route in this case, you can refer to the first route enlisted in the route defini-
tions list. The route definitions list contains the definitions of all routes registered in
the current CamelContext.

 When you’ve got the route, it’s just a matter of using the adviceWith method B,
which leverages a RouteBuilder—this means that in the configure method you can use
the Java DSL to define the interceptors. Notice that the interceptor uses a wildcard to
match all HTTP endpoints.

TIP If you have multiple routes, you’ll need to select the correct route to be
used. To help select the route, you can assign unique IDs to the routes, which
you then can use to look up the route, such as context.getRouteDefini-
tion("myCoolRoute").

We’ve included this integration test in the book’s source code in the chapter6/error
directory. You can try it using the following Maven goal:

mvn test -Dtest=SimulateErrorUsingInterceptorTest

TIP Interceptors aren’t only for simulating errors—they’re a general pur-
pose feature that can also be used for other types of testing. For example,
when you’re testing production routes, you can use interceptors to detour
messages to mock endpoints.

Uses adviceWith
to add interceptor
to routeB

 www.it-ebooks.info

http://www.it-ebooks.info/

183Testing without mocks

The last section of this chapter covers how to do integration testing without mocks.

6.4 Testing without mocks
So far in this chapter, you’ve learned that mocks play a central role when testing
Camel applications. For example, integration testing often involves real live compo-
nents, and substituting mocks isn’t an option, as the point of the integration test is to
test with live components. In this section, we’ll look at how to test such situations with-
out using mocks.

 Rider Auto Parts has a client application that business partners can use to submit
orders. The client dispatches orders over JMS to an incoming order queue at the
Rider Auto Parts message broker. A Camel application is then used to further process
these incoming orders. Figure 6.5 illustrates this.

The client application is written in Java, but it doesn’t use Camel at all. The challenge
you’re facing is how to test that the client and the Camel application work as
expected? How can you do integration testing?

6.4.1 Integration testing

Integration testing the scenario outlined in figure 6.5 requires you to use live compo-
nents, which means you must start the test by using the client to send a message to the
order queue. Then you let the Camel application process the message. When this is
complete, you’ll have to inspect whether the message ended up in the right queue—
the confirm or the invalid queue.

 You have to perform these three tasks:

1 Use the client to send an order message
2 Wait for the Camel application to process the message
3 Inspect the confirm and invalid queues to see if the message arrived as

expected

So let’s tackle each step.

JMS order
queue

Validate
order

JMS invalid
queue

JMS confirm
queue

Process
order

Camel

Client

Figure 6.5 The client sends orders to an order queue, which is routed by a Camel application. The order
is either accepted and routed to a confirm queue, or it’s not accepted and is routed to an invalid queue.

 www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 6 Testing with Camel

USE THE CLIENT TO SEND AN ORDER MESSAGE

The client is easy to use. All you’re required to do is provide an IP address to the remote
Rider Auto Parts message broker, and then use its sendOrder method to send the order.

 The following code has been simplified in terms of the information required for
order details:

OrderClient client = new OrderClient("localhost:61616");
client.sendOrder(123, date, "4444", "5555");

WAIT FOR THE CAMEL APPLICATION TO PROCESS THE MESSAGE

The client has sent an order to the order queue on the message broker. The Camel
application will now react and process the message according to the route outlined in
figure 6.5.

 The problem you’re facing now is that the client doesn’t provide any API you can
use to wait until the process is complete. What you need is an API that provides insight
into the Camel application. All you need to know is when the message has been pro-
cessed, and optionally whether it completed successfully or failed.

 Camel provides the NotifyBuilder, which provides such insight. We’ll cover the
NotifyBuilder in more detail in section 6.4.2, but the following code shows how to
have NotifyBuilder notify you when Camel is finished processing the message:

NotifyBuilder notify = new NotifyBuilder(context).whenDone(1).create();

OrderClient client = new OrderClient("tcp://localhost:61616");
client.sendOrder(123, date, "4444", "5555");

boolean matches = notify.matches(5, TimeUnit.SECONDS);
assertTrue(matches);

First, you configure NotifyBuilder to notify you when one message is done. Then you
use the client to send the message. Invoking the matches method on the notify instance
will cause the test to wait until the condition applies, or the 5-second timeout occurs.

 The last task tests whether the message was processed correctly.

INSPECT THE QUEUES TO SEE IF THE MESSAGE ARRIVED AS EXPECTED

After the message has been processed, you need to investigate whether the message
arrived at the correct message queue. If you want to test that a valid order arrived in
the confirm queue, you can use the BrowsableEndpoint to browse the messages on
the JMS queue. By using the BrowsableEndpoint, you only peek inside the message
queue, which means the messages will still be present on the queue.

 Doing this requires a little bit of code, as shown in here:

BrowsableEndpoint be = context.getEndpoint("activemq:queue:confirm",
 BrowsableEndpoint.class);
List<Exchange> list = be.getExchanges();
assertEquals(1, list.size());
String body = list.get(0).getIn().getBody(String.class);
assertEquals("OK,123,2010-04-20T15:47:58,4444,5555", body);

By using BrowsableEndpoint, you can retrieve the exchanges on the JMS queue using
the getExchanges method. You can then use the exchanges to assert that the message
arrived as expected.

 www.it-ebooks.info

http://www.it-ebooks.info/

185Testing without mocks

 The source code for the book contains this example in the chapter6/notify direc-
tory, which you can try using the following Maven goal:

mvn test -Dtest=OrderTest

We’ve now covered an example of how to do integration testing without mocks. Along
the road, we introduced the NotifiyBuilder, which has many more nifty features.
We’ll review it in the next section.

6.4.2 Using NotifyBuilder
NotifyBuilder is located in the org.apache.camel.builder package. It uses the
Builder pattern, which means you stack methods on it to build an expression. You
use it to define conditions for messages being routed in Camel. Then it offers meth-
ods to test whether the conditions have been meet. We already used it in the previ-
ous section, but this time we’ll raise the bar and show how you can build more
complex conditions.

 In the previous example, you used a simple condition:

NotifyBuilder notify = new NotifyBuilder(context).whenDone(1).create();

This condition will match when one or more messages have been processed in the
entire Camel application. This is a very coarse-grained condition. Suppose you have
multiple routes, and another message was processed as well. That would cause the
condition to match even if the message you wanted to test was still in progress.

 To remedy this, you can pinpoint the condition so it applies only to messages orig-
inating from a specific endpoint, as shown in bold:

NotifyBuilder notify = new NotifyBuilder(context)
 .from("activemq:queue:order").whenDone(1).create();

Now you’ve told the notifier that the condition only applies for messages that origi-
nate from the order queue.

 Suppose you send multiple messages to the order queue, and you want to test
whether a specific message was processed. You can do this using a predicate to indi-
cate when the desired message was completed. This is done using the whenAnyDone-
Matches method, as shown here in bold:

NotifyBuilder notify = new NotifyBuilder(context)
 .from("activemq:queue:order").whenAnyDoneMatches(
 body().isEqualTo("OK,123,2010-04-20'T'15:48:00,2222,3333"))
 .create();

In this example we want the predicate to determine if the body is equal to the
expected result which is the string starting with "OK,123,...".

 We’ve now covered some examples using NotifyBuilder, but the builder has many
methods that allow you to build even more complex expressions. Table 6.8 lists the
most commonly used methods.

 The NotifyBuilder has over 30 methods, and we’ve only listed the most com-
monly used ones in table 6.8. Consult the online Camel documentation to see all the
supported methods: http://camel.apache.org/notifybuilder.html.

 www.it-ebooks.info

http://camel.apache.org/notifybuilder.html
http://www.it-ebooks.info/

186 CHAPTER 6 Testing with Camel

NOTE The NotifyBuilder works in principle by adding an EventNotifier to
the given CamelContext. The EventNotifier then invokes callbacks during
the routing of exchanges. This allows the NotifyBuilder to listen for those
events and react accordingly. The EventNotifier is covered in section 12.3.5.

The NotifyBuilder identifies three ways a message can complete:

■ Done—This means the message is done, regardless of whether it completed or
failed.

■ Completed—This means the message completed with success (no failure).
■ Failed—This means the message failed (for example, an exception was thrown

and not handled).

The names of these three ways are also incorporated in the names of the builder
methods: whenDone, whenCompleted, and whenFailed (listed in table 6.8).

TIP You can create multiple instances of NotifyBuilder if you want to be
notified of different conditions. The NotifyBuilder also supports using
binary operations (and, or, not) to stack together multiple conditions.

The source code for the book contains some example of using NotifyBuilder in the
chapter6/notify directory. You can run them using the following Maven goal:

mvn test -Dtest=NotifyTest

Table 6.8 Noteworthy methods on NotifyBuilder

Method Description

from(uri) Specifies that the message must originate from the given endpoint.
You can use wildcards and regular expressions in the given URI to
match multiple endpoints. For example, you could use from
("activemq:queue:*") to match any JMS queues.

filter(predicate) Filters unwanted messages.

whenDone(number) Matches when a minimum number of messages are done.

whenCompleted(number) Matches when a minimum number of messages are completed.

whenFailed(number) Matches when a minimum number of messages have failed.

whenBodiesDone(bodies...) Matches when messages are done with the specified bodies in
the given order.

whenAnyDoneMatches
(predicate)

Matches when any message is done and matches the
predicate.

create Creates the notifier.

matches Tests whether the notifier currently matches. This operation
returns immediately.

matches(timeout) Waits until the notifier matches or times out. Returns true if it
matched, or false if a timeout occurred.

 www.it-ebooks.info

http://www.it-ebooks.info/

187Summary and best practices

We encourage you to take a look at this source code and also the online documentation.
 That’s it for testing without mocks, and that marks the end of this chapter.

6.5 Summary and best practices
Testing is a challenge for every project. It’s generally considered bad practice to only
do testing at the end of a project, so testing often begins when development starts and
continues through the remainder of the project lifecycle.

 Testing isn’t something you only do once, either. Testing is involved in most phases
in a project. You should do unit testing while you develop the application. And you
should also implement integration testing to ensure that the different components
and systems work together. You also have the challenge of ensuring you have the right
environments for testing.

 Camel can’t eliminate these challenges, but it does provide a great Test Kit that makes
writing tests with Camel applications easier and less time consuming. We looked at this
Test Kit, and we also looked at how to externalize dynamic parts using property place-
holders, so you can reuse and test the same test cases in different environments.

 We also reviewed how you can simulate real components using mocks in the earlier
phases of a project, allowing you to test against systems you may not currently have
access to. In chapter 5 you learned about error handling, and in this chapter you saw
how you can use the Camel Test Kit to test error handling by simulating errors.

 We reviewed techniques for integration testing that don’t involve using mocks.
Doing integration testing, using live components and systems, is often harder than
unit testing, where mocks are a real advantage. In integration testing, mocks aren’t
available to use, and you have to use other techniques such as setting up a notification
scheme that can notify you when certain messages have been processed. This allows
you to inspect the various systems to see whether the messages were processed as
expected (such as by peeking into a JMS queue or looking at a database table).

 Here are a few best practices to take away from the chapter:
■ Use unit tests. Use the Camel Test Kit from the beginning, and write unit tests in

your projects.
■ Use the Mock component. The Mock component is a powerful component for unit

testing. Use it rigorously in your unit tests.
■ Test error handling. Integration is difficult, and unexpected errors can occur. Use

the techniques you’ve learned in this chapter to simulate errors and test that
your application is capable of dealing with these failures.

■ Use integration tests. Build and use integration tests to test that your application
works when integrated with real and live systems.

The next chapter will cover the use of components with Camel. You’ve already used
components, such as the file and SEDA components. But there is much more to com-
ponents, so we’ve devoted an entire chapter to cover them in detail.

 www.it-ebooks.info

http://www.it-ebooks.info/

188

Understanding
 components

So far, we’ve only touched on a handful of ways that Camel can communicate with
external applications, and we haven’t gone into much detail on most components.
It’s time to take your use of the components you’ve already seen to the next level,
and to introduce new components that will enable your Camel applications to com-
municate with the outside world.

This chapter covers
■ An overview of Camel components
■ Working with files and databases
■ Messaging with JMS
■ Web services using Apache CXF
■ Networking with Apache MINA
■ In-memory messaging
■ Automating tasks with the Quartz and Timer

components

 www.it-ebooks.info

http://www.it-ebooks.info/

189Overview of Camel components

 First, we’ll discuss exactly what it means to be a component in Camel. We’ll also see
how components are added to Camel. Then, although we can’t describe every compo-
nent in Camel—that would at least triple the length of this book—we’ll look at the
most commonly used components.

 Table 7.1 lists the components we’ll cover in this chapter and lists the URLs for
their official documentation.

Let’s start off with an overview of Camel components.

7.1 Overview of Camel components
Components are the primary extension point in Camel. Over the years since Camel’s
inception, the list of components has really grown. As of version 2.5.0, Camel ships
with more than 80 components, and there are dozens more available separately from
other community sites.1 These components allow you to bridge to many different APIs,
protocols, data formats, and so on. Camel saves you from having to code these integra-
tions yourself, thus it achieves its primary goal of making integration easier.

 What does a Camel component look like? Well, if you think of Camel routes as
highways, components are roughly analogous to on and off ramps. A message travel-
ing down a route will need to take an off ramp to get to another route or external ser-
vice. If the message is headed for another route, it will need to take an on ramp to get
onto that route.

Table 7.1 Components discussed in this chapter

Component function Component Camel documentation reference

File I/O File http://camel.apache.org/file2.html

FTP http://camel.apache.org/ftp2.html

Asynchronous messaging JMS http://camel.apache.org/jms.html

Using web services CXF http://camel.apache.org/cxf.html

Networking MINA http://camel.apache.org/mina.html

Working with databases JDBC http://camel.apache.org/jdbc.html

JPA http://camel.apache.org/jpa.html

In-memory messaging Direct http://camel.apache.org/direct.html

SEDA http://camel.apache.org/seda.html

VM http://camel.apache.org/vm.html

Automating tasks Timer http://camel.apache.org/timer.html

Quartz http://camel.apache.org/quartz.html

1 See appendix D for information on some of these community sites.

 www.it-ebooks.info

http://camel.apache.org/file2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/jms.html
http://camel.apache.org/cxf.html
http://camel.apache.org/mina.html
http://camel.apache.org/jdbc.html
http://camel.apache.org/jpa.html
http://camel.apache.org/direct.html
http://camel.apache.org/seda.html
http://camel.apache.org/vm.html
http://camel.apache.org/timer.html
http://camel.apache.org/quartz.html
http://www.it-ebooks.info/

190 CHAPTER 7 Understanding components

From an API point of view, a Camel component is simple, consisting of a class imple-
menting the Component interface, shown here:

public interface Component {
 Endpoint createEndpoint(String uri) throws Exception;
 CamelContext getCamelContext();
 void setCamelContext(CamelContext context);
}

The main responsibility of a component is to be a factory for endpoints. To do this, a
component also holds on to a reference of the CamelContext. The CamelContext pro-
vides access to Camel’s common facilities, like the registry, class loader, and type con-
verters. This relationship is shown in figure 7.1.

 There are two main ways in which components are added to a Camel runtime: by
manually adding them to the CamelContext and through autodiscovery.

7.1.1 Manually adding components

You’ve seen the manual addition of a component already. In chapter 2, you had to
add a configured JMS component to the CamelContext to utilize a Connection-
Factory. This was done using the addComponent method of the CamelContext inter-
face, as follows:

CamelContext context = new DefaultCamelContext();
context.addComponent("jms",
 JmsComponent.jmsComponentAutoAcknowledge(connectionFactory));

In this example, you add a component created by the JmsComponent.jmsComponent-
AutoAcknowledge method and assign it a name of “jms”. This component can be
selected in a URI by using the “jms” scheme.

7.1.2 Autodiscovering components

The other way components can be added to Camel is through autodiscovery. The
autodiscovery process is illustrated in figure 7.2.

 Autodiscovery is the way the components that ship with Camel are registered. In
order to discover new components, Camel looks in the META-INF/services/org/
apache/camel/component directory on the classpath for files. Files in this directory
determine what the name of a component is and what the fully qualified class name is.

 As an example, let’s look at the Bean component. It has a file named “bean” in the
META-INF/services/org/apache/camel/component directory that contains a single
line:

class=org.apache.camel.component.bean.BeanComponent

Component EndpointCamelContext Creates
Uses

Uses

Figure 7.1 A component
creates endpoints and may
use the CamelContext’s
facilities to accomplish this.

 www.it-ebooks.info

http://www.it-ebooks.info/

191Overview of Camel components

This class property tells Camel to load
up the org.apache.camel.component.
bean.BeanComponent class as a new
component, and the filename gives the
component the name of “bean”.

TIP We’ll discuss how to create
your own Camel component in sec-
tion 11.3 in chapter 11.

Most of the components in Camel are in
separate Java modules from the camel-
core module, because they usually
depend on third-party dependencies
that would bloat the core. For example,
the Atom component depends on
Apache Abdera to communicate over
Atom. We wouldn’t want to make every
Camel application depend on Abdera,
so the Atom component is included in
a separate camel-atom module.

 The camel-core module has 13 useful components built in, though. These are
listed in table 7.2.

Table 7.2 Components in the camel-core module

Component Description Camel documentation reference

Bean Invokes a Java bean in the registry. You saw
this used extensively in chapter 4.

http://camel.apache.org/bean.html

Browse Allows you to browse the list of exchanges
that passed through a browse endpoint. This
can be useful for testing, visualization tools,
or debugging.

http://camel.apache.org/browse.html

DataSet Allows you to create large numbers of mes-
sages for soak or load testing.

http://camel.apache.org/dataset.html

Direct Allows you to synchronously call another end-
point with little overhead. We’ll look at this
component in section 7.7.1.

http://camel.apache.org/direct.html

File Reads or writes to files. We’ll discuss this
component in section 7.2.

http://camel.apache.org/file2.html

Language Executes a script against the incoming
exchange using one of the languages
supported by Camel.

http://camel.apache.org/language-
component.html

Log Logs messages to a number of different
logging providers.

http://camel.apache.org/log.html

CamelContext

Component
resolver

Get “bean”
component

class org.apache.camel.component.bean.BeanComponent

META-INF/services/org/apache/camel/component/bean

Return
BeanComponent

Create new
BeanComponent

Search classpath
for “bean” file

1

2 Return “class”
property

3

4

5

Figure 7.2 To autodiscover a component named
“bean”, the component resolver searches for a file
named “bean” in a specific directory on the classpath.
This file specifies that the component class that will
be created is BeanComponent.

 www.it-ebooks.info

http://camel.apache.org/bean.html
http://camel.apache.org/browse.html
http://camel.apache.org/dataset.html
http://camel.apache.org/direct.html
http://camel.apache.org/file2.html
http://camel.apache.org/language-component.html
http://camel.apache.org/language-component.html
http://camel.apache.org/log.html
http://www.it-ebooks.info/

192 CHAPTER 7 Understanding components

Now let’s look at each component in detail. We’ll start by looking at the File component.

7.2 Working with files (File and FTP components)
It seems that in integration projects, you always end up needing to interface with a
filesystem somewhere. You may find this strange, as new systems often provide nice
web services and other remoting APIs to serve as integration points. The problem is
that in integration, we often have to deal with older legacy systems, and file-based inte-
grations are common.

 For example, you might need to read a file that was written by another applica-
tion—it could be sending a command, an order to be processed, data to be logged, or
anything else. This kind of information exchange, illustrated in figure 7.3, is called a
file transfer in EIP terms.

 Another reason why file-based integrations are so common is that they’re easy to
understand. Even novice computer users know something about filesystems.

 Even though they’re easy to understand, file-based integrations are difficult to get
right. Developers commonly have to battle with complex IO APIs, platform-specific
filesystem issues, concurrent access, and the like.

Mock Tests that messages flow through a route as
expected. You saw the Mock component in
action in chapter 6.

http://camel.apache.org/mock.html

Properties Allows you to use property placeholders in end-
point URIs. We talked about this in chapter 6.

http://camel.apache.org/properties.html

Ref Looks up endpoints in the registry. http://camel.apache.org/ref.html

SEDA Allows you to asynchronously call another end-
point in the same CamelContext. We’ll look
at this component in section 7.7.2.

http://camel.apache.org/seda.html

Timer Sends out messages at regular intervals.
You’ll learn more about the Timer component
and a more powerful scheduling endpoint
based on Quartz in section 7.8 of this chapter.

http://camel.apache.org/timer.html

VM Allows you to asynchronously call another end-
point in the same JVM. We’ll discuss this com-
ponent in section 7.7.2.

http://camel.apache.org/vm.html

Table 7.2 Components in the camel-core module (continued)

Component Description Camel documentation reference

Application
B

Application
A

data
Shared

Produce Consume Figure 7.3 A file transfer between
two applications is a common way
to integrate with legacy systems.

 www.it-ebooks.info

http://camel.apache.org/mock.html
http://camel.apache.org/properties.html
http://camel.apache.org/ref.html
http://camel.apache.org/seda.html
http://camel.apache.org/timer.html
http://camel.apache.org/vm.html
http://www.it-ebooks.info/

193Working with files (File and FTP components)

Camel has extensive support for interacting with filesystems. In this section, we’ll look
at how to use the File component to read files from and write them to the local filesys-
tem. We’ll also cover some advanced options for file processing and discuss how to
access remote files with the FTP component.

7.2.1 Reading and writing files with the File component
As you saw before, the File component is configured through URI options. Some com-
mon options are shown in table 7.3; for a complete listing, see the online documenta-
tion (http://camel.apache.org/file2.html).

Let’s first see how Camel can be used to read files.

READING FILES

As you’ve seen in previous chapters, reading files with Camel is pretty straightforward.
Here’s a simple example:

public void configure() {
 from("file:data/inbox?noop=true").to("stream:out");
}

Table 7.3 Common URI options used to configure the File component

Option Default value Description

delay 500 Specifies the number of milliseconds between polls of the directory.

recursive false Specifies whether or not to recursively process files in all subdirectories
of this directory.

noop false Specifies file-moving behavior. By default, Camel will move files to the
.camel directory after processing them. To stop this behavior and keep
the original files in place, set the noop option to true.

fileName null Uses an expression to set the filename used. For consumers, this acts
as a filename filter; in producers, it’s used to set the name of the file
being written.

fileExist Override Specifies what a file producer will do if the same filename already exists.
Valid options are Override, Append, Fail, and Ignore.
Override will cause the file to be replaced. Append adds content to
the file. Fail causes an exception to be thrown. If Ignore is set, an
exception won’t be thrown and the file won’t be written.

delete false Specifies whether Camel will delete the file after processing. By default,
Camel will not delete the file.

move .camel Specifies the directory to which Camel moves files after it’s done pro-
cessing them.

include null Specifies a regular expression. Camel will process only those files that
match this expression.

exclude null Specifies a regular expression. Camel will exclude files based on this
expression.

 www.it-ebooks.info

http://camel.apache.org/file2.html
http://www.it-ebooks.info/

194 CHAPTER 7 Understanding components

This route will read files from the data/inbox directory and print the contents of each
to the console. The printing is done by sending the message to the System.out
stream, accessible by using the Stream component. As stated in table 7.3, the noop flag
tells Camel to leave the original files as is. This is a convenience option for testing,
because it means that you can run the route many times without having to repopulate
a directory of test files.

 To run this yourself, change to the chapter7/file directory in the book’s source
code, and run this command:

mvn compile exec:java -Dexec.mainClass=camelinaction.FilePrinter

What if you removed the noop flag and changed the route to the following:

public void configure() {
 from("file:data/inbox").to("stream:out");
}

This would use Camel’s default behavior, which is to move the consumed files to a spe-
cial .camel directory (though the directory can be changed with the move option); the
files are moved after the routing has completed. This behavior was designed so that
files would not be processed over and over, but it also keeps the original files around
in case something goes wrong. If you don’t mind losing the original files, you can use
the delete option listed in table 7.2.

 By default, Camel will also lock any files that are being processed. The locks are
released after routing is complete.

 Both of the two preceding routes will consume any file not beginning with a
period, so they will ignore files like .camel, .m2, and so on. You can customize which
files are included by using the include and exclude options.

WRITING FILES

You just saw how to read files created by other applications or users. Now let’s see how
Camel can be used to write files. Here’s a simple example:

public void configure() {
 from("stream:in?promptMessage=Enter something:").to("file:data/outbox");
}

This example uses the Stream component to accept input from the console. The
stream:in URI will instruct Camel to read any input from System.in on the console
and create a message from that. The promptMessage option displays a prompt, so you
know when to enter text. The file:data/outbox URI instructs Camel to write out the
message body to the data/outbox directory.

 To see what happens firsthand, you can try the example by changing to the
chapter7/file directory in the book’s source code and executing the following
command:

mvn compile exec:java -Dexec.mainClass=camelinaction.FileSaver

 www.it-ebooks.info

http://www.it-ebooks.info/

195Working with files (File and FTP components)

When this runs, you’ll see an “Enter something:” prompt. Enter some text into the
console, and press Enter, like this:

INFO: Apache Camel 2.5.0 (CamelContext: camel-1) started
Enter something:Hello

This text (in this case, “Hello”) will be read in by the Stream component and added as
the body of a new message. This message’s body (the text you entered) will then be writ-
ten out to a file in the data/outbox directory (which will be created if it doesn’t exist).

 If you run a directory listing on the data/outbox directory now, you’ll see a single
file that has a rather strange name:

f6a3a5ee-536b-43c3-8307-1b96e1ae7778

Because you did not specify a filename to use, Camel chose a unique filename based
on the message ID.

 To set the filename that should be used, you can add a fileName option to your
URI. For example, you could change the route so it looks like this:

public void configure() {
 from("stream:in?promptMessage=Enter something:")
 .to("file:data/outbox?fileName=prompt.txt");
}

Now, any text entered into the console will be saved into the prompt.txt file in the
data/outbox directory.

 Camel will by default overwrite prompt.txt, so you now have a problem with this
route. If text is frequently entered into the console, you may want new files created
each time, so they don’t overwrite the old ones. To implement this in Camel, you can
use an expression for the filename. You can use the Simple expression language to
put the current time and date information into your filename:

public void configure() {
 from("stream:in?promptMessage=Enter something:")
 .to("file:data/outbox?fileName=${date:now:yyyyMMdd-hh:mm:ss}.txt");
}

The date:now expression returns the current date, and you can also use any format-
ting options permitted by java.text.SimpleDataFormat.

 Now if you enter text into the console at 2:00 p.m. on January 31, 2010, the file in
the data/outbox directory will be named something like this:

20100131-02:00:53.txt

The simple techniques for reading from and writing to files discussed here will be ade-
quate for most of the cases you’ll encounter in the real world. For the trickier cases,
there are a plethora of configuration possibilities listed in the online documentation.

 We’ve started slowly with the File component, to get you comfortable with using
components in Camel. Next we’ll look at the FTP component, which builds on the File
component but introduces messaging across a network. After that, we’ll be getting
into more complex topics.

 www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 7 Understanding components

7.2.2 Accessing remote files with the FTP component

Probably the most common way to access remote files is by using FTP, and Camel sup-
ports three flavors of FTP:

■ Plain FTP mode transfer
■ SFTP for secure transfer
■ FTPS (FTP Secure) for transfer with the Transport Layer Security (TLS) and

Secure Sockets Layer (SSL) cryptographic protocols enabled

The FTP component inherits all the features and options of the File component, and it
adds a few more options, as shown in table 7.4. For a complete listing of options for the
FTP component, see the online documentation (http://camel.apache.org/ftp2.html).

Because the FTP component isn’t part of the camel-core module, you need to add an
additional dependency to your project. If you use Maven, you just have to add the fol-
lowing dependency to your POM:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ftp</artifactId>
 <version>2.5.0</version>
</dependency>

Table 7.4 Common URI options used to configure the FTP component

Option
Default
value

Description

username null Provides a username to the remote host for authentica-
tion. If no username is provided, anonymous login is
attempted. You can also specify the username by prefix-
ing username@ to the hostname in the URI.

password null Provides a password to the remote host to authenticate
the user. You can also specify the password by prefixing
the hostname in the URI with username:password@.

binary false Specifies the transfer mode. By default, Camel will
transfer in ASCII mode; set this option to true to
enable binary transfer.

disconnect false Specifies whether Camel will disconnect from the
remote host right after use. The default is to remain
connected.

maximumReconnectAttempts 3 Specifies the maximum number of attempts Camel will
make to connect to the remote host. If all these
attempts are unsuccessful, Camel will throw an excep-
tion. A value of 0 disables this feature.

reconnectDelay 1000 Specifies the delay in milliseconds between reconnec-
tion attempts.

 www.it-ebooks.info

http://camel.apache.org/ftp2.html
http://www.it-ebooks.info/

197Asynchronous messaging (JMS component)

To demonstrate accessing remotes files, let’s use the Stream component as in the pre-
vious section to interactively generate and send files over FTP. A route that accepts text
on the console and then sends it over FTP would look like this:

<route>
 <from uri="stream:in?promptMessage=Enter something:" />
 <to uri="ftp://rider:secret@localhost:21000/data/outbox"/>
</route>

This is a Spring-based route—Spring makes it easy to hook start and stop methods to
an embedded FTP server. This FTP endpoint URI specifies that Camel should send the
message to an FTP server on the localhost listening on port 21000, using rider as the
username and secret as the password. It also specifies that messages are to be stored
in the data/outbox directory of the FTP server.

 To run this example for yourself, change to the chapter7/ftp directory and run
this command:

mvn camel:run

After Camel has started, you’ll need to enter something into the console:

INFO Apache Camel 2.5.0 (CamelContext: camelContext) started
Enter something:Hello

The example will keep running until you press Ctrl-C.
 You can now check to see if the message made it into the FTP server. The FTP

server’s root directory was set up to be the current directory of the application, so you
can check data/outbox for a message:

cat data/outbox/8ff0787f-1eab-4d11-9a60-5c3f5a05e498
Hello

As you can see, using the FTP component is similar to using the File component. Now
that you know how to do the most basic of integrations with files and FTP, let’s move
on to more advanced topics, like JMS and web services.

7.3 Asynchronous messaging (JMS component)
JMS messaging is an incredibly useful integration technology. It promotes loose cou-
pling in application design, has built-in support for reliable messaging, and is by
nature asynchronous. As you saw in chapter 2, when we looked at JMS, it’s also easy to
use from Camel. In this section, we’ll expand on what we covered in chapter 2 by
going over some of the more commonly used configurations of the JMS component.

 Camel doesn’t ship with a JMS provider; you need to configure it to use a specific
JMS provider by passing in a ConnectionFactory instance. For example, to connect to
an Apache ActiveMQ broker listening on port 61616 of the local host, you could con-
figure the JMS component like this:

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
 <property name="connectionFactory">
 <bean class="org.apache.activemq.ActiveMQConnectionFactory">

 www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 7 Understanding components

 <property name="brokerURL" value="tcp://localhost:61616" />
 </bean>
 </property>
</bean>

The tcp://localhost:61616 URI passed in to the ConnectionFactory is JMS provider-
specific. In this example, you’re using the ActiveMQConnectionFactory so the URI is
parsed by ActiveMQ. The URI tells ActiveMQ to connect to a broker using TCP on
port 61616 of the local host.

 If you wanted to connect to a broker over some other protocol, ActiveMQ supports
connections over VM, SSL, UDP, multicast, and so on. Throughout this section, we’ll be
demonstrating JMS concepts using ActiveMQ as the JMS provider, but any provider
could have been used here.

Camel’s JMS component has a daunting list of configuration options—over 60 to date.
Many of these will only be seen in very specific JMS usage scenarios. The common
ones are listed in table 7.5.

 To use the JMS component in your project, you’ll need to include the camel-jms
module on your classpath as well as any JMS provider JARs. If you’re using Maven, the
JMS component can be added with the following dependency:

<dependency>
 <groupId>org.apache.camel</groupId>

The ActiveMQ component
By default, a JMS ConnectionFactory doesn’t pool connections to the broker, so it
will spin up new connections for every message. The way to avoid this is to use con-
nection factories that use connection pooling.

For convenience to Camel users, ActiveMQ ships with the ActiveMQ component,
which configures connection pooling automatically for improved performance. The Ac-
tiveMQ component is used as follows:

 <bean id="activemq"
 ➥class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="brokerURL" value="tcp://localhost:61616" />
 </bean>

When using this component, you’ll also need to depend on the activemq-camel mod-
ule from ActiveMQ:

<dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>activemq-camel</artifactId>
 <version>5.4.1</version>
</dependency>

This module contains the ActiveMQ component and type converters for ActiveMQ
data types.

 www.it-ebooks.info

http://www.it-ebooks.info/

199Asynchronous messaging (JMS component)

 <artifactId>camel-jms</artifactId>
 <version>2.5.0</version>
</dependency>

Table 7.5 Common URI options used to configure the JMS component

Option
Default
value

Description

autoStartup true Controls whether consumers start listening right after cre-
ation. If set to false, you’ll need to invoke the start()
method on the consumer manually at a later time.

clientId null Sets the JMS client ID, which must be unique among all
connections to the JMS broker. The client ID set in the
ConnectionFactory overrides this one if set.

concurrentConsumers 1 Sets the number of consumer threads to use. It’s a good
idea to increase this for high-volume queues, but it’s not
advisable to use more than one concurrent consumer for
JMS topics, because this will result in multiple copies of
the same message.

disableReplyTo false Specifies whether Camel should ignore the JMSReplyTo
header in any messages or not. Set this if you don’t want
Camel to send a reply back to the destination specified in
the JMSReplyTo header.

durableSubscriptionName null Specifies the name of the durable topic subscription. If
clientId is also set, the topic subscription is made
durable automatically.

maxConcurrentConsumers 1 Sets the maximum number of consumer threads to use.
If this value is higher than concurrentConsumers,
new consumers are started dynamically as load
demands. If load drops down, these extra consumers will
be freed and the number of consumers will be equal to
concurrentConsumers again. Increasing this value
isn’t advisable when using topics.

replyTo null Sets the destination that the reply is sent to. This over-
rides the JMSReplyTo header in the message. By set-
ting this, Camel will use a fixed reply queue. By default,
Camel will use a temporary reply queue.

requestTimeout 20000 Specifies the time in milliseconds before Camel will time-
out sending a message.

selector null Sets the JMS message selector expression. Only mes-
sages passing this predicate will be consumed.

timeToLive null When sending messages, sets the amount of time the
message should live. After this time expires, the JMS
provider may discard the message.

transacted false Enables transacted sending and receiving of messages
in InOnly mode.

 www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 7 Understanding components

The best way to show that Camel is a great tool for JMS messaging is with an example.
Let’s look at how to send and receive messages over JMS.

7.3.1 Sending and receiving messages

In chapter 2, you saw how orders are processed at Rider Auto Parts. It started out as a
step-by-step process: they were first sent to accounting to validate the customer stand-
ing and then to production for manufacture. This process was improved by sending
orders to accounting and production at the same time, cutting out the delay involved
when production waited for the OK
from accounting. A multicast EIP was
used to implement this scenario.

 Figure 7.4 illustrates another possi-
ble solution, which is to use a JMS topic
following a publish-subscribe model. In
that model, listeners such as account-
ing and production could subscribe to
the topic, and new orders would be
published to the topic. In this way, both
accounting and production would
receive a copy of the order message.

 To implement this in Camel, you’d set up two consumers, which means there will
be two routes needed:

from("jms:topic:xmlOrders").to("jms:accounting");
from("jms:topic:xmlOrders").to("jms:production");

When a message is sent (published) to the xmlOrders topic, both the accounting and
production queues will receive a copy.

 As you saw in chapter 2, an incoming order could originate from another route (or
set of routes), like one that receives orders via a file, as shown in listing 7.1.

from("file:src/data?noop=true").to("jms:incomingOrders");

from("jms:incomingOrders")
 .choice()
 .when(header("CamelFileName").endsWith(".xml"))
 .to("jms:topic:xmlOrders")
 .when(header("CamelFileName").regex("^.*(csv|csl)$"))
 .to("jms:topic:csvOrders");

from("jms:topic:xmlOrders").to("jms:accounting");
from("jms:topic:xmlOrders").to("jms:production");

To run this example, go to the chapter7/jms directory in the book’s source, and run
this command:

mvn clean compile camel:run

Listing 7.1 Topics allow multiple receivers to get a copy of the message

Both listening
queues get copies

jms:topic:xmlOrders

jms:accounting

jms:production

Figure 7.4 Orders are published to the xmlOrders
topic, and the two subscribers (the accounting and
production queues) get a copy of the order.

 www.it-ebooks.info

http://www.it-ebooks.info/

201Asynchronous messaging (JMS component)

This will output the following on the command line:

Accounting received order: message1.xml
Production received order: message1.xml

Why did you get this output? Well, you had a single order file named message1.xml,
and it was published to the xmlOrders topic. Both the accounting and production
queues were subscribed to the topic, so each received a copy. Testing routes consumed
the messages on those queues and output the messages.

 Messages can also be sent “by hand” to a JMS destination using a ProducerTem-
plate. A template class, in general, is a utility class that simplifies access to an API; in
this case, the Producer interface. For example, to send an order to the topic using a
ProducerTemplate, you could use the following snippet:

ProducerTemplate template = camelContext.createProducerTemplate();
template.sendBody("jms:topic:xmlOrders", "<?xml ...");

This is a useful feature for getting direct access to any endpoint in Camel. For more
on the ProducerTemplate, see appendix C.

 All of the JMS examples so far have been one-way only. Let’s look at how you can
deliver a reply to the sent message.

7.3.2 Request-reply messaging
JMS messaging with Camel (and in general) is asynchronous by default. Messages are
sent to a destination, and the client doesn’t wait for a reply. But there are times when
it’s useful to be able to wait and get a reply after sending to a destination. One obvious
application is when the JMS destination is a frontend to a service—in this case, a client
sending to the destination would be expecting a reply from the service.

JMS supports this type of messaging by providing a JMSReplyTo header, so that the
receiver knows where to send the reply,
and a JMSCorrelationID, used to match
replies to requests if there are multiple
replies awaiting. This flow of messages is
illustrated in figure 7.5.

 Camel takes care of this style of mes-
saging, so you don’t have to create spe-
cial reply queues, correlate reply
messages, and the like. By changing the
message exchange pattern (MEP) to
InOut, Camel will enable request-reply
mode for JMS.

 To demonstrate, let’s take a look at an order validation service within Rider Auto
Parts’ backend systems that checks orders against the company database to make sure
the parts listed are actual products. This service is exposed via a queue named vali-
date. The route exposing this service over JMS could be as simple as this:

from("jms:validate").bean(ValidatorBean.class);

Request queue

Requestor Replier

Reply queue

1 2

34

Figure 7.5 In request-reply messaging, a
requestor sends a message to a request queue
and then waits for a reply in the reply queue. The
replier waits for a new message in the request
queue, inspects the JMSReplyTo address, and
then sends a reply back to that destination.

 www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 7 Understanding components

When calling this service, you just need to tell Camel to use request-reply messaging by
setting the MEP to InOut. You can use the exchangePattern option to set this as follows:

from("jms:incomingOrders").to("jms:validate?exchangePattern=InOut")...

You can also specify the MEP using the inOut DSL method:

from("jms:incomingOrders").inOut().to("jms:validate")...

With the inOut method, you can even pass in an endpoint URI as an argument, which
shortens your route:

from("jms:incomingOrders").inOut("jms:validate")...

By specifying an InOut MEP, Camel will send the message to the validate queue and
wait for a reply on a temporary queue that it creates automatically. When the Valida-
torBean returns a result that message is propagated back to the temporary reply
queue, and the route continues on from there.

 Rather than using temporary queues, you can also explicitly specify a reply queue.
This can be done by setting the JMSReplyTo header on the message or by using the
replyTo URI option described in table 7.5.

 A handy way of calling an endpoint that can return a response is by using the
request methods of the ProducerTemplate. For example, you can send a message into
the incomingOrders queue and get a response back with the following call:

Object result = template.requestBody("jms:incomingOrders",
 "<order name=\"motor\" amount=\"1\" customer=\"honda\"/>");

This will return the result of the ValidatorBean.
 To try this out for yourself, go to the chapter7/jms directory in the book’s source,

and run this command:

mvn test -Dtest=RequestReplyJmsTest

The command will run a unit test demonstrating request-reply messaging as we’ve dis-
cussed in this section.

 In the JMS examples we’ve looked at so far, several data mappings have been hap-
pening behind the scenes—mappings that are necessary to conform to the JMS specifi-
cation. Camel could be transporting any type of data, so that data needs to be
converted to a type that JMS supports. We’ll look into this next.

7.3.3 Message mappings

Camel hides a lot of the details when doing JMS messaging, so you don’t have to worry
about them. But one detail you should be aware of is that Camel maps both bodies and
headers from the arbitrary types and names allowed in Camel to JMS-specific types.

BODY MAPPING

Although Camel poses no restrictions on what a message’s body contains, JMS specifies
different message types based on what the body type is. Figure 7.6 shows the five con-
crete JMS message implementations.

 www.it-ebooks.info

http://www.it-ebooks.info/

203Asynchronous messaging (JMS component)

The conversion to one of these five JMS message types occurs when the exchange
reaches a JMS producer; said another way, it happens when the exchange reaches a
route node like this:

to("jms:jmsDestinationName")

At this point, Camel will examine the body type and determine which JMS message to
create. This newly created JMS message is then sent to the JMS destination specified.

 Table 7.6 shows what body types are mapped to JMS messages.

Another conversion happens when consuming a message from a JMS destination.
Table 7.7 shows the mappings in this case.

Although this automatic message mapping allows you to utilize Camel’s transforma-
tion and mediation abilities fully, you may sometimes need to keep the JMS message

Table 7.6 When sending messages to a JMS destination, Camel body types are
 mapped to specific JMS message types.

Camel body type JMS message type

String, org.w3c.dom.Node TextMessage

byte[], java.io.File, java.io.Reader,
java.io.InputStream, java.nio.ByteBuffer

BytesMessage

java.util.Map MapMessage

java.io.Serializable ObjectMessage

JMS message type Camel body type

TextMessage String

BytesMessage byte[]

MapMessage java.util.Map

ObjectMessage Object

StreamMessage No mapping occurs

«interface»
Message

BytesMessage MapMessage ObjectMessage StreamMessage TextMessage

Figure 7.6
The javax.
jms.Message
interface has five
implementations,
each of which is
built for a different
body type.

Table 7.7 When receiving
messages from a JMS
destination, JMS message types
are mapped to Camel body types

 www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 7 Understanding components

intact. An obvious reason would be to increase performance; not mapping every mes-
sage means it will take less time for each message to be processed. Another reason
could be that you’re storing an object type that doesn’t exist on Camel’s classpath. In
this case, if Camel tried to deserialize it, it would fail when finding the class.

TIP You can also implement your own custom Spring org.springframe-
work.jms.support.converter.MessageConverter by using the messageCon-
verter option.

To disable message mapping for body types, set the mapJmsMessage URI option to
false.

HEADER MAPPING

Headers in JMS are even more restrictive than body types. In Camel, a header can be
named anything that will fit in a Java String and its value can be any Java object. This
presents a few problems when sending to and receiving from JMS destinations.

 These are the restrictions in JMS:

■ Header names that start with “JMS” are reserved; you can’t use these header
names.

■ Header names must be valid Java identifiers.
■ Header values can be any primitive type and their corresponding object

types. These include boolean, byte, short, int, long, float, and double. Valid
object types include Boolean, Byte, Short, Integer, Long, Float, Double,
and String.

To handle these restrictions, Camel does a number of things. First, any headers that
you set starting with “JMS” will be dropped before sending to a JMS destination. Camel
also attempts to convert the header names to be JMS-compliant. Any period (.) char-
acters are replaced by “_DOT_” and any hyphens (-) are replaced with “_HYPHEN_”.
For example, a header named org.apache.camel.Test-Header would be converted
to org_DOT_apache_DOT_camel_DOT_Test_HYPHEN_Header before being sent to a JMS
destination. If this message is consumed by a Camel route at some point down the
line, the header name will be converted back.

 To conform to the JMS specification, Camel will drop any header that has a value
not listed in the list of primitives or their corresponding object types. Camel also
allows CharSequence, Date, BigDecimal, and BigInteger header values, all of which
are converted to their String representations to conform to the JMS specification.

 You should now have a good grasp of what Camel can do for your JMS messaging
applications.

JMS messaging applications are typically used within an organization—users out-
side the corporate firewall rarely send JMS messages to internal systems. For messaging
with the external world, web services can be used. We’ll look at how Camel uses
Apache CXF to access and serve up web services next.

 www.it-ebooks.info

http://www.it-ebooks.info/

205Web services (CXF component)

7.4 Web services (CXF component)
You would be hard pressed to find any modern enterprise project that doesn’t use web
services of some sort. They’re an extremely useful integration technology for distrib-
uted applications. Web services are often associated with service-oriented architecture
(SOA), where each service is defined as a web service.

 You can think of a web service as an API on the network. The API itself is defined
using the Web Services Description Language (WSDL), specifying what operations you
can call on a web service and what the input and output types are, among other
things. Messages are typically XML, formatted to comply with the Simple Object
Access Protocol (SOAP) schema. In addition, these messages are typically sent over
HTTP. As illustrated in figure 7.7, web services allow you to write Java code and make
that Java code callable over the Internet, which is pretty neat!

 For accessing and publishing web services, Camel uses Apache CXF (http://
cxf.apache.org). CXF is a popular web services framework that supports many web ser-
vices standards, most of which we won’t discuss here. We’ll mainly be focusing on
developing web services using the Java API for XML Web Services (JAX-WS) specifica-
tion. JAX-WS defines annotations that allow you to tell a tool like CXF how your POJO
should be represented on the web.

 We’ll be covering two types of web services development with CXF in this section:

■ Contract-first development—Recall that WSDLs define what operations and types a
web service provides. This is often referred to as a web services contract, and in
order to communicate with a web service, you must satisfy the contract. Con-
tract-first development means that you start out by writing a WSDL file (either
by hand or with the help of tooling), and then generating stub Java class imple-
mentations from the WSDL file by using a tool like CXF.

■ Code-first development—The other way to develop web services is by starting out
with a Java class and then letting the web service framework handle the job of
generating a WSDL contract for you. This is by far the easiest mode of develop-
ment, but it also means that the tool (CXF in this case) is in control of what the
contract will be. When you want to fine-tune your WSDL file, it may be better to
go the contract-first route.

Client

WSDL

Client class

Service endpoint
interface

Web services
framework

Web service

Service endpoint
implementation

Web services
frameworkSOAP/HTTP

Figure 7.7 A client invokes
a remote web service over
HTTP. To the client, it looks
as if it’s calling a Java
method on the service
endpoint interface (SEI).
Under the hood, this method
invocation passes through
the web services framework,
across a network, and finally
calls into the service
endpoint implementation on
the remote server.

 www.it-ebooks.info

http://cxf.apache.org
http://cxf.apache.org
http://www.it-ebooks.info/

206 CHAPTER 7 Understanding components

To show these concepts in action, let’s going back to Rider Auto Parts, where they
need a new piece of functionality implemented. In chapter 2 (figure 2.2) you saw how
customers could place orders in two ways:

■ Uploading the order file to an FTP server
■ Submitting the order from the Rider Auto Parts web store via HTTP

What we didn’t say then was that this HTTP link to the backend order processing sys-
tems needed to be a web service.

 Before you jump into creating this web service, let’s take a moment to go over how
CXF can be configured within Camel.

7.4.1 Configuring CXF

There are two main ways to configure a CXF component URI: by referencing a bean
containing the configuration or by configuring it within the URI.

CONFIGURING USING URI OPTIONS

When configuring CXF using only URI options, a CXF endpoint URI looks like this,

cxf://anAddress[?options]

where anAddress is a URL like http://rider.com:9999/order, and options are
appended as usual from the possible options in table 7.8.

 These options can also be used to configure a reusable CXF endpoint bean in
Spring.

Table 7.8 Common URI options used to configure the CXF component

Option Default value Description

wsdlURL Retrieved
from the end-
point address

Specifies the location of the WSDL contract file.

serviceClass null Specifies the name of the service endpoint interface (SEI). Typically
this interface will have JAX-WS annotations. The SEI is required if
the CXF data format mode is POJO. If you already have an instance
of a concrete class, you can reference it using the #beanName
style.

serviceName Obtained
from the
WSDL

Specifies the service to use. The format is a qualified name
(QName) that has a namespace and name like {http://
order.camelinaction}OrderEndpointService.

Note that if there is only one service in a WSDL, Camel will choose
this as the default service. If there is more than one service
defined, you need to set the serviceName property.

portName Obtained
from the
WSDL

Specifies the port to use. The format is a qualified name
(QName) that has a namespace and name like {http://
order.camelinaction}OrderService.

 www.it-ebooks.info

http://www.it-ebooks.info/

207Web services (CXF component)

CONFIGURING USING A CXF ENDPOINT BEAN

When using a CXF endpoint bean in Spring, you have much more power than by con-
figuring CXF via URI options. In the CXF endpoint bean, you can configure things like
CXF interceptors, JAX-WS handlers, and the CXF bus. The URI for configuring the CXF
component looks like this:

cxf:bean:beanName

The beanName name specifies the ID of the CXF endpoint bean defined in your Spring
XML file. This bean supports the URI options listed in table 7.8 as well as an address
attribute that tells Camel what address to use for the web service.

 Listing 7.2 shows how a CXF endpoint bean is configured.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cxf="http://camel.apache.org/schema/cxf"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://camel.apache.org/schema/cxf
 http://camel.apache.org/schema/cxf/camel-cxf.xsd">

 <import resource="classpath:META-INF/cxf/cxf.xml"/>
 <import resource="classpath:META-INF/cxf/
➥ cxf-extension-soap.xml"/>
 <import resource="classpath:META-INF/cxf/
➥ cxf-extension-http-jetty.xml"/>

 <cxf:cxfEndpoint
 id="orderEndpoint"
 address="http://localhost:9000/order/"
 serviceClass="camelinaction.order.OrderEndpoint"/>
</beans>

After configuring an endpoint as shown in listing 7.2, you can use it in a producer or
consumer using the following URI:

cxf:bean:orderEndpoint

Note that if there is only one port in a WSDL, Camel will choose
this as the default port. If there is more than one port defined per
service, you need to set the portName property.

dataFormat POJO Sets the data format type that CXF uses for its messages. The pos-
sible values are POJO, PAYLOAD, and MESSAGE. We’ll only be
covering POJO mode in this chapter; you can find more information
on the other two modes on the CXF component page in the Camel
online documentation: http://camel.apache.org/cxf.html.

Listing 7.2 The CXF endpoint bean format

Table 7.8 Common URI options used to configure the CXF component (continued)

Option Default value Description

Sets bean ID,
address, and
SEI

 www.it-ebooks.info

http://camel.apache.org/cxf.html
http://www.it-ebooks.info/

208 CHAPTER 7 Understanding components

There is a notable difference when using producers versus consumers.

PRODUCERS VERSUS CONSUMERS

In the context of a web service, a producer in Camel calls a remote web service. This
web service could be defined by Camel or by some other web framework.

 To invoke a web service in Camel, you use the familiar to Java DSL method:

...to("cxf:bean:orderEndpoint");

Consumers are a little more interesting, as they expose an entire route to the world as a
web service. This is a powerful concept. A Camel route could be a complex process,
with many branches and processing nodes, but the caller will only see it as a web ser-
vice with input parameters and a reply.

 Say you start out with a route that consists of several steps, like this:

from("jms:myQueue").
to("complex step 1").
...
to("complex step N");

To expose this route to the web, you can add a CXF endpoint to the beginning:

from("cxf:bean:myCXFEndpointBean").
to("complex step 1").
...
to("complex step N");

Now, when the web service configured by myCXFEndpointBean is called, the whole
route will be invoked.

TIP If you’re coming from a background in SOA or have used web services
before, you may be scratching your head about consumers in Camel. In the
web services world, a consumer is typically a client that calls a remote service.
In Camel, a consumer is a server, so the definition is reversed!

MAVEN DEPENDENCIES

In order to use the CXF component, you’ll have to add some dependencies. First, you
need to depend on the camel-cxf module:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-cxf</artifactId>
 <version>2.5.0</version>
</dependency>

That will get you most of the way to a usable CXF component, but you also need to add
a module for the CXF transport you’re using. In most cases, this will be HTTP, so you’ll
need to add another dependency to your POM:

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-jetty</artifactId>
 <version>2.2.10</version>
</dependency>

 www.it-ebooks.info

http://www.it-ebooks.info/

209Web services (CXF component)

CXF supports several other transports as well, and you can find more information
about them on the CXF website at http://cxf.apache.org/docs/transports.html.

 Now that you have a sense of the configuration details, let’s take a hands-on look at
how to develop web services with Camel.

7.4.2 Using a contract-first approach

In contract-first development, you start by creating a WSDL document and then get-
ting a web service tool to generate the necessary Java code. This process is illustrated
in figure 7.8.

Creating the WSDL contract for a particular web service is a non-trivial task. It’s often
best to think about what methods, types, and parameters you’ll need before starting.

 In this case, to place an order at Rider Auto Parts with a web service, you need a
single method call named order. This method will accept part name, amount, and
customer name parameters. When the method is complete, it will return a result code
to the client. The web service should be exposed on the server’s http://local-
host:9000/order address.

 The WSDL for this web service is shown in listing 7.3.

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://order.camelinaction"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="http://order.camelinaction">

 <wsdl:types>
 <xs:schema targetNamespace="http://order.camelinaction">
 <xs:element type="xs:string" name="partName" />
 <xs:element type="xs:int" name="amount" />
 <xs:element type="xs:string" name="customerName" />
 <xs:element type="xs:string" name="resultCode" />
 </xs:schema>
 </wsdl:types>

 <wsdl:message name="purchaseOrder">
 <wsdl:part name="partName" element="tns:partName" />
 <wsdl:part name="amount" element="tns:amount"/>
 <wsdl:part name="customerName" element="tns:customerName"/>
 </wsdl:message>

Listing 7.3 The WSDL for an order service

WSDL

Service endpoint
interface

Stub service
endpoint

implementation

WSDL to Java tool

Developer

Figure 7.8 In contract-first
web service development, you
start out by creating a WSDL
document and letting a tool
generate the required source
interfaces and stubs.

Defines input and
output parameters

B

Defines
messages

C

 www.it-ebooks.info

http://cxf.apache.org/docs/transports.html
http://www.it-ebooks.info/

210 CHAPTER 7 Understanding components

 <wsdl:message name="orderResult">
 <wsdl:part name="resultCode" element="tns:resultCode" />
 </wsdl:message>

 <wsdl:portType name="OrderEndpoint">
 <wsdl:operation name="Order">
 <wsdl:input message="tns:purchaseOrder" />
 <wsdl:output message="tns:orderResult" />
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="OrderBinding"
 type="tns:OrderEndpoint">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="order">
 <soap:operation
soapAction="http://order.camelinaction/Order" style="document" />
 <wsdl:input>
 <soap:body parts="in" use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body parts="out" use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="OrderEndpointService">
 <wsdl:port name="OrderService" binding="tns:OrderBinding">
 <soap:address location="http://localhost:9000/order" />
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

As you can see in listing 7.3, a WSDL contract is quite a mouthful! Writing this kind of
document from scratch would be pretty hard to get right. Typically, a good way to start
one of these is to use a wizard or GUI tooling. For instance, in Eclipse you can use the
File > New > Other > Web Services > WSDL wizard to generate a skeleton WSDL file based
on several options. Tweaking this skeleton file is much easier than starting from scratch.

CXF also has command-line tools to help you create a WSDL contract properly.
Once you have a portType element defined, you can pass the WSDL fragment through
CXF’s wsdl2xml tool (http://cxf.apache.org/docs/wsdl-to-xml.html), which will add a
binding element for you. When the binding element is defined, the wsdl2service tool
(http://cxf.apache.org/docs/wsdl-to-service.html) can then generate a service ele-
ment for you.

Defines
interface to callD

Uses SOAP encoding
over HTTP transport

E

Exposes service
using interface

F

WSDL 1.1 versus 2.0
If you’ve used WSDL documents before, you may have picked up on the version of
the WSDL specification we used in listing 7.3. We used WSDL version 1.1 because
the current version of CXF only supports 1.1. This is also the most common WSDL
version you’ll see in use. WSDL 2.0 changes things substantially, and to date few
web services tools (like CXF) support it.

 www.it-ebooks.info

http://cxf.apache.org/docs/wsdl-to-xml.html
http://cxf.apache.org/docs/wsdl-to-service.html
http://www.it-ebooks.info/

211Web services (CXF component)

There are five main elements specified in the WSDL file shown in listing 7.3, and all
WSDL files follow this same basic structure:

■ types—Data types used by the web service
■ message—Messages used by the web service
■ portType—Interface name and operation performed by the web service
■ binding—Transport type and message encoding used by the web service
■ service—Web service definition, which specifies the binding to use as well as

the network address to use

You first define what parameters the web service will be passing around B. This con-
figuration is done using the XML schema, which may make it a bit more familiar to
you. You specify a name and a type for each parameter.

 The next section of listing 7.3 defines the messages used by the web service C.
These messages allow you to assign parameters to use as input versus output.

 You then define the portType D, which is the interface that you’ll be exposing
over the web. On this interface, you define a single operation (method) that takes a
purchaseOrder message as input and returns an orderResult message.

 The binding section E then specifies the use of the HTTP transport for the mes-
sages and that the messages should be encoded over the wire using document literal
style. Document literal means that the SOAP message body will be an XML document.
The format of this XML document is specified using the XML schema.

NOTE There are more options to choose from for WSDL binding and encoding.
An excellent introduction is available from the IBM developerWorks website:
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl.

Finally, the service section F exposes a port using a specific binding on an address.
There can be more than one port listed here. In this example, you use the port and
binding definitions from before and set the web service address to http://local-
host:9000/order.

 The next step in contract-first web service development is taking the WSDL and
generating Java code that implements it. CXF provides the wsdl2java tool (http://
cxf.apache.org/docs/wsdl-to-java.html) to do this for you. Listing 7.4 shows how this
tool can be used from a Maven POM file.

<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>2.2.10</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <configuration>

Listing 7.4 Using CXF’s wsdl2java tool

 www.it-ebooks.info

http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl
http://cxf.apache.org/docs/wsdl-to-java.html
http://cxf.apache.org/docs/wsdl-to-java.html
http://www.it-ebooks.info/

212 CHAPTER 7 Understanding components

 <sourceRoot>
 ${basedir}/target/generated/src/main/java
 </sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>
 ${basedir}/src/main/resources/wsdl/order.wsdl
 </wsdl>
 <extraargs>
 <extraarg>-impl</extraarg>
 </extraargs>
 </wsdlOption>
 </wsdlOptions>
 </configuration>
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
</plugin>

The tool accepts your WSDL file C and an output location for the generated source B.
To run this tool for yourself, change to the chapter7/cxf/contract_first directory and
run the following command:

mvn generate-sources

After this completes, you can look in the output directory and see that there are four
files generated:

ObjectFactory.java
OrderEndpointImpl.java
OrderEndpoint.java
OrderEndpointService.java

These files implement a stubbed-out version of the order web service. If you were not
using Camel, you would write your business logic in the OrderEndpointImpl file that
was generated.

 To use this web service in Camel, you need to define a CXF endpoint. Listing 7.5
shows how to do this in Spring.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cxf="http://camel.apache.org/schema/cxf"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://camel.apache.org/schema/cxf
 http://camel.apache.org/schema/cxf/camel-cxf.xsd">

 <import resource="classpath:META-INF/cxf/cxf.xml"/>
 <import resource="classpath:META-INF/cxf/cxf-extension-soap.xml"/>

Listing 7.5 CXF endpoint configuration in camel-cxf.xml

Location of
generated sourceB

Location of
input WSDLC

 www.it-ebooks.info

http://www.it-ebooks.info/

213Web services (CXF component)

 <import resource="classpath:META-INF/cxf/cxf-extension-http-jetty.xml"/>

 <cxf:cxfEndpoint id="orderEndpoint"
 address="http://localhost:9000/order/"
 serviceClass="camelinaction.order.OrderEndpoint"
 wsdlURL="wsdl/order.wsdl"/>
</beans>

This endpoint configures CXF under the hood to use the web service located at http:
//localhost:9000/order and using the camelinaction.order.OrderEndpoint inter-
face. Because there is only one service defined in order.wsdl, CXF will choose that auto-
matically. If there were more than one service, you would need to set the serviceName
and endpointName attributes on the endpoint bean. The serviceName is the name of the
WSDL service element, and endpointName is the name of the port element.

 You can browse a web service’s WSDL yourself by appending ?wsdl to any web ser-
vice URL in your browser. For this address, that would be http://localhost:9000/
order?wsdl. This WSDL is the same as the file provided in the wsdlURL attribute of the
endpoint bean.

ADDING A WEB SERVICE TO YOUR ROUTE

With all that set up, you’re ready to start using the order web service within a Camel
route. Listing 7.6 shows a route using the web service.

<import
 resource="classpath:META-INF/spring/camel-cxf.xml" />

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="cxf:bean:orderEndpoint" />
 <to uri="seda:incomingOrders" />
 <transform>
 <constant>OK</constant>
 </transform>
 </route>
</camelContext>

Because you defined your CXF web service as an endpoint bean in listing 7.5, you just
had to import the bean configuration B and refer to the bean ID to set up the con-
sumer C. Recall that setting up a CXF consumer effectively turns the entire route into
a web service, so once the order data is sent to an internal queue for processing, the
output produced by the route D is returned to the caller of the web service C.

 How does one call this web service? Well, you could use pure CXF or another web
services framework compatible with CXF. In this case, you’ll use Camel. You used an
endpoint bean to configure CXF earlier, so you can use that to send to the web service
as well.

 You first need to prepare the parameters to be passed into the web service:

Listing 7.6 Web-enabled route configuration

Defines endpoint to
be used from Camel

Imports CXF
endpoint beanB

Exposes route
as web serviceC

Returns OK
reply to callerD

 www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 7 Understanding components

List<Object> params = new ArrayList<Object>();
params.add("motor");
params.add(1);
params.add("honda");

Recall that, in the WSDL, you specified that the web service accepted parameters for
part name, number of parts, and customer name.

 Next, you can use a ProducerTemplate to send a message to the web service:

String reply = template
 .requestBody("cxf:bean:orderEndpoint", params, String.class);
assertEquals("OK", reply);

To try this out for yourself, change to the chapter7/cxf/contract_first directory, and
run the following Maven command:

mvn test

This will run the wsdl2java tool to generate the code from the WSDL, and then run a
test that loads up the web-enabled route and calls it using a ProducerTemplate.

SELECTING THE OPERATION WHEN INVOKING WEB SERVICES

If you call a web service with multiple operations, you need to specify which operation
Camel should invoke. You can do this by setting the operationName header on the
message before sending it to a CXF endpoint. Here is an example:

<route>
 <from uri="direct:startOrder" />
 <setHeader headerName="operationName">
 <constant>order</constant>
 </setHeader>
 <to uri="cxf:bean:orderEndpoint"/>
</route>

In this case, you’re invoking the orderEndpoint, which only has one operation, but
this demonstrates how you can use this header. The header is set to the operation
name order, which you can find in the WSDL under the wsdl:operation element.

Other ways of communicating over HTTP
The CXF component provides extensive support for many web services standards. In
some cases, you may not need to or won’t be able to use those standards and you’ll
just need to communicate over HTTP. For example, you may be interfacing with an
HTTP-based service that has been up since before the WS-* specifications were cre-
ated. You could also need a barebones web service where you manually handle
things like parsing the messages. Or maybe you want to download a remote file over
HTTP—there are lots of reasons you might need HTTP support.

Camel provides two main ways of doing raw communications over HTTP: the Jetty
component and the HTTP component. The HTTP component can only be used for
sending (producing) to a remote service, whereas the Jetty component can handle
consuming and producing.

 www.it-ebooks.info

http://www.it-ebooks.info/

215Web services (CXF component)

Think contract-first development is hard? Well, some developers do, even though it
gives you complete control over your web service contract—an important detail. Next
we’ll look at how to develop web services using a code-first approach.

7.4.3 Using a code-first approach

Code-first web services development is often touted as a much easier alternative
to contract-first development. In code-first development, you start out with Java that’s
annotated with JAX-WS annotations, and then you get the web services framework
to generate the underlying WSDL contract for you. This process is illustrated in fig-
ure 7.9.

 To see how this is possible with Camel, let’s try implementing the solution pre-
sented in the previous section in a code-first manner.

 You start much as you do with contract-first development—you need to think
about what methods, types, and parameters you need. Because you’re starting with
Java, you’ll need an interface to represent the web service:

@WebService
public interface OrderEndpoint {
 String order(String partName, int amount, String customerName);
}

The JAX-WS javax.jws.WebService annotation will tell CXF that this interface is a
web service. There are many annotations that allow you to fine-tune the generated
WSDL, but for many cases the defaults work quite well.

 In order to use this interface as a web service, you don’t have to change any of your
Camel configuration from the previous section. Yes, you read that correctly. Your CXF
endpoint bean is still defined as follows:

(continued)

For the special case where you can’t start up an embedded Jetty server and need to
hook in to the existing servlet container (like Apache Tomcat), you can use the Servlet
component.

You can find more information on these components on the Camel website:

■ HTTP component—http://camel.apache.org/http.html
■ Jetty component—http://camel.apache.org/jetty.html
■ Servlet component—http://camel.apache.org/servlet.html

WSDL
Service endpoint

interface

Service endpoint
implementation

Java to WSDL tool

Developer

Figure 7.9 In code-first web
services development, you
start out by coding the service
interface and implementation
and then using a tool to
generate the required WSDL.

 www.it-ebooks.info

http://camel.apache.org/http.html
http://camel.apache.org/jetty.html
http://camel.apache.org/servlet.html
http://www.it-ebooks.info/

216 CHAPTER 7 Understanding components

<cxf:cxfEndpoint id="orderEndpoint"
 address="http://localhost:9000/order/"
 serviceClass="camelinaction.order.OrderEndpoint"/>

To use this bean in a Camel route, you can reference it as before:

<from uri="cxf:bean:orderEndpoint" />

To try this out for yourself, change to the chapter7/cxf/code_first directory and run
the following Maven command:

mvn test

This will run a test that loads up the web-enabled route and calls it using a Producer-
Template. The Java to WSDL process happens automatically in the background.

 Certainly, the code-first approach allows you to implement web services quickly.
But it’s good to understand what is happening under the hood of a web service,
because it’s a complex technology.

 Speaking of under the hood, several types of messaging that we’ve looked at
before, like FTP, JMS, and now web services, all run on top of other protocols. Let’s
look at how you can use Camel for these kinds of low-level communications.

7.5 Networking (MINA component)
So far in this chapter, you’ve seen a mixture of old integration techniques, such as file-
based integration, and newer technologies like JMS and web services. All of these can
be considered essential in any integration framework. Another essential mode of inte-
gration is using low-level networking protocols, such as the Transmission Control Pro-
tocol (TCP) and the User Datagram Protocol (UDP). Even if you haven’t heard of
these protocols before, you’ve definitely used them—protocols like email, FTP, and
HTTP run on top of TCP.

 To communicate over these and other protocols, Camel uses Apache MINA and
Netty. Both MINA and Netty are networking frameworks that provide asynchronous
event-driven APIs and communicate over various protocols like TCP and UDP. In this
section, we’ll be using MINA to demonstrate low-level network communication with
Camel. For more information on using Netty with Camel, see the camel-netty compo-
nent’s documentation (http://camel.apache.org/netty.html).

 The MINA component is located in the camel-mina module of the Camel distribu-
tion. You can access this by adding it as a dependency to your Maven POM like this:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-mina</artifactId>
 <version>2.5.0</version>
</dependency>

The most common configuration options are listed in table 7.9.

 www.it-ebooks.info

http://camel.apache.org/netty.html
http://www.it-ebooks.info/

217Networking (MINA component)

In addition to the URI options, you also have to specify the transport type and port you
want to use. In general, a MINA component URI will look like this,

mina:transport://hostname[:port][?options]

where transport is one of tcp, udp, multicast/mcast, or vm.
 Let’s now see how you can use the MINA component to solve a problem at Rider

Auto Parts.

7.5.1 Using MINA for network programming

Back at Rider Auto Parts, the production group has been using automated manufac-
turing robots for years to assist in producing parts. What they’ve been lacking, though,
is a way of tracking the whole plant’s health from a single location. They currently
have floor personnel monitoring the machines manually. What they’d like to have is
an operations center with a single-screen view of the entire plant.

 To accomplish this, they’ve purchased sensors that communicate machine status
over TCP. The new operations center needs to consume these messages over JMS. Fig-
ure 7.10 illustrates this setup.

Table 7.9 Common URI options used to configure the MINA component

Option
Default
value

Description

codec null Specifies the codec used to marshal the message body.
Codecs need to be loaded into the registry and referenced
using the #beanName style.

textline false Enables the textline codec when you’re using TCP and no
other codec is specified. The textline codec understands
bodies that have string content and end with a line delimiter.

textlineDelimiter DEFAULT Sets the delimiter used for the textline codec. Possible val-
ues include: DEFAULT, AUTO, WINDOWS, UNIX, or MAC.

sync true Sets the synchronous mode of communication. This means
that clients will be able to get a response back from the server.

timeout 30000 Sets the time in milliseconds to wait for a response from a
remote server.

encoding JVM
default

Specifies the java.nio.charset.Charset used to
encode the data.

transferExchange false Specifies whether only the message body is transferred. Enable
this property to serialize the entire exchange for transmission.

filters null Specifies what MINA
org.apache.mina.common.IoFilter beans to use. It
should be specified as a comma-separated list of bean refer-
ences, like "#filter1,#filter2".

 www.it-ebooks.info

http://www.it-ebooks.info/

218 CHAPTER 7 Understanding components

Hand-coding a TCP server such as this wouldn’t be a trivial exercise. You’d need to
spin up new threads for each incoming socket connection, as well as transform the
body to a format suitable for JMS. Not to mention the pain involved in managing the
low-level networking protocols.

 In Camel, a possible solution is accomplished with a single line:

from("mina:tcp://localhost:8999?textline=true&sync=false")
 .to("jms:operations");

Here you set up a TCP server on port 8999 using MINA, and it parses messages using
the textline codec. The sync property is set to false to make this route InOnly—any
clients sending a message won’t get a reply back.

 You may be wondering what a textline codec is, and maybe even what a codec is!
In TCP communications, a single message payload going out may not reach its destina-
tion in one piece. All will get there, but it may be broken up or fragmented into
smaller packets. It’s up to the receiver (in this case, the server) to wait for all the
pieces and assemble them back into one payload.

 A codec decodes or encodes the message data into something that the applications
on either end of the communications link can understand. As figure 7.11 illustrates,
the textline codec is responsible for grabbing packets as they come in and trying to
piece together a message that’s terminated by a specified character.

 This example is provided in the book’s source in the chapter7/mina directory. Try
it out using the following command:

mvn test -Dtest=MinaTcpTest

jms:operations mina:tcp://localhost:8999Sensor 1

Sensor N

... Figure 7.10 Sensors feed
status messages over TCP
to a server, which then
forwards them to a JMS
operations queue.

Sender Receiver

“Hello \n” “Hello \n”“Hel”“lo\n”

TCP

codec codec

Figure 7.11 During TCP communications, a payload may be broken up into multiple
packets. A MINA textline codec can assemble the TCP packets into a full payload
by appending text until it encounters a delimiter character.

 www.it-ebooks.info

http://www.it-ebooks.info/

219Networking (MINA component)

OBJECT SERIALIZATION CODEC

If you had not specified the textline URI option in the previous example, the MINA
component would have defaulted to using the object serialization codec. This codec
will take any Serializable Java object and send its bytes over TCP. This is a pretty
handy codec if you aren’t sure what payload format to use. If you’re using this codec,
you’ll also need to ensure that the classes are on the classpath of both the sender and
the receiver.

 There are times when your payload will have a custom format that neither text-
line or object serialization accommodates. In this case, you’ll need to create a custom
codec.

7.5.2 Using custom codecs

The TCP server you set up for Rider Auto Parts in the previous section has worked out
well. Sensors have been sending back status messages in plain text, and you used the
MINA textline codec to successfully decode them. But one type of sensor has been
causing an issue: the sensor connected to the welding machine sends its status back in
a custom binary format. You need to interpret this custom format and send a status
message formatted like the ones from the other sensors. We can do this with a custom
MINA codec.

 In MINA, a codec consists of three parts:

■ ProtocolEncoder—The ProtocolEncoder has the job of taking an input pay-
load and putting bytes onto the TCP channel. In this example, the sensor will be
transmitting the message over TCP, so you don’t have to worry about this too
much, except for testing that the server works.

■ ProtocolDecoder—The ProtocolDecoder interprets the custom binary message
from the sensor and returns a message that your application can understand.

■ ProtocolCodecFactory—As implied by the name, the ProtocolCodecFactory
creates the encoder and decoder.

You can specify a custom codec in a Camel URI by using the codec property and speci-
fying a reference to a ProtocolCodecFactory instance in the registry.

 The custom binary payload that you have to interpret with your codec is 8 bytes in
total; the first 7 bytes are the machine ID and the last byte is a value indicating the sta-
tus. You need to convert this to the plain text format used by the other sensors, as illus-
trated in figure 7.12.

2371748 1

Machine ID Status

“MachineID=2371748;Status=Good”

WelderDecoder

Figure 7.12 The custom welder sensor decoder is used to interpret an 8-byte binary
payload and construct a plain text message body. The first 7 bytes are the machine ID
and the last byte represents a status. In this case, a value of 1 means “Good”.

 www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 7 Understanding components

Your route looks similar to the previous example:

from("mina:tcp://localhost:8998?codec=#welderCodec&sync=false")
 .to("jms:operations");

Note that you need to change the port that it listens on, so as not to conflict with your
other TCP server. You also add a reference to the custom codec loaded into the regis-
try. In this case, the codec is loaded into a JndiRegistry like this:

JndiRegistry jndi = ...
jndi.bind("welderCodec", new WelderSensorCodec());

The WelderSensorCodec is defined as a MINA ProtocolCodecFactory object. It
merely creates the encoder and decoder, as shown here:

public class WelderSensorCodec implements ProtocolCodecFactory {
 public ProtocolEncoder getEncoder() throws Exception {
 return new WelderEncoder();
 }

 public ProtocolDecoder getDecoder() throws Exception {
 return new WelderDecoder();
 }
}

Now that the setup is complete, you can get to the real meat of the custom codec. If
you recall, decoding the custom binary format into a plain text message was the most
important task for this particular application. This decoder is shown in listing 7.7.

class WelderDecoder extends CumulativeProtocolDecoder {
 static final int PAYLOAD_SIZE = 8;

 protected boolean doDecode(IoSession session,
ByteBuffer in, ProtocolDecoderOutput out) throws Exception {
 if (in.remaining() >= PAYLOAD_SIZE) {
 byte[] buf = new byte[in.remaining()];
 in.get(buf);

 StringBuilder sb = new StringBuilder();
 sb.append("MachineID=")
 .append(
 new String(buf, 0, PAYLOAD_SIZE – 1))
 .append(";")
 .append("Status=");
 if (buf[PAYLOAD_SIZE - 1] == '1') {
 sb.append("Good");
 } else {
 sb.append("Failure");
 }
 out.write(sb.toString());
 return true;
 } else {
 return false;
 }
 }
}

Listing 7.7 The decoder for the welder sensor

Waits for
all 8 bytes
of payloadB

Gets first 7 bytes
as machine IDC

Gets last byte
as statusD

 www.it-ebooks.info

http://www.it-ebooks.info/

221Working with databases (JDBC and JPA components)

The decoder shown in listing 7.7 may look a bit complex, but it’s only doing three
main things: waiting for 8 bytes of payload to arrive on the TCP channel B, extracting
the first 7 bytes and using that as the machine ID string C, and checking the last byte
for a status of 1, which means “Good” D.

 To try this example yourself, go to the chapter7/mina directory of the book’s
source and run the following unit test:

mvn test -Dtest=MinaCustomCodecTest

Now that you’ve tried out low-level network communications, its time to interact with
one of the most common applications in the enterprise. That’s the database.

7.6 Working with databases (JDBC and JPA components)
In pretty much every enterprise-level application, you’ll need to integrate with a data-
base at some point. So it makes sense that Camel has first-class support for accessing
databases. Camel has five components that let you access databases in a number
of ways:

■ JDBC component—Allows you to access JDBC APIs from a Camel route.
■ SQL component—Allows you to write SQL statements directly into the URI of the

component for utilizing simple queries.
■ JPA component—Persists Java objects to a relational database using the Java Per-

sistence Architecture.
■ Hibernate component—Persists Java objects using the Hibernate framework. This

component isn’t distributed with Apache Camel due to licensing incompatibili-
ties. You can find it at the camel-extra project (http://code.google.com/p/
camel-extra).

■ iBATIS component—Allows you to map Java objects to relational databases.

In this section, we’ll be covering both the JDBC and JPA components. These are the
most-used database-related components in Camel. You can do pretty much any data-
base-related task with them that you can do with the others. For more information on
the other components, see the relevant pages on the Camel website’s components list
(http://camel.apache.org/components.html).

 Let’s look first at the JDBC component.

7.6.1 Accessing data with the JDBC component

The Java Database Connectivity (JDBC) API defines how Java clients can interact with a
particular database. It tries to abstract away details about the actual database being
used. To use this component, you need to add the camel-jdbc module to your project:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jdbc</artifactId>
 <version>2.5.0</version>
</dependency>

 www.it-ebooks.info

http://code.google.com/p/camel-extra
http://code.google.com/p/camel-extra
http://camel.apache.org/components.html
http://www.it-ebooks.info/

222 CHAPTER 7 Understanding components

The most common URI options are shown in table 7.10.

The endpoint URI for the JDBC component points Camel to a javax.sql.DataSource
loaded into the registry, and, like other components, it allows for configuration
options to be set. The URI syntax is as follows:

jdbc:dataSourceName[?options]

After this is specified, the component is ready for action. But you may be wondering
where the actual SQL statement is specified.

 The JDBC component is a dynamic component in that it doesn’t merely deliver a
message to a destination but takes the body of the message as a command. In this case,
the command is specified using SQL. In EIP terms, this kind of message is called a
command message. Because a JDBC endpoint accepts a command, it doesn’t make
sense to use it as a consumer, so, you can’t use it in a from DSL statement. Of course,
you can still retrieve data using a select SQL statement as the command message. In
this case, the query result will be added as the outgoing message on the exchange.

 To demonstrate the SQL command-message concept, let’s revisit the order router
at Rider Auto Parts. In the accounting department, when an order comes in on a JMS
queue, the accountant’s business applications can’t use this data. They can only
import data from a database. So any incoming orders need to be put into the corpo-
rate database. Using Camel, a possible solution is illustrated in figure 7.13.

Table 7.10 Common URI options used to configure the JDBC component

Option
Default
value

Description

readSize 0 Sets the maximum number of rows that
can be returned. The default of 0 causes
the readSize to be unbounded.

statement.propertyName null Sets the property with name
propertyName on the underlying
java.sql.Statement.

useJDBC4ColumnNameAndLabelSemantics true Sets the column and label semantics to
use. Default is to use the newer JDBC 4
style, but you can set this property to
false to enable JDBC 3 style.

jms:accounting

OrderToSqlBean
C

jdbc:dataSource
Execute

command C

Database

Figure 7.13 A message from the JMS accounting queue is transformed into an SQL
command message by the OrderToSqlBean bean. The JDBC component then executes
this command against its configured data source.

 www.it-ebooks.info

http://www.it-ebooks.info/

223Working with databases (JDBC and JPA components)

The main takeaway from figure 7.13 is that you’re using a bean to create the SQL state-
ment from the incoming message body. This is the most common way to prepare a
command message for the JDBC component. You could use the DSL directly to create
the SQL statement (by setting the body with an expression), but you have much more
control when you use a custom bean.

 The route for the implementation of figure 7.13 is simple on the surface:

from("jms:accounting")
 .to("bean:orderToSql")
 .to("jdbc:dataSource");

There are two things that require further explanation here. First, the JDBC endpoint is
configured to load the javax.sql.DataSource with the name dataSource in the reg-
istry. The bean endpoint here is using the bean with the name orderToSql to convert
the incoming message to an SQL statement.

 The orderToSql bean is shown in listing 7.8.

public class OrderToSqlBean {

 public String toSql(@XPath("order/@name") String name,
 @XPath("order/@amount") int amount,
 @XPath("order/@customer") String customer) {

 StringBuilder sb = new StringBuilder();
 sb.append("insert into incoming_orders ");
 sb.append("(part_name, quantity, customer) values (");
 sb.append("'").append(name).append("', ");
 sb.append("'").append(amount).append("', ");
 sb.append("'").append(customer).append("') ");

 return sb.toString();
 }
}

The orderToSql bean uses XPath to parse an incoming order message with a body
something like this:

<?xml version="1.0" encoding="UTF-8"?>
<order name="motor" amount="1" customer="honda"/>

The data in this order is then converted to an SQL statement like this:

insert into incoming_orders (part_name, quantity, customer)
values ('motor', '1', 'honda')

This SQL statement then becomes the body of a message that will be passed into the
JDBC endpoint. In this case, you’re updating the database by inserting a new row. So
you won’t be expecting any result back. But Camel will set the CamelJdbcUpdateCount
header to the number of rows updated. If there were any problems running the SQL
command, an SQLException would be thrown.

 If you were running a query against the database (an SQL select command),
Camel would return the rows as an ArrayList<HashMap<String, Object>>. Each

Listing 7.8 A bean that converts an incoming order to an SQL statement

 www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 7 Understanding components

entry in the ArrayList is a HashMap that maps the column name to a column value.
Camel would also set the CamelJdbcRowCount header to the number of rows returned
from the query.

 To run this example for yourself, change to the chapter7/jdbc directory of the
book’s source, and run the following command:

mvn test -Dtest=JdbcTest

Having raw access to the database through JDBC is a must-have ability in any integra-
tion framework. There are times, though, that you need to persist more than raw
data—sometimes you need to persist whole Java objects. You can do this with the JPA
component, which we’ll look at next.

7.6.2 Persisting objects with the JPA component
There is a new requirement at Rider Auto Parts: instead of passing around XML order
messages, management would like to adopt a POJO model for orders.

 A first step would be to transform the incoming XML message into an equivalent
POJO form. In addition, the order persistence route in the accounting department
would need to be updated to handle the new POJO body type. You could manually
extract the necessary information as you did for the XML message in listing 7.8, but
there is a better solution for persisting objects.

 The Java Persistence Architecture (JPA) is a wrapper layer on top of object-relational
mapping (ORM) products such as Hibernate, OpenJPA, TopLink, and the like. These
products map Java objects to relational data in a database, which means you can save a
Java object in your database of choice, and load it up later when you need it. This is a
pretty powerful ability, and it hides many details. Because this adds quite a bit of
complexity to your application, plain JDBC should be considered first to see if it meets
your requirements.

 To use the JPA component, you need to add the camel-jpa module to your project:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jpa</artifactId>
 <version>2.5.0</version>
</dependency>

You’ll also need to add JARs for the ORM product and database you’re using. The
examples in this section will use OpenJPA and the HyperSQL database, so you need
the following dependencies as well:

<dependency>
 <groupId>org.apache.openjpa</groupId>
 <artifactId>openjpa-persistence-jdbc</artifactId>
 <version>1.2.2</version>
</dependency>
<dependency>
 <groupId>hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>1.8.0.7</version>
</dependency>

 www.it-ebooks.info

http://www.it-ebooks.info/

225Working with databases (JDBC and JPA components)

The JPA component has a number of URI options, many of which can only be applied
to either a consumer or producer endpoint. The possible URI options are shown in
table 7.11.

Table 7.11 Common URI options used to configure the JPA component

Option
Consumer/

producer mode
Default
value

Description

persistenceUnit Both camel Specifies the JPA persistence unit name
used.

transactionManager Both null Sets the transaction manager to be used.
If transactions are enabled and this prop-
erty isn’t specified, Camel will use a
JpaTransactionManager. For more
on transactions, see chapter 9.

maximumResults Consumer -1 Specifies the maximum number of objects
to be returned from a query. The default of
-1 means an unlimited number of results.

maxMessagesPerPoll Consumer 0 Sets the maximum number of objects to
be returned during a single poll. The
default of 0 means an unlimited number
of results.

consumeLockEntity Consumer true Specifies whether the entities in the data-
base will lock while they’re being con-
sumed by Camel. By default, they will lock.

consumeDelete Consumer true Specifies whether the entity should
be deleted in the database after it’s
consumed.

consumer.delay Consumer 500 Sets the delay in milliseconds between
each poll.

consumer.initialDelay Consumer 1000 Sets the initial delay in milliseconds
before the first poll.

consumer.query Consumer Sets the custom SQL query to use when
consuming objects.

consumer.namedQuery Consumer References a named query to consume
objects.

consumer.nativeQuery Consumer Specifies a query in the native SQL dialect
of the database you’re using. This isn’t
very portable, but it allows you to take
advantage of features specific to a partic-
ular database.

flushOnSend Producer Causes objects that are sent to a JPA pro-
ducer to be persisted to the underlying
database immediately. Otherwise, they
may stay in memory with the ORM tool
until it decides to persist.

 www.it-ebooks.info

http://www.it-ebooks.info/

226 CHAPTER 7 Understanding components

A requirement in JPA is to annotate any POJOs that need to be persisted with the
javax.persistence.Entity annotation. The term entity is borrowed from relational
database terminology and roughly translates to an object in object-oriented program-
ming. This means that your new POJO order class needs to have this annotation if you
wish to persist it with JPA. The new order POJO is shown in listing 7.9.

@Entity
public class PurchaseOrder implements Serializable {
 private String name;
 private double amount;
 private String customer;

 public PurchaseOrder() {
 }

 public double getAmount() {
 return amount;
 }

 public void setAmount(double amount) {
 this.amount = amount;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void setCustomer(String customer) {
 this.customer = customer;
 }

 public String getCustomer() {
 return customer;
 }
}

This POJO can be created from the incoming XML order message easily with a mes-
sage translator, as shown in chapter 3. For testing purposes, you can use a producer
template to send a new PurchaseOrder to the accounting JMS queue, like so:

PurchaseOrder purchaseOrder = new PurchaseOrder();
purchaseOrder.setName("motor");
purchaseOrder.setAmount(1);
purchaseOrder.setCustomer("honda");
template.sendBody("jms:accounting", purchaseOrder);

Your route from section 7.6.1 is now a bit simpler. You send directly to the JPA end-
point after an order is received on the queue:

from("jms:accounting").to("jpa:camelinaction.PurchaseOrder");

Listing 7.9 An annotated POJO representing an incoming order

Required annotation
for objects to be
persisted

 www.it-ebooks.info

http://www.it-ebooks.info/

227Working with databases (JDBC and JPA components)

Now that your route is in place, you have to configure the ORM tool. This is by far the
most configuration you’ll have to do when using JPA with Camel. As we’ve mentioned,
ORM tools can be complex.

 There are two main bits of configuration: hooking the ORM tool’s entity manager
up to Camel’s JPA component, and configuring the ORM tool to connect to your data-
base. For demonstration purposes here, we’ll be using Apache OpenJPA, but you
could use any other JPA-compliant ORM tool.

 The beans required to set up the OpenJPA entity manager are shown in listing 7.10.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean id="jpa"
 class="org.apache.camel.component.jpa.JpaComponent">
 <property name="entityManagerFactory" ref="entityManagerFactory" />
 </bean>

 <bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">
 <property name="persistenceUnitName" value="camel" />
 <property name="jpaVendorAdapter" ref="jpaAdapter" />
 </bean>

 <bean id="jpaAdapter"
 class="org.springframework.orm.jpa.vendor.OpenJpaVendorAdapter">
 <property name="databasePlatform"
 value="org.apache.openjpa.jdbc.sql.HSQLDictionary" />
 <property name="database" value="HSQL" />
 </bean>

 <bean id="transactionTemplate"
 class="org.springframework.transaction.support.TransactionTemplate">
 <property name="transactionManager">
 <bean class="org.springframework.orm.jpa.JpaTransactionManager">
 <property name="entityManagerFactory" ref="entityManagerFactory" />
 </bean>
 </property>
 </bean>

</beans>

The Spring beans file shown in listing 7.10 does a number of things to set up JPA. First
off, it creates a Camel JpaComponent and specifies the entity manager to be used B.
This entity manager C is then hooked up to OpenJPA and the HyperSQL order data-
base D. It also sets up the entity manager so it can participate in transactions E.

 There is one more thing left to configure before JPA is up and running. When the
entity manager was created in listing 7.10 C, you set the persistenceUnitName to
"camel". This persistence unit defines what entity classes will be persisted, as well as the

Listing 7.10 Hooking up the Camel JPA component to OpenJPA

Hooks JPA
component up

to entity manager

B

Creates entity managerC

Uses OpenJPA
and HyperSQL
database

D

Allows JPA
component to
participate in
transactions

E

 www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 7 Understanding components

connection information for the underlying database. In JPA, this configuration is stored
in the persistence.xml file in the META-INF directory on the classpath. Listing 7.11
shows the configuration required for your application.

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0">

 <persistence-unit name="camel" transaction-type="RESOURCE_LOCAL">
 <class>camelinaction.PurchaseOrder</class>

 <properties>
 <property name="openjpa.ConnectionDriverName"
value="org.hsqldb.jdbcDriver" />
 <property name="openjpa.ConnectionURL"
value="jdbc:hsqldb:mem:order" />
 <property name="openjpa.ConnectionUserName" value="sa" />
 <property name="openjpa.ConnectionPassword" value="" />
 <property name="openjpa.jdbc.SynchronizeMappings"
value="buildSchema" />
 </properties>

 </persistence-unit>
</persistence>

There are two main things in listing 7.11 to be aware of. First, classes that you need
persisted need to be defined here B, and there can be more than one class element.
Also, if you need to connect to another database or otherwise change the connection
information to the database, you’ll need to do so here C.

 Now that all of the setup is complete, your JPA route is complete. To try out this
example, browse to the chapter7/jpa directory and run the JpaTest test case with this
Maven command:

mvn test -Dtest=JpaTest

This example sends a PurchaseOrder to the accounting queue and then queries the
database to make sure the entity class was persisted.

 Manually querying the database via JPA is a useful ability, especially in testing. In
JpaTest, the query was performed like so:

JpaEndpoint endpoint =
 (JpaEndpoint) context.getEndpoint("jpa:camelinaction.PurchaseOrder");
jpaTemplate = endpoint.getTemplate();

List list =
 jpaTemplate.find("select x from camelinaction.PurchaseOrder x");

assertEquals(1, list.size());
assertIsInstanceOf(PurchaseOrder.class, list.get(0));

First off, you grab the instance of the JpaTemplate on the JpaEndpoint. You then
search for instances of your entity class in the database using JPQL, which is similar to
SQL but deals with JPA entity objects instead of tables. A simple check is then per-
formed to make sure the object is the right type and that there is only one result.

Listing 7.11 Configuring the ORM tool with the persistence.xml file

Lists entity classes
to be persistedB

Provides database
connection
informationC

 www.it-ebooks.info

http://www.it-ebooks.info/

229In-memory messaging (Direct, SEDA, and VM components)

 Now that we’ve covered accessing databases, and messaging that can span the
entire web, we’re going to shift our attention to communication within the JVM.

7.7 In-memory messaging (Direct, SEDA, and VM components)
Having braved so many of Camel’s different messaging abilities in this chapter, you
might think there couldn’t be more. Yet there is still another important messaging
topic to cover: in-memory messaging.

 Camel provides three main components in the core to handle in-memory messag-
ing. For synchronous messaging, there is the Direct component. For asynchronous
messaging, there are the SEDA and VM components. The only difference between
SEDA and VM is that the SEDA component can be used for communication within a
single CamelContext, whereas the VM component is a bit broader and can be used for
communication within a JVM. If you have two CamelContexts loaded into an applica-
tion server, you can send messages between them using the VM component.

NOTE For more information on staged event-driven architecture (SEDA) in
general, see Matt Welsh’s SEDA page at http://www.eecs.harvard.edu/~mdw/
proj/seda/.

Let’s look first at the Direct component.

7.7.1 Synchronous messaging with the Direct component

The Direct component is about as simple as a component can get, but it’s extremely
useful. It’s probably the most common Camel endpoint you’ll see in a route.

 A direct endpoint URI looks like this:

direct:endpointName

There are no options that you can specify or backends to configure; there is just an
endpoint name.

 So what does this give you? The Direct component lets you make a synchronous
call to a route or, conversely, expose a route as a synchronous service.

 To demonstrate, say you have a route that’s exposed by a direct endpoint as follows:

from("direct:startOrder")
 .to("cxf:bean:orderEndpoint");

Sending a message to the direct:startOrder endpoint will invoke a web service
defined by the orderEndpoint CXF endpoint bean. Let’s also say that you send a mes-
sage to this endpoint using a ProducerTemplate, as you saw in section 7.4.2:

String reply =
 template.requestBody("direct:startOrder", params, String.class);

The ProducerTemplate will create a Producer under the hood that sends to the
direct:startOrder endpoint. In most other components, some processing happens
in between the producer and the consumer. For instance, in a JMS component, the
message could be sent to a queue on a JMS broker. With the Direct component, the

 www.it-ebooks.info

http://www.eecs.harvard.edu/~mdw/proj/seda/
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://www.it-ebooks.info/

230 CHAPTER 7 Understanding components

producer directly calls the consumer. And by directly, we mean that in the producer
there is a method invocation on the consumer. The only overhead of using the Direct
component is a method call!

 This simplicity and minimal overhead make the Direct component a great way of
starting routes and synchronously breaking up routes into multiple pieces. But even
though there is little overhead to using the Direct component, its synchronous nature
doesn’t fit well with all applications. If you need to operate asynchronously, you need
the SEDA or VM components, which we’ll look at next.

7.7.2 Asynchronous messaging with SEDA and VM

As you saw in the discussion of JMS earlier in the chapter (section 7.3), there are many
benefits to using message queuing as a means of sending messages. You also saw how a
routing application can be broken up into many logical pieces (routes) and con-
nected by using JMS queues as bridges. But using JMS for this purpose in an applica-
tion on a single host adds unnecessary complexity for some use cases.

 If you want to reap the benefits of asynchronous messaging but aren’t concerned
with JMS specification conformance or the built-in reliability that JMS provides, you
may want to consider an in-memory solution. By ditching the specification confor-
mance and any communications with a message broker (which can be costly), an in-
memory solution can be much faster. Note that there is no message persistence to the
disk, like in JMS, so you run the risk of losing messages in the event of a crash—your
application should be tolerant of losing messages.

 Camel provides two in-memory queuing components: SEDA and VM. They both
share the options listed in table 7.12.

Table 7.12 Common URI options used to configure the SEDA and VM components

Option Default value Description

size Unbounded Sets the maximum number of messages the
queue can hold.

concurrentConsumers 1 Sets the number of threads servicing incom-
ing exchanges. Increase this number to pro-
cess more exchanges concurrently.

waitForTaskToComplete IfReplyExpected Specifies whether or not the client should wait
for an asynchronous task to complete. The
default is to only wait if its an InOut MEP.
Other values include Always and Never.

timeout 30000 Sets the time in milliseconds to wait for an
asynchronous send to complete. A value less
than or equal to 0 will disable the timeout.

multipleConsumers false Specifies whether to allow the SEDA queue to
have behavior like a JMS topic (a publish-sub-
scribe style of messaging).

 www.it-ebooks.info

http://www.it-ebooks.info/

231In-memory messaging (Direct, SEDA, and VM components)

One of the most common uses for SEDA queues in Camel is to connect routes together
to form a routing application. For example, recall the example presented in 7.3.1
where you used a JMS topic to send copies of an incoming order to the accounting and
production departments. In that case, you used JMS queues to connect your routes
together. Because the only parts that are hosted on separate hosts are the accounting
and production queues, you can use SEDA queues for everything else. This new faster
solution is illustrated in figure 7.14.

 Any JMS messaging that you were doing within a CamelContext could be switched
over to SEDA. You still need to use JMS for the accounting and production queues,
because they’re located in physically separate departments.

 You may have noticed that the JMS xmlOrders topic has been replaced with a SEDA
queue in figure 7.14. In order for this SEDA queue to behave like a JMS topic (using a
publish-subscribe messaging model), you need to set the multipleConsumers URI
option to true, as shown in listing 7.12.

from("file:src/data?noop=true")
 .to("seda:incomingOrders");

from("seda:incomingOrders")
 .choice()
 .when(header("CamelFileName").endsWith(".xml"))
 .to("seda:xmlOrders?multipleConsumers=true")
 .when(header("CamelFileName").regex("^.*(csv|csl)$"))
 .to("seda:csvOrders?multipleConsumers=true");

from("seda:xmlOrders?multipleConsumers=true")
 .to("jms:accounting");
from("seda:xmlOrders?multipleConsumers=true")
 .to("jms:production");

Listing 7.12 A topic allows multiple receivers to get a copy of the message

seda:xmlOrders

jms:accounting

jms:productionseda:incomingOrders

Content based
router

seda:csvOrders

...

Figure 7.14 SEDA queues can be used as a low-overhead replacement for JMS
when messaging is within a CamelContext. For messages being sent to other
hosts, JMS can be used. In this case, all order routing is done via SEDA until the
order needs to go to the accounting and production departments.

Orders enter
set of routes

Both listening
queues get copies

 www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 7 Understanding components

This example behaves in the same way as the example in section 7.3.1, except that it
uses SEDA endpoints instead of JMS. Another important detail in this listing is that
SEDA endpoint URIs that are reused in consumer and producer scenarios need to be
exactly the same as each other. It’s not enough to specify the correct SEDA queue
name; you need to use the queue name and all options.

 To run this example, go to the chapter7/seda directory in the book’s source, and
run this command:

mvn compile exec:java -Dexec.mainClass=camelinaction.OrderRouter

This will output the following on the command line:

Accounting received order: message1.xml
Production received order: message1.xml

Why did you get this output? Well, you had a single order file named message1.xml,
and it was published to the xmlOrders topic. Both the accounting and production
queues were subscribed to the topic, so each received a copy. The testing routes con-
sumed the messages on those queues and output the messages.

 So far you’ve been kicking off routes either by hand or by consuming from a file-
system directory. How can you kick off routes automatically? Or better yet, how can
you schedule a route’s execution to occur?

7.8 Automating tasks (Timer and Quartz components)
Often in enterprise projects you’ll need to schedule tasks to occur either at a specified
time or at regular intervals. Camel supports this kind of service with the Timer and
Quartz components. The Timer component is useful for simple recurring tasks, but
when you need more control of when things get started, the Quartz component is a must.

 In this section, we’re first going to look at the Timer component and then move
on to the more advanced Quartz component.

7.8.1 Using the Timer component

The Timer component comes with Camel’s core library and uses the JRE’s built-in
timer mechanism to generate message exchanges at regular intervals. This compo-
nent only supports consuming, because sending to a timer doesn’t really make sense.

 Some common URI options are listed in table 7.13.

Table 7.13 Common URI options used to configure the Timer component

Option Default value Description

period 1000 Specifies the time in milliseconds between generated events.

delay 0 Specifies the time in milliseconds before the first event is generated.

fixedRate false Specifies whether to create events at a fixed rate based on the period.

daemon true Sets the timer thread to run as a daemon.

 www.it-ebooks.info

http://www.it-ebooks.info/

233Automating tasks (Timer and Quartz components)

As an example, let’s print a message stating the time to the console every 2 seconds.
The route looks like this:

from("timer://myTimer?period=2000")
.setBody().simple("Current time is ${header.firedTime}")
.to("stream:out");

The timer URI is configuring the underlying java.util.Timer to have the name
myTimer and an execution interval of 2000 milliseconds.

TIP When the value of milliseconds gets large, you can opt for a shorter nota-
tion using the s, m, and h keywords. For example, 2000 milliseconds can be
written as 2s, meaning 2 seconds. 90000 milliseconds can be written as 1m30s,
and so on.

When this timer fires an event, Camel creates an exchange with an empty body and
sends it along the route. In this case, you’re setting the body of the message using a
Simple language expression. The firedTime header was set by the Timer component;
for a full list of headers set, see the online documentation (http://camel.apache.org/
timer.html).

NOTE The Timer object and corresponding thread can be shared. If you use
the same timer name in another route, it will reuse the same Timer object.

You can run this simple example by changing to the chapter7/timer directory of the
book’s source and running this command:

mvn compile exec:java -Dexec.mainClass=camelinaction.TimerExample

You’ll see output similar to the following:

Current time is Wed Feb 10 00:43:31 NST 2010
Current time is Wed Feb 10 00:43:33 NST 2010
Current time is Wed Feb 10 00:43:35 NST 2010

As you can see, an event was fired every 2 seconds. But suppose you wanted to sched-
ule a route to execute on the first day of each month? You couldn’t do this easily with
the Timer component. You now have a need for Quartz.

7.8.2 Enterprise scheduling with Quartz

Like the Timer component, the Quartz component allows you to schedule the gener-
ation of message exchanges. But the Quartz component gives you much more control
over how this scheduling happens. You can also take advantage of Quartz’s many
other enterprise features.

 We won’t be covering all of Quartz’s features here—only ones exposed directly in
Camel. For a complete look at how to use Quartz, please see the Quartz website:
http://www.quartz-scheduler.org.

 The common URI options for the Quartz component are listed in table 7.14.

 www.it-ebooks.info

http://camel.apache.org/timer.html
http://camel.apache.org/timer.html
http://www.quartz-scheduler.org
http://www.it-ebooks.info/

234 CHAPTER 7 Understanding components

Before you can use the Quartz component, you’ll need to add the following depen-
dency to your Maven POM file:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-quartz</artifactId>
 <version>2.5.0</version>
</dependency>

Let’s now reproduce the timer example from the previous section with Quartz. To do
this, you can use the trigger.repeatInterval option, which is similar to the period
option for the Timer component. The route looks like this:

from("quartz://myTimer?trigger.repeatInterval=2000&trigger.repeatCount=-1")
.setBody().simple("Current time is ${header.firedTime}")
.to("stream:out");

Although this behaves in the same way as the Timer example, there are a few different
things going on under the covers.

 First off, myTimer sets the underlying Trigger object’s name. Timers in Quartz
are made up of a Trigger and a JobDetail. Triggers can also have a group name
associated with them, which you can specify by adding the group name to your URI,
as follows:

quartz://myGroupName/myTimer?options...

If the group name is omitted, as in the previous route, “Camel” is used as the group
name. By default, a SimpleTrigger is created to schedule events.

 The trigger.repeatInterval and trigger.repeatCount properties configured
this trigger to fire every 2000 milliseconds for as long as the application is running (a
repeat count of -1 causes the trigger to repeat indefinitely). You may be thinking that
the option names are a bit long, but there is a reason for this. As stated in table 7.14,
options starting with trigger allow you to set properties on the Trigger object. In the

Table 7.14 Common URI options used to configure the Quartz component

Option Default value Description

cron none Specifies a cron expression used to determine when
the timer fires.

trigger.repeatCount 0 Specifies the number of times to repeat the trigger. A
value of -1 causes the timer to repeat indefinitely.

trigger.repeatInterval 0 Specifies the interval in milliseconds at which to gen-
erate events.

job.propertyName null Sets the property with name propertyName on the
underlying Quartz JobDetail.

trigger.propertyName null Sets the property with name propertyName on the
underlying Quartz Trigger.

 www.it-ebooks.info

http://www.it-ebooks.info/

235Summary and best practices

case of the trigger.repeatInterval URI option, this will call the setRepeatInterval
method on the SimpleTrigger object.

 You can similarly set options on the JobDetail by using properties that start with
job, followed by a valid property name. For instance, you can set the job name by
using the job.name URI option.

USING CRON TRIGGERS

So far, you’ve replaced the Timer component example with a functionally equivalent
Quartz-based example. How would you schedule something more complex, like kick-
ing off a route on the first day of each month? The answer is by using cron expres-
sions. Readers familiar with Linux or Unix will probably have heard of the cron
scheduling application. Quartz allows you to use scheduling syntax similar to the ven-
erable cron application.

 A cron expression is a string consisting of 6–7 fields separated by white space. Each
field denotes a date or range of dates. The structure of a cron expression is as follows:

<Seconds> <Minutes> <Hours> <Day of Month> <Month> <Day of week> <Year>

These accept numeric values (and optional textual ones) for the times you want a trig-
ger to fire. More information on cron expressions can be found on the Quartz website
(http://www.quartz-scheduler.org/docs/tutorials/crontrigger.html).

 The cron expression for occurring on the first day of each month at 6:00 a.m. is
the following:

 0 0 6 1 * ?

In this expression, the third digit denotes the hour at which to execute, and the
fourth digit is the day of the month. You can also see that a star was placed in the
month column so that every month would be triggered.

 Setting up Quartz to use cron triggers in Camel is easy. You just need to use the
cron option and make sure to replace all white space with plus characters (+). Your
URI becomes the following:

quartz://firstDayOfTheMonth?cron=0+0+6+1+*+?

Using this URI in a route will cause a message exchange to be generated (running the
route) on the first day of each month.

 You should be able to see now how the scheduling components in Camel can allow
you to execute routes at specified times. This is an important ability in time-sensitive
enterprise applications.

7.9 Summary and best practices
Congratulations on making it through the barrage of components we covered in this
chapter. By now, you should have a good understanding of how to use them in your
own applications.

 Here are some of the key ideas you should take away from this chapter:

 www.it-ebooks.info

http://www.quartz-scheduler.org/docs/tutorials/crontrigger.html
http://www.it-ebooks.info/

236 CHAPTER 7 Understanding components

■ There are tons of Camel components. One of the great things about Camel is its
extensive component library. You can rest easy knowing that most things you’ll
ever need to connect to are covered by Camel.

■ The Camel website has documentation on all components available. We could only
cover the most widely used and important components in this book, so you
should be aware that if you need to use one of the many other components,
documentation is available at http://camel.apache.org/components.html.

■ Camel’s component model allows for your own extensions. We briefly touched on how
components are resolved at runtime in Camel. Camel imposes no restrictions
on where your components come from, so you can easily write your own (as
described in chapter 11) and include it in your Camel application.

■ Don’t write to files manually; use the File and FTP components. Camel’s File and FTP
components have many options that will suit most file-processing scenarios.
Don’t reinvent the wheel—use what Camel has to offer.

■ Use the JMS component for asynchronous messaging with JMS. Camel makes it easy to
send messages to and receive them from JMS providers. You will no longer have
to write dozens of lines of JMS API calls to send or receive a simple message.

■ Use the CXF component for all your web services needs. The CXF component allows
you to make calls to a variety of web service types or to expose your Camel route
to the world as a web service.

■ Use the MINA component for network communications. Network programming can be
difficult, given the low-level concepts you need to deal with. The MINA compo-
nent handles these details for you, making it easy to communicate over network
protocols such as TCP and UDP.

■ Hook your routes into databases using the JDBC and JPA components. The JDBC compo-
nent allows you to access databases using tried-and-true SQL, whereas the JPA
component is all about persisting Java objects into databases.

■ Use in-memory messaging when reliability isn’t a concern but speed is. Camel provides
three choices for in-memory messaging: the Direct, SEDA, and VM components.

■ Kick off routes at specified intervals using the Quartz or Timer components. Camel
routes can do useful things. Some tasks need to be executed at specified inter-
vals, and the Quartz and Timer components come into play here.

Components in Camel fill the role of bridging out to other transports, APIs, and data
formats. They’re also the on and off ramps to Camel’s routing abilities.

 Back in chapter 2, you were exposed to some of Camel’s routing capabilities by
using some standard EIPs. In the next chapter, we’ll look at some of the more complex
EIPs available in Camel. Unlike when you read chapter 2, you’re now armed with the
knowledge of how to connect to many different services with Camel. Keep your knowl-
edge of components handy—you can think up some interesting integration scenarios!

 www.it-ebooks.info

http://camel.apache.org/components.html
http://www.it-ebooks.info/

237

Enterprise
 integration patterns

Today’s businesses aren’t run on a single monolithic system, and most businesses
have a full range of disparate systems. There is an ever-increasing demand for those
systems to integrate with each other and with external business partners and gov-
ernment systems.

 Let’s face it, integration is hard. To help deal with the complexity of integration
problems, enterprise integration patterns (EIPs) have become the standard way to
describe, document, and implement complex integration problems. We explain
the patterns we discuss in this book, but to learn more about them and others, see
the Enterprise Integration Patterns website and the associated book: http://
www.enterpriseintegrationpatterns.com/.

This chapter covers
■ The Aggregator EIP
■ The Splitter EIP
■ The Routing Slip EIP
■ The Dynamic Router EIP
■ The Load Balancer EIP

 www.it-ebooks.info

http://www.enterpriseintegrationpatterns.com/
http://www.enterpriseintegrationpatterns.com/
http://www.it-ebooks.info/

238 CHAPTER 8 Enterprise integration patterns

8.1 Introducing enterprise integration patterns
Apache Camel implements EIPs, and because the EIPs are essential building blocks in
the Camel routes, you’ll bump into EIPs throughout this book, starting in chapter 2. It
would be impossible for this book to cover all the EIPs Camel supports, which currently
total around 60 patterns. This chapter is devoted to covering five of the most powerful
and feature-rich patterns. The patterns discussed in this chapter are listed in table 8.1.

Let’s look at these patterns in a bit more detail.

8.1.1 The Aggregator and Splitter EIPs

The first two patterns listed in table 8.1 are related. The Splitter can split out a single
message into multiple submessages, and the Aggregator can combine those submes-
sages back into a single message. They’re opposite patterns.

 The EIPs allow you to build patterns LEGO style, which means that patterns can be
combined together to form new patterns. For example, you can combine the Splitter
and the Aggregator into what is known as the Composed Message Processor EIP, as
illustrated in figure 8.1.

Table 8.1 EIPs covered in this chapter

Pattern Summary

Aggregator Used to combine results of individual but related messages into a single outgoing
message. You can view this as the reverse of the Splitter pattern. This pattern is cov-
ered in section 8.2.

Splitter Used to split a message into pieces that are routed separately. This pattern is cov-
ered in section 8.3.

Routing Slip Used to route a message in a series of steps, where the sequence of steps isn’t known
at design time and may vary for each message. This pattern is covered in section 8.4.

Dynamic Router Used to route messages with a dynamic router dictating where the message goes.
This pattern is covered in section 8.5.

Load Balancer Used to balance the load to a given endpoint using a variety of different balancing pol-
icies. This pattern is covered in section 8.6.

Splitter Router AggregatorNew
order

Validated
order

Gadget inventory

Widget inventory

Composed Message Processor EIP

Figure 8.1
The Composed
Message Processor
EIP splits up the mes-
sage, routes the sub-
messages to the
appropriate destina-
tions, and re-aggre-
gates the response
back into a single
message.

 www.it-ebooks.info

http://www.it-ebooks.info/

239The Aggregator EIP

The Aggregator EIP is likely the most sophisticated and most advanced EIP imple-
mented in Camel. It has many use cases, such as aggregating incoming bids for auc-
tions or throttling stock quotes.

8.1.2 The Routing Slip and Dynamic Router EIPs

A question that is often asked on the Camel mailing list is how to route messages dynam-
ically. The answer is to use EIPs such as Recipient List, Routing Slip, and Dynamic Router.
We covered Recipient List in chapter 2, and in this chapter we’ll show you how to use
the Routing Slip and Dynamic Router patterns.

8.1.3 The Load Balancer EIP

The EIP book doesn’t list the Load Balancer, which is a pattern implemented in
Camel. Suppose you route PDF messages to network printers, and those printers come
and go online. You can use the Load Balancer to send the PDF messages to another
printer if one printer is unresponsive.

 That covers the five EIPs we’ll cover in this chapter. It’s now time to look at the first
one in detail, the Aggregator EIP.

8.2 The Aggregator EIP
The Aggregator EIP is important and complex, so we’ll cover it well. Don’t despair if
you don’t understand the pattern in the first few pages.

 The Aggregator combines many related incoming messages into a single aggre-
gated message, as illustrated in figure 8.2.

 The Aggregator receives a stream of messages and identifies messages that are
related, which are then aggregated into a single combined message. Once a completion

Aggregator

E

Message
1

E

Message
2

E

Message
3

D

Aggregated
message

Figure 8.2 The Aggregator stores incoming messages until it receives a complete set of related
messages. Then the Aggregator publishes a single message distilled from the individual messages.

Example uses of Aggregator
The Aggregator EIP supports many use cases, such as the loan broker example from
the EIP book, where brokers send loan requests to multiple banks and aggregate the
replies to determine the best deal.

You could also use the Aggregator in an auction system to aggregate current bids.
Also imagine a stock market system that continuously receives a stream of stock
quotes, and you want to throttle this to publish the latest quote every 5 seconds. This
can be done using the Aggregator to choose the latest message and thus trigger a
completion every 5 seconds.

 www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 8 Enterprise integration patterns

condition occurs, the aggregated message is sent to the output channel for further pro-
cessing. We’ll cover how this process works in detail in the next section.

 When using the Aggregator, you have to pay attention to the following three con-
figuration settings, which must be configured. Failure to do so will cause Camel to fail
on startup and to report an error regarding the missing configuration.

■ Correlation identifier—An Expression that determines which incoming messages
belong together

■ Completion condition—A Predicate or time-based condition that determines
when the result message should be sent

■ Aggregation strategy—An AggregationStrategy that specifies how to combine
the messages into a single message

In this section, we’ll look at a simple example that will aggregate messages containing
alphabetic characters, such as A, B, and C. This will keep things simple, making it eas-
ier to follow what’s going on. The Aggregator is equally equipped to work with big
loads, but that can wait until we’ve covered the basic principles.

8.2.1 Introducing the Aggregator EIP
Suppose you want to collect any three messages together and combine them together.
Given three messages containing A, B, and C, you want the aggregator to output a sin-
gle message containing “ABC”.

 Figure 8.3 shows how this would work. When the first message with correlation
identifier 1 arrives, the aggregator initializes a new aggregate and stores the message
inside the aggregate. In this example, the completion condition is when three mes-
sages have been aggregated, so the aggregate isn’t yet complete. When the second
message with correlation identifier 1 arrives, the EIP adds it to the already existing
aggregate. The third message specifies a different correlation identifier value of 2, so
the aggregator starts a new aggregate for that value. The fourth message relates to the
first aggregate (identifier 1), so the aggregate has now aggregated three messages and
the completion condition is fulfilled. As a result, the aggregator marks the aggregate
as complete and publishes the resulting message:

1

A

1

B

2

F

1

C

Incoming
messages

Correlation
identifer

Message
body

Aggregates
1 A 1 A B

2 F

1 A B 1 A B C

2 F

1
ABC

Published
messages

Figure 8.3 Illustrates the Aggregator EIP in action, with partial aggregated messages updated with
arriving messages.

 www.it-ebooks.info

http://www.it-ebooks.info/

241The Aggregator EIP

As mentioned before, there are three configurations in play when using the Aggrega-
tor EIP: correlation identifier, completion condition, and aggregation strategy. To
understand how these three are specified and how they work, let’s start with the exam-
ple of a Camel route in the Java DSL (with the configurations in bold):

public void configure() throws Exception {
 from("direct:start")
 .log("Sending ${body} with correlation key ${header.myId}")
 .aggregate(header("myId"), new MyAggregationStrategy())
 .completionSize(3)
 .log("Sending out ${body}")
 .to("mock:result");

The correlation identifier is header("myId"), and it’s a Camel Expression. It returns
the header with the key "myId". The second configuration element is the Aggrega-
tionStrategy, which is a class. We’ll cover this class in more detail in a moment.
Finally, the completion condition is based on size (there are five kinds of completion
conditions, listed in table 8.3). It simply states that when three messages have been
aggregated, the completion should trigger.

 The same example in Spring XML is as follows:

<bean id="myAggregationStrategy"
 class="camelinaction.MyAggregationStrategy"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <log message="Sending ${body} with key ${header.myId}"/>
 <aggregate strategyRef="myAggregationStrategy" completionSize="3">
 <correlationExpression>
 <header>myId</header>
 </correlationExpression>
 <log message="Sending out ${body}"/>
 <to uri="mock:result"/>
 </aggregate>
 </route>
</camelContext>

The Spring XML is a little different than the Java DSL because you define the Aggre-
gationStrategy using the strategyRef attribute on the <aggregate> tag. This refers
to a Spring <bean>, which is listed in the top of the Spring XML file. The
completion condition is also defined as a completionSize attribute. The most notice-
able difference is how the correlation identifier is defined. In Spring XML, it is
defined using the <correlationExpression> tag, which has a child tag that includes
the Expression.

 The source code for the book contains this example in the chapter8/aggregator
directory. You can run the examples using the following Maven goals:

mvn test -Dtest=AggregateABCTest
mvn test -Dtest=SpringAggregateABCTest

The examples use the following unit test method:

 www.it-ebooks.info

http://www.it-ebooks.info/

242 CHAPTER 8 Enterprise integration patterns

public void testABC() throws Exception {
 MockEndpoint mock = getMockEndpoint("mock:result");
 mock.expectedBodiesReceived("ABC");

 template.sendBodyAndHeader("direct:start", "A", "myId", 1);
 template.sendBodyAndHeader("direct:start", "B", "myId", 1);
 template.sendBodyAndHeader("direct:start", "F", "myId", 2);
 template.sendBodyAndHeader("direct:start", "C", "myId", 1);

 assertMockEndpointsSatisfied();
}

This unit test sends the same messages as shown in figure 8.3—four messages in total.
When you run the test, you will see the output on the console:

INFO route1 - Sending A with correlation key 1
INFO route1 - Sending B with correlation key 1
INFO route1 - Sending F with correlation key 2
INFO route1 - Sending C with correlation key 1
INFO route1 - Sending out ABC

Notice how the console output matches the sequence in which the messages were
aggregated in the example from figure 8.3. As you can see from the console output,
the messages with correlation key 1 were completed, because they met the completion
condition, which was size based on three messages. The last line of the output shows
the published message, which contains the letters “ABC.”

 So what happens with the F message? Well, its completion condition has not been
met, so it waits in the aggregator. You could modify the test method to send in addi-
tional two messages to complete that second group as well:

template.sendBodyAndHeader("direct:start", "G", "myId", 2);
template.sendBodyAndHeader("direct:start", "H", "myId", 2);

Let’s now turn our focus to how the Aggregator EIP combines the messages, which
causes the A, B, and C messages to be published as a single message. This is where the
AggregationStrategy comes into the picture, because it orchestrates this.

USING AGGREGATIONSTRATEGY

The AggregationStrategy class is located in the org.apache.camel.proces-
sor.aggregation package, and it defines a single method:

public interface AggregationStrategy {
 Exchange aggregate(Exchange oldExchange, Exchange newExchange);
}

If you are having a déjà vu moment, its most likely because AggregationStrategy is
also used by the Content Enricher EIP, which we covered in chapter 3.

 Listing 8.1 shows the strategy used in the previous example.

import org.apache.camel.Exchange;
import org.apache.camel.processor.aggregate.AggregationStrategy;

public class MyAggregationStrategy implements AggregationStrategy {

 public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
 if (oldExchange == null) {

Listing 8.1 AggregationStrategy for merging messages together

 www.it-ebooks.info

http://www.it-ebooks.info/

243The Aggregator EIP

 return newExchange;
 }

 String oldBody = oldExchange.getIn()
 .getBody(String.class);
 String newBody = newExchange.getIn()
 .getBody(String.class);
 String body = oldBody + newBody;

 oldExchange.getIn().setBody(body);
 return oldExchange;
 }
}

At runtime, the aggregate method is invoked every time a new message arrives. In this
example, it will be invoked four times: one for each arriving message A, B, F, and C. To
show how this works, we’ve listed the invocations as they would happen, in table 8.2.

Notice in table 8.2 that the oldExchange parameter is null on two occasions. This
occurs when a new correlation group is formed (no preexisting messages have arrived
with the same correlation identifier). In this situation, you simply want to return the
message as is, because there are no other messages to combine it with B.

 On the subsequent aggregations, neither parameter is null so you need to merge
the data into one Exchange. In this example, you grab the message bodies and add
them together C. Then you replace the existing body in the oldExchange with the
updated body.

NOTE The Aggregator EIP uses synchronization, which ensures that the Aggre-
gationStrategy is thread safe—only one thread is invoking the aggregate
method at any time. The Aggregator also ensures ordering, which means the
messages are aggregated in the same order as they are sent into the Aggregator.

You should now understand the principles of how the Aggregator works. For a mes-
sage to be published from the Aggregator, a completion condition must have been
met. In the next section, we’ll discuss this and review the different conditions Camel
provides out of the box.

8.2.2 Completion conditions for the Aggregator

Completion conditions play a bigger role in the Aggregator than you might think.
Imagine a situation where a condition never occurs, causing aggregated messages

Table 8.2 Sequence of invocations of aggregate method occurring at runtime

Arrived oldExchange newExchange Description

A null A The first message arrives for the first group

B A B The second messages arrives for the first group

F null F The first message arrives for the second group

C AB C The third message arrives for the first group

Occurs for a
new groupB

C Combines
message bodies

 www.it-ebooks.info

http://www.it-ebooks.info/

244 CHAPTER 8 Enterprise integration patterns

never to be published. For example, suppose the C message never arrived in the exam-
ple in section 8.2.1. To remedy this, you could add a timeout condition that would
react if all messages aren’t received within a certain time period.

 To cater for that situation and others, Camel provides five different completion
conditions, which are listed in table 8.3. You can mix and match them according to
your needs.

The Aggregator supports using multiple completion conditions, such as using both
the completionSize and completionTimeout conditions. When using multiple condi-
tions, though, the winner takes all—the completion condition that completes first will
result in the message being published.

NOTE The source code for the book contains examples in the chapter8/
aggregator directory for all conditions; you can refer to them for further
details. Also the Aggregator documentation on the Camel website has more
details: http://camel.apache.org/aggregator2.

Table 8.3 Different kinds of completion conditions provided by the Aggregator EIP

Condition Description

completionSize Defines a completion condition based on the number of mes-
sages aggregated together. You can either use a fixed value
(int) or use an Expression to dynamically decide a size
at runtime.

completionTimeout Defines a completion condition based on an inactivity time-
out. This condition triggers if a correlation group has been
inactive longer than the specified period. Timeouts are sched-
uled for each correlation group, so the timeout is individual to
each group.

You can either use a fixed value (long) or use an
Expression to dynamically decide a timeout at runtime.
The period is defined in milliseconds. You can’t use this con-
dition together with the completionInterval.

completionInterval Defines a completion condition based on a scheduled inter-
val. This condition triggers periodically. There is a single
scheduled timeout for all correlation groups, which causes all
groups to complete at the same time.

The period (long) is defined in milliseconds. You can’t use
this condition together with the completionTimeout.

completionPredicate Defines a completion condition based on whether the
Predicate matched. See also the
eagerCheckCompletion option in table 8.5.

completionFromBatchConsumer Defines a completion condition that is only applicable when the
arriving Exchanges are coming from a BatchConsumer
(http://camel.apache.org/batch-consumer.html). At the time
of writing, the following components support this condition:
File, FTP, Mail, iBatis, and JPA.

 www.it-ebooks.info

http://camel.apache.org/batch-consumer.html
http://camel.apache.org/aggregator2
http://www.it-ebooks.info/

245The Aggregator EIP

We’ll now look at how you can use multiple completion conditions.

USING MULTIPLE COMPLETION CONDITIONS

The source code for this book contains an example in the chapter8/aggregator direc-
tory showing how to use multiple completion conditions. You can run the example
using the following Maven goals:

mvn test -Dtest=AggregateXMLTest
mvn test -Dtest=SpringAggregateXMLTest

The route in the Java DSL is as follows:

import static org.apache.camel.builder.xml.XPathBuilder.xpath;

public void configure() throws Exception {
 from("direct:start")
 .log("Sending ${body}")
 .aggregate(xpath("/order/@customer"), new MyAggregationStrategy())
 .completionSize(2).completionTimeout(5000)
 .log("Sending out ${body}")
 .to("mock:result");
}

As you can see from the bold code in the route, using a second condition is just a mat-
ter of adding an additional completion condition.

 The same example in Spring XML is shown here:

<bean id="myAggregationStrategy"
 class="camelinaction.MyAggregationStrategy"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <log message="Sending ${body}"/>
 <aggregate strategyRef="myAggregationStrategy"
 completionSize="2" completionTimeout="5000">
 <correlationExpression>
 <xpath>/order/@customer</xpath>
 </correlationExpression>
 <log message="Sending out ${body}"/>
 <to uri="mock:result"/>
 </aggregate>
 </route>
</camelContext>

If you run this example, it will use the following test method:

public void testXML() throws Exception {
 MockEndpoint mock = getMockEndpoint("mock:result");
 mock.expectedMessageCount(2);
 template.sendBody("direct:start",
 "<order name=\"motor\" amount=\"1000\" customer=\"honda\"/>");
 template.sendBody("direct:start",
 "<order name=\"motor\" amount=\"500\" customer=\"toyota\"/>");
 template.sendBody("direct:start",

 www.it-ebooks.info

http://www.it-ebooks.info/

246 CHAPTER 8 Enterprise integration patterns

 "<order name=\"gearbox\" amount=\"200\" customer=\"toyota\"/>");
 assertMockEndpointsSatisfied();
}

This example should cause the aggregator to publish two outgoing messages, as
shown in the following console output; one for Honda and one for Toyota.

09:37:35 - Sending <order name="motor" amount="1000" customer="honda"/>
09:37:35 - Sending <order name="motor" amount="500" customer="toyota"/>
09:37:35 - Sending <order name="gearbox" amount="200" customer="toyota"/>
09:37:35 - Sending out
 <order name="motor" amount="500" customer="toyota"/>
 <order name="gearbox" amount="200" customer="toyota"/>
09:37:41 - Sending out
 <order name="motor" amount="1000" customer="honda"/>

If you look closely at the test method and the output from the console, you should
notice that the Honda order arrived first, but it was the last to be published. This is
because its completion was triggered by the timeout, which was set to 5 seconds. In the
meantime, the Toyota order had its completion triggered by the size of two messages,
so it was published first.

TIP The Aggregator EIP allows you to use up to four completion conditions;
the completionTimeout and completionInterval conditions can’t be used at
the same time.

Using multiple completion conditions makes good sense if you want to ensure that
aggregated messages eventually get published. For example, the timeout condition
ensures that after a period of inactivity the message will be published. In that regard,
you can use the timeout condition as a fallback condition, with the price being that
the published message will only be partly aggregated. Suppose you expected two mes-
sages to be aggregated into one, but you only received one message; the next section
reveals how you can tell which condition triggered the completion.

AGGREGATED EXCHANGE PROPERTIES

Camel enriches the published Exchange with the completion details listed in table 8.4.

Table 8.4 Properties on the Exchange related to aggregation

Property Type Description

Exchange.AGGREGATED
SIZE

Integer The total number of arrived messages aggregated.

Exchange.AGGREGATED
COMPLETED BY

String The condition that triggered the completion. Possible
values are "size", "timeout", "interval",
"predicate", and "consumer".

The "consumer" value represents the completion from
batch consumer.

Exchange.AGGREGATED
CORRELATION KEY

String The correlation identifier as a String.

 www.it-ebooks.info

http://www.it-ebooks.info/

247The Aggregator EIP

The information listed in table 8.4 allows you to know how a published aggregated
Exchange was completed, and how many messages were combined. For example, you
could log to the console which condition completed, simply by adding this to the
Camel route:

.log("Completed by ${property.CamelAggregatedCompletedBy}")

This information might come in handy in your business logic, when you need to know
whether or not all messages were aggregated. You can tell this by checking the
AGGREGATED_COMPLETED_BY property, which could contain either the value "size" or
"timeout". If the value is "size", all the messages were aggregated; if the value is
"timeout", a timeout occurred, and not all expected message were aggregated.

 The Aggregator has additional configuration options that you may need to use.
For example, you can specify how it should react when an arrived message contains an
invalid correlation identifier.

ADDITIONAL CONFIGURATION OPTIONS

The Aggregator is the most sophisticated EIP implemented in Camel, and table 8.5
lists the additional configuration options you can use to tweak it to fit your needs.

Table 8.5 Additional configuration options available for the Aggregator EIP

Configuration option Default Description

eagerCheckCompletion false This option specifies whether or not to eager-
check for completion. Eager checking means
Camel will check for completion conditions before
aggregating. By default, Camel will check for com-
pletion after aggregation.

This option is used to control how the
completion-Predicate condition
behaves. If the option is false, the completion
predicate will use the aggregated Exchange for
evaluation. If true, the incoming Exchange is
used for evaluation.

closeCorrelationKey-
OnCompletion

null This option determines whether a given correla-
tion group should be marked as closed when it’s
completed. If a correlation group is closed, any
subsequent arriving Exchanges are rejected
and a ClosedCorrelationKeyException
is thrown.

This option uses an Integer parameter that
represents a maximum bound for a least recently
used (LRU) cache, which keeps track of closed
correlation keys. Note that this cache is in-
memory only and will be reset if Camel is
restarted.

 www.it-ebooks.info

http://www.it-ebooks.info/

248 CHAPTER 8 Enterprise integration patterns

If you want to learn more about the configuration options listed in table 8.5, there are
examples for each option in the source code for the book in the chapter8/aggregator
directory. You can run test examples using the following Maven goals:

mvn test -Dtest=AggregateABCEagerTest
mvn test -Dtest=SpringAggregateABCEagerTest
mvn test -Dtest=AggregateABCCloseTest
mvn test -Dtest=SpringAggregateABCCloseTest
mvn test -Dtest=AggregateABCInvalidTest
mvn test -Dtest=SpringAggregateABCInvalidTest
mvn test -Dtest=AggregateABCGroupTest
mvn test -Dtest=SpringAggregateABCGroupTest

In the next section, we’ll look at solving the problems with persistence. The Aggrega-
tor, by default, uses an in-memory repository to hold the current in-progress aggre-
gated messages, and those messages will be lost if the application is stopped or the
server crashes. To remedy this, you need to use a persisted repository.

8.2.3 Using persistence with the Aggregator

The Aggregator is a stateful EIP because it needs to store the in-progress aggregates
until completion conditions occur and the aggregated message can be published. By
default, the Aggregator will keep state in memory only. If the application is shut down
or the host container crashes, the state will be lost.

 To remedy this problem, you need to store the state in a persistent repository.
Camel provides a pluggable feature so you can use a repository of your choice. This
comes in two flavors:

■ AggregationRepository—An interface that defines the general operations for
working with a repository, such as adding data to and removing data from it.
By default, Camel uses MemoryAggregationRepository, which is a memory-
only repository.

ignoreInvalid-
CorrelationKeys

false This option specifies whether or not to ignore
invalid correlation keys. By default, Camel throws
a CamelExchange-Exception for invalid
keys. You can suppress this by setting this
option to true, in which case Camel skips
the invalid message.

groupExchanges false This option is used for grouping arriving
Exchanges into a single combined Exchange
holder that contains the Exchanges. If it’s
enabled, you should not configure an
AggregationStrategy.

Table 8.5 Additional configuration options available for the Aggregator EIP (continued)

Configuration option Default Description

 www.it-ebooks.info

http://www.it-ebooks.info/

249The Aggregator EIP

■ RecoverableAggregationRepository—An interface that defines additional
operations supporting recovery. Camel provides such a repository out of the
box in the camel-hawtdb component. We’ll cover recovery in section 8.2.4.

We’ll look at how you can use HawtDB as a persistent repository.

USING CAMEL-HAWTDB

To demonstrate how to use HawtDB with the Aggregator, we’ll return to the ABC
example. In essence, all you need to do is instruct the Aggregator to use HawtDB-
AggregationRepository as its repository.

 First, though, you must set up HawtDB, which is done as follows:

AggregationRepository myRepo = new
 HawtDBAggregationRepository("myrepo", "data/myrepo.dat");

Or, in Spring XML you would do this:

<bean id="myRepo
 class="org.apache.camel.component.hawtdb.HawtDBAggregationRepository">
 <property name="repositoryName" value="myrepo"/>
 <property name="persistentFileName" value="data/myrepo.dat"/>
</bean>

As you can see, this creates a new instance of HawtDBAggregationRepository and pro-
vides two parameters: the repository name, which is a symbolic name, and the physical
filename to use as persistent storage. The repository name must be specified because
you can have multiple repositories in the same file.

TIP You can find information about the additional supported options for the
HawtDB component at the Camel website: http://camel.apache.org/hawtdb

To use HawtDBAggregationRepository in the Camel route, you can instruct the
Aggregator to use it as shown here.

AggregationRepository myRepo = new
 HawtDBAggregationRepository("myrepo", "data/myrepo.dat");

from("file://target/inbox")
 .log("Consuming ${file:name}")

Listing 8.2 Using HawtDB with Aggregator in Java DSL

About HawtDB
HawtDB is a lightweight and embeddable file-based key/value database. It allows
Camel to provide persistence for various Camel features, such as the Aggregator. In
the future, other Camel features will leverage HawtDB.

You can find more information about HawtDB at its website: http://
hawtdb.fusesource.org.

 www.it-ebooks.info

http://hawtdb.fusesource.org
http://hawtdb.fusesource.org
http://camel.apache.org/hawtdb
http://www.it-ebooks.info/

250 CHAPTER 8 Enterprise integration patterns

 .aggregate(constant(true), new MyAggregationStrategy())
 .aggregationRepository(myRepo)
 .completionSize(3)
 .log("Sending out ${body}")
 .to("mock:result");

Here’s the same example in Spring XML.

<bean id="myAggregationStrategy"
 class="camelinaction.MyAggregationStrategy"/>

<bean id="myRepo
 class="org.apache.camel.component.hawtdb.HawtDBAggregationRepository">
 <property name="repositoryName" value="myrepo"/>
 <property name="persistentFileName" value="data/myrepo.dat"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="file://target/inbox"/>
 <log message="Consuming ${file:name}"/>
 <aggregate strategyRef="myAggregationStrategy" completionSize="3"
 aggregationRepositoryRef="myRepo">
 <correlationExpression>
 <constant>true</constant>
 </correlationExpression>
 <log message="Sending out ${body}"/>
 </aggregate>
 </route>
</camelContext>

As you can see from listing 8.3, a Spring bean tag is defined with the ID "myRepo" B,
which sets up the persistent AggregationRepository. The name for the repository
and the filename are configured as properties on the bean tag. In the Camel route,
you then refer to this repository using the aggregationRepositoryRef attribute on
the aggregate tag.

RUNNING THE EXAMPLE

The source code for the book contains this example in the chapter8/aggregator
directory. You can run it using the following Maven goals:

mvn test -Dtest=AggregateABCHawtDBTest
mvn test -Dtest=SpringAggregateABCHawtDBTest

To demonstrate how the persistence store works, the example will start up and run
for 20 seconds. In that time, you can copy files in the target/inbox directory and
have those files consumed and aggregated. On every third file, the Aggregator will
complete and publish a message.

 The example will display instructions on the console about how to do this:

Copy 3 files to target/inbox to trigger the completion
Files to copy:
 copy src/test/resources/a.txt target/inbox

Listing 8.3 Using HawtDB with Aggregator in Spring XML

HawtDB persistent
repository

B

 www.it-ebooks.info

http://www.it-ebooks.info/

251The Aggregator EIP

 copy src/test/resources/b.txt target/inbox
 copy src/test/resources/c.txt target/inbox

Sleeping for 20 seconds
You can let the test terminate (or press ctrl + c) and then start it again
Which should let you be able to resume.

For example, if you copy the first two files and then let the example terminate, you’ll
see the following:

cd chapter8/aggregator
chapter8/aggregator$ cp src/test/resources/a.txt target/inbox
chapter8/aggregator$ cp src/test/resources/b.txt target/inbox

The console should indicate that it consumed two files and was shut down:

2010-04-25 INFO route1 - Consuming file a.txt
2010-04-25 INFO route1 - Consuming file b.txt
...
2010-04-25 INFO DefaultCamelContext - Apache Camel 2.5.0 is shutdown

The next time you start the example, you can resume where you left off, and copy the
last file:

chapter8/aggregator$ cp src/test/resources/c.txt target/inbox

Then the Aggregator should complete and publish the message:

2010-04-25 INFO HawtDBAggregationRepository - On startup there are 1
 aggregate exchanges (not completed) in repository: myrepo
2010-04-25 INFO DefaultCamelContext - Apache Camel 2.5.0 is started
...
2010-04-25 INFO route1 - Consuming file c.txt
2010-04-25 INFO route1 - Sending out ABC

Notice how it logs on startup how many exchanges are in the persistent repository. In
this example there is one existing Exchange on startup.

 Now you’ve seen the persistent Aggregator in action. Let’s move on to look at
using recovery with the Aggregator, which ensures that published messages can be
safely recovered and be routed in a transactional way.

8.2.4 Using recovery with the Aggregator

The examples covered in the previous section focused on ensuring that messages are
persisted during aggregation. But there’s another place where messages may be lost:
messages that have been published (send out) from the Aggregator, could potentially
fail during routing as well.

 To remedy this problem you could use one of these two approaches:

■ Camel error handlers (covered in chapter 5)—these provide redelivery and dead let-
ter channel capabilities.

■ The HawtDB component—the HawtDBAggregationRepository provides recovery,
redelivery, dead letter channel, and transactional capabilities.

 www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 8 Enterprise integration patterns

Camel error handlers aren’t tightly coupled with the Aggregator, so message handling
is in the hands of the error handler. If a message repeatedly fails, the error handler
can only deal with this by retrying or eventually giving up and moving the message to
a dead letter channel.

NOTE RecoverableAggregationRepository is an interface extending Aggre-
gationRepository, which offers the recovery, redelivery, and dead letter chan-
nel features. The HawtDBAggregationRepository implements this interface.

The HawtDBAggregationRepository on the other hand, is tightly integrated into the
Aggregator, which allows additional benefits such as leveraging the persistence store
for recovery and offering transactional capabilities. It ensures published messages that
fail will be recovered and redelivered. You can think of this as what a JMS broker, such
as Apache ActiveMQ, can do by bumping failed messages back up on the JMS queue
for redelivery.

UNDERSTANDING RECOVERY

To better understand how recovery works, we’ve provided the following two figures.
 Figure 8.4 shows what happens when an aggregated message is being published for

the first time, and the message fails during processing. This could also be the situation
when a server crashes while processing the message.

 An aggregated message is complete, so the Aggregator signals B this to the
RecoverableAggregationRepository, which fetches the aggregated message to be

Persistent
store

Recoverable
Aggregation
Repository

Processing
failed

Process

Get

Camel route

Aggregator Message

Completion

Rollback

Message

Publish

B

DC

Figure 8.4 An aggregated message is completed B, it’s published from the Aggregator C,
and processing fails D, so the message is rolled back.

 www.it-ebooks.info

http://www.it-ebooks.info/

253The Aggregator EIP

published C. The message is then routed in Camel—but suppose it fails during
routing D. A signal is sent from the Aggregator to the RecoverableAggregation-
Repository, which can act accordingly.

 Now imagine the same message is recovered and redelivered, as shown in figure 8.5.
 The Aggregator uses a background task, which runs every 5 seconds, to scan for

previously published messages to be recovered B. Any such messages will be repub-
lished C, and the message will be routed again. This time, the message could be pro-
cessed successfully, which lets the Aggregator issue a commit D. The repository
confirms E the message, ensuring it won’t be recovered on subsequent scans.

NOTE The transactional behavior provided by RecoverableAggregation-
Repository isn’t based on Spring’s TransactionManager (which we’ll cover
in chapter 9). The transactional behavior is based on HawtDB’s own transac-
tion mechanism.

RUNNING THE EXAMPLE

The source code for the book contains this example in the chapter8/aggregator
directory. You can run it using the following Maven goals:

mvn test -Dtest=AggregateABCRecoverTest
mvn test -Dtest=SpringAggregateABCRecoverTest

The example is constructed to fail when processing the published messages, no mat-
ter what. This means that eventually you’ll have to move the message to a dead letter
channel.

Persistent
store

Recoverable
Aggregation
Repository

Processing
succeded

Process

Get

Camel route

Aggregator Message

Recover

Commit

Message

Publish

rm

B

C D

E

Figure 8.5 The Aggregator recovers B failed messages, which are published again C,
and this time the messages completed D successfully E.

 www.it-ebooks.info

http://www.it-ebooks.info/

254 CHAPTER 8 Enterprise integration patterns

 To use recovery with routes in the Java DSL, you have to set up HawtDBAggrega-
tionRepository as shown here:

HawtDBAggregationRepository hawtDB = new
 HawtDBAggregationRepository("myrepo", "data/myrepo.dat");
hawtDB.setUseRecovery(true);
hawtDB.setMaximumRedeliveries(4);
hawtDB.setDeadLetterUri("mock:dead");
hawtDB.setRecoveryInterval(3000);

In Spring XML, you can set this up as a spring <bean> tag, as follows:

<bean id="myRepo"
 class="org.apache.camel.component.hawtdb.HawtDBAggregationRepository">
 <property name="repositoryName" value="myrepo"/>
 <property name="persistentFileName" value="data/myrepo.dat"/>
 <property name="useRecovery" value="true"/>
 <property name="recoveryInterval" value="3000"/>
 <property name="maximumRedeliveries" value="4"/>
 <property name="deadLetterUri" value="mock:dead"/>
</bean>

The options may make sense as you read them now, but we’ll revisit them in table 8.7.
In this example, the Aggregator will check for messages to be recovered every 3 sec-
onds. To avoid a message being repeatedly recovered, the maximum redeliveries are set
to 4. This means that after 4 failed recovery attempts, the message is exhausted and is
moved to the dead letter channel. If you omit the maximum redeliveries option, Camel
will keep recovering failed messages forever until they can be processed successfully.

 If you run the example, you’ll notice that the console outputs the failures as stack
traces, and at the end you’ll see a WARN entry that indicates the message has been
moved to the dead letter channel:

2010-04-26 [AggregateRecoverChecker] WARN - The recovered exchange is
exhausted after 4 attempts, will now be moved to dead letter channel:
mock:dead

We encourage you to try this example and read the code comments in the source
code to better understand how this works.

 The preceding log output identifies the number of redelivery attempts, but how
does Camel know this? Obviously Camel stores this information on the Exchange.
Table 8.6 reveals where this information is stored.

Table 8.6 Headers on Exchange related to redelivery

Header Type Description

Exchange.REDELIVERY_
COUNTER

int The current redelivery attempt. The counter starts
with the value of 1.

Exchange.REDELIVERED boolean Whether this Exchange is being redelivered.

Exchange.REDELIVERY_
EXHAUSTED

boolean Whether this Exchange has attempted all redeliver-
ies and still failed (also known as being exhausted).

 www.it-ebooks.info

http://www.it-ebooks.info/

255The Splitter EIP

The information in table 8.6 is only available when Camel performs a recovery. These
headers are absent on the regular first attempt. It’s only when a recovery is triggered
that these headers are set on the Exchange.

 Table 8.7 lists the options for the RecoverableAggregationRepository that are
related to recovery.

We won’t go into more detail regarding the options in table 8.7, as we’ve already cov-
ered an example using them.

 This concludes our extensive coverage of the sophisticated and probably most
complex EIP implemented in Camel—the Aggregator. In the next section, we’ll look
at the Splitter pattern.

8.3 The Splitter EIP
Messages passing through an integration solution may consist of multiple elements,
such as an order, which typically consists of more than a single line item. Each line in
the order may need to be handled differently, so you need an approach that processes
the complete order, treating each line item individually. The solution to this problem
is the Splitter EIP, illustrated in figure 8.6.

 In this section, we’ll teach you all you need to know about the Splitter. We’ll start
with a simple example and move on from there.

Table 8.7 RecoverableAggregationRepository configuration options related to recovery

Option Default Description

useRecovery true Whether or not recovery is enabled.

recoveryInterval 5000 How often the recovery background tasks are executed. The
value is in milliseconds.

deadLetterUri null An optional dead letter channel, where published messages
that are exhausted should be sent. This is similar to the
DeadLetterChannel error handler, which we covered
in chapter 5. This option is disabled by default. When in use,
the maximumRedeliveries option must be configured
as well.

maximumRedeliveries null A limit that defines when published messages that repeatedly
fail are considered exhausted and should be moved to the dead
letter URI. This option is disabled by default.

E

Message
1

E

Message
2

E

Message
3

D

Message Splitter

Figure 8.6 The Splitter breaks out the incoming message into a series of individual messages.

 www.it-ebooks.info

http://www.it-ebooks.info/

256 CHAPTER 8 Enterprise integration patterns

8.3.1 Using the Splitter
Using the Splitter in Camel is straightforward, so let’s try a basic example that will split
one message into three messages, each containing one of the letters A, B, and C. List-
ing 8.4 shows the example using a Java DSL–based Camel route and a unit test.

public class SplitterABCTest extends CamelTestSupport {

 public void testSplitABC() throws Exception {
 MockEndpoint mock = getMockEndpoint("mock:split");
 mock.expectedBodiesReceived("A", "B", "C");

 List<String> body = new ArrayList<String>();
 body.add("A");
 body.add("B");
 body.add("C");
 template.sendBody("direct:start", body);

 assertMockEndpointsSatisfied();
 }

 protected RouteBuilder createRouteBuilder() throws Exception {
 return new RouteBuilder() {
 public void configure() throws Exception {
 from("direct:start")
 .split(body())
 .log("Split line ${body}")
 .to("mock:split");
 }
 };
 }
}

The test method sets up a mock endpoint that expects three messages to arrive, in the
order A, B, and C. Then you construct a single combined message body that consists
of a List of Strings containing the three letters. The Camel route will use the Splitter
EIP to split up the message body B.

 If you run this test, the console should log the three messages, as follows:

INFO route1 - Split line A
INFO route1 - Split line B
INFO route1 - Split line C

When using the Splitter EIP in Spring XML, you have to do this a bit differently
because the Splitter uses an Expression to return what is to be split.

 In the Java DSL we defined the Expression shown in bold:

.split(body())

Here, body() is a method available on the RouteBuilder, which returns an org.apache.
camel.Expression instance. In Spring XML you need to do this as shown in bold:

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>

Listing 8.4 A basic example of the Splitter EIP

Splits incoming
message bodyB

 www.it-ebooks.info

http://www.it-ebooks.info/

257The Splitter EIP

 <split>
 <simple>${body}</simple>
 <log message="Split line ${body}"/>
 <to uri="mock:split"/>
 </split>
 </route>
</camelContext>

In Spring XML, you use the Camel’s expression language, known as Simple (discussed
in appendix A), to tell the Splitter that it should split the message body.

 The source code for the book contains this example in the chapter8/splitter direc-
tory. You can run it using the following Maven goals:

mvn test -Dtest=SplitterABCTest
mvn test -Dtest=SpringSplitterABCTest

Now you’ve seen the Splitter in action. To better understand how you can tell Camel
what it should split, you need to understand how it works.

HOW THE SPLITTER WORKS

The Splitter works something like a big iterator that iterates through something and
processes each entry. The sequence diagram in figure 8.7 shows more details about
how this big iterator works.

B

Start

Evaluate expression

Create iterator

No

Yes

Copy original message

Replace body with part from iterator

Process message

Aggregate message

More to split?

C

D

E

F

G

H

Figure 8.7 A sequence diagram showing
how the Splitter works internally, by using
an iterator to iterate through the message
and process each entry.

 www.it-ebooks.info

http://www.it-ebooks.info/

258 CHAPTER 8 Enterprise integration patterns

When working with the Splitter, you have to configure an Expression, which is evalu-
ated B when a message arrives. In listing 8.4, the evaluation returned the message
body. The result from the evaluation is used to create a java.util.Itetator C.

Then the Splitter uses the iterator D until there is no more data. Each message to be
sent out of the iterator is a copy of the message E, which has had its message body
replaced with the part from the iterator F. In listing 8.4, there would be three parts:
each of the letters A, B, and C. The message to be sent out is then processed G, and
when the processing is done, the message may be aggregated H (more about this in
section 8.3.4).

 The Splitter will decorate each message it sends out with properties on the
Exchange, which are listed in table 8.8.

You may find yourself in a situation where you need more power to do the splitting,
such as to dictate exactly how a message should be split. And what better power
is there than Java? By using Java code, you have the ultimate control and can tackle
any situation.

8.3.2 Using beans for splitting

Suppose you need to split messages that contain complex payloads. Suppose the mes-
sage payload is a Customer object containing a list of Departments, and you want to
split by Department, as illustrated in figure 8.8:

Table 8.8 Properties on the Exchange related to the Splitter EIP

Property Type Description

Exchange.SPLIT_
INDEX

Integer The index for the current message being processed. The
index is zero-based.

Exchange.SPLIT_
SIZE

Integer The total number of messages the original message has been
split into.

Note that this information isn’t available in streaming mode
(see section 8.3.3 for more details about streaming).

Exchange.SPLIT_
COMPLETE

Boolean Whether or not this is the last message being processed.

What can be iterated?
When Camel creates the iterator C, it supports a range of types. Camel knows how
to iterate through the following types: Collection, Iterator, Array, org.w3c.
dom.NodeList, String (with entries separated by commas). Any other type will be
iterated once.

 www.it-ebooks.info

http://www.it-ebooks.info/

259The Splitter EIP

The Customer object is a simple bean containing the following information (getter
and setter methods omitted):

public class Customer {
 private int id;
 private String name;
 private List<Department> departments;
}

The Department object is simple as well:

public class Department {
 private int id;
 private String address;
 private String zip;
 private String country;
}

You may wonder why you can’t split the message as in the previous example, using
split(body())? The reason is that the message payload (the message body) isn’t a
List, but a Customer object. Therefore you need to tell Camel how to split, which you
do as follows:

public class CustomerService {
 public List<Department> splitDepartments(Customer customer) {
 return customer.getDepartments();
 }
}

The splitDepartments method returns a List of Department objects, which is what
you want to split by.

 In the Java DSL, you can use the CustomerService bean for splitting by telling
Camel to invoke the splitDepartments method. This is done by using the method call
expression as shown in bold:

public void configure() throws Exception {
 from("direct:start")
 .split().method(CustomerService.class, "splitDepartments")
 .to("log:split")
 .to("mock:split");
}

In Spring XML, you’d have to declare the CustomerService in a Spring bean tag, as
follows:

Splitter

Customer

Department A

Department B

Department C Department
A

Department
B

Department
C

Figure 8.8 Splitting a complex message into submessages by department

 www.it-ebooks.info

http://www.it-ebooks.info/

260 CHAPTER 8 Enterprise integration patterns

<bean id="customerService" class="camelinaction.CustomerService"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <split>
 <method bean="customerService" method="splitDepartments"/>
 <to uri="log:split"/>
 <to uri="mock:split"/>
 </split>
 </route>
</camelContext>

 The source code for the book contains this example in the chapter8/splitter direc-
tory. You can run it using the following Maven goals:

mvn test -Dtest=SplitterBeanTest
mvn test -Dtest=SpringSplitterBeanTest

The logic in the splitDepartments method is simple, but it shows how you can use a
method on a bean to do the splitting. In your use cases, you may need more complex
logic.

TIP The logic in the splitDepartments method seems trivial, and it’s possible
to use Camel’s expression language (Simple) to invoke methods on the mes-
sage body. In Java DSL you could define the route as follows: .split().simple
("${body.departments}"). In Spring XML you would use the <simple> tag
instead of the <method> tag: <simple>${body.departments}</simple>.

The Splitter will usually operate on messages that are loaded into memory. But there
are situations where the messages are so big that it’s not feasible to have the entire
message in memory at once.

8.3.3 Splitting big messages

Rider Auto Parts has an ERP system that contains inventory information from all its
suppliers. To keep the inventory updated, each supplier must submit updates to Rider
Auto Parts. Some suppliers do this once a day using good old-fashioned files as a
means of transport. Those files could potentially be very large, so you have to split
those files without loading the entire file into memory.

 This can be done by using streams, which allow you to read on demand from a
stream of data. This resolves the memory issue, because you can read in a chunk of
data, process the data, read in another chunk, process the data, and so on.

 Figure 8.9 shows the flow of the application used by Auto Rider Parts to pick up the
files from the suppliers and update the inventory.

File CSV to
object

Update
inventory

Split lines

Figure 8.9 A route that picks
up incoming files, splits them,
and transforms them so they’re
ready for updating the inventory
in the ERP system

 www.it-ebooks.info

http://www.it-ebooks.info/

261The Splitter EIP

We’ll revisit this example again in chapter 10, and cover it in much greater detail
when we cover concurrency.

 Implementing the route outlined in figure 8.9 is easy to do in Camel, as follows.

public void configure() throws Exception {
 from("file:target/inventory")
 .log("Starting to process big file: ${header.CamelFileName}")
 .split(body().tokenize("\n")).streaming()
 .bean(InventoryService.class, "csvToObject")
 .to("direct:update")
 .end()
 .log("Done processing big file: ${header.CamelFileName}");

 from("direct:update")
 .bean(InventoryService.class, "updateInventory");
}

As you can see in listing 8.5, all you have to do is enable streaming mode using
.streaming() B. This tells Camel to not load the entire payload into memory, but
instead to iterate the payload in a streaming fashion. Also notice the use of end() C
to indicate the end of the splitting route. The end() in the Java DSL is the equivalent
of the end tag </split> when using Spring XML.

 In Spring XML, you enable streaming using the streaming attribute on the
<split> tag, as follows.

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="file:target/inventory"/>
 <log message="Processing big file: ${header.CamelFileName}"/>
 <split streaming="true">
 <tokenize token="\n"/>
 <bean beanType="camelinaction.InventoryService"
 method="csvToObject"/>
 <to uri="direct:update"/>
 </split>
 <log message="Done processing big file: ${header.CamelFileName}"/>
 </route>

 <route>
 <from uri="direct:update"/>
 <bean beanType="camelinaction.InventoryService"
 method="updateInventory"/>
 </route>
</camelContext>

You may have noticed in listings 8.5 and 8.6 that the files are split using a tokenizer.
The tokenizer is a powerful feature that works well with streaming. The tokenizer
leverages java.util.Scanner, which supports streaming. The Scanner is capable of
iterating, which means that it only reads chunks of data into memory. A token must be

Listing 8.5 Splitting big files using streaming mode

Listing 8.6 Splitting big files using streaming mode in Spring XML

Splits file using
streaming modeB

Denotes where
the splitting

route ends C

 www.it-ebooks.info

http://www.it-ebooks.info/

262 CHAPTER 8 Enterprise integration patterns

provided to indicate the boundaries of the chunks. In the preceding code, you use a
newline (\n) as the token. So, in this example, the Scanner will only read the file into
memory on a line-by-line basis, resulting in low memory consumption.

NOTE When using streaming mode, be sure the message you’re splitting
can be split into well-known chunks that can be iterated. You can use the
tokenizer or convert the message body to a type that can be iterated, such as
an Iterator.

The Splitter EIP in Camel includes an aggregation feature that lets you recombine
split messages into single outbound messages, while they are being routed.

8.3.4 Aggregating split messages

Being able to split and aggregate messages again is a powerful mechanism. You could
use this to split an order into individual order lines, process them, and then recom-
bine them into a single outgoing message. This pattern is known as the Composed
Message Processor, which we briefly touched on in section 8.1. It’s shown in figure 8.1.

 The Camel Splitter provides a built-in aggregator, which makes it even easier to
aggregate split messages back into single outgoing messages. Figure 8.10 illustrates
this principle, with the help of the “ABC” message example.

 Suppose you want to translate each of the A, B, and C messages into a phrase, and
have all the phrases combined into a single message again. This can easily be done
with the Splitter—all you need to provide is the logic that combines the messages.
This logic is created using an AggregationStrategy implementation.

 Implementing the Camel route outlined in figure 8.10 can be done as follows in
the Java DSL. The configuration of the AggregationStrategy is shown in bold:

Splitter
Aggregator

Message
C

Message
A

Message
B

Message
translator

Message
translator

Message
translator

Aggregated
message

Message
ABC

Figure 8.10 The Splitter has a built-in aggregator that can recombine split messages into a combined
outgoing message.

 www.it-ebooks.info

http://www.it-ebooks.info/

263The Splitter EIP

from("direct:start")
 .split(body(), new MyAggregationStrategy())
 .log("Split line ${body}")
 .bean(WordTranslateBean.class)
 .to("mock:split")
 .end()
 .log("Aggregated ${body}")
 .to("mock:result");

In Spring XML, you have to declare the AggregationStrategy as a Spring bean tag, as
shown in bold:

<bean id="translate" class="camelinaction.WordTranslateBean"/>

<bean id="myAggregationStrategy"
 class="camelinaction.MyAggregationStrategy"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <split strategyRef="myAggregationStrategy">
 <simple>body</simple>
 <log message="Split line ${body}"/>
 <bean ref="translate"/>
 <to uri="mock:split"/>
 </split>
 <log message="Aggregated ${body}"/>
 <to uri="mock:result"/>
 </route>
</camelContext>

To combine the split messages back into a single combined message, you use the
AggregationStrategy.

public class MyAggregationStrategy implements AggregationStrategy {

 public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
 if (oldExchange == null) {
 return newExchange;
 }

 String body = newExchange.getIn().getBody(String.class);
 String existing = oldExchange.getIn().getBody(String.class);

 oldExchange.getIn().setBody(existing + "+" + body);
 return oldExchange;
 }
}

As you can see from listing 8.7, you combine the messages into a single String body,
with individual phrases (from the message bodies) being separated with + signs.

 The source code for the book contains this example in the chapter8/splitter direc-
tory. You can run it using the following Maven goals:

mvn test -Dtest=SplitterAggregateABCTest
mvn test -Dtest=SpringSplitterAggregateABCTest

Listing 8.7 Combining split messages back into a single outgoing message

 www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 8 Enterprise integration patterns

The example uses the three phrases: “Aggregated Camel rocks”, “Hi mom”, and “Yes it
works”. When you run the example, you’ll see the console output the aggregated mes-
sage at the end.

INFO route1 - Split line A
INFO route1 - Split line B
INFO route1 - Split line C
INFO route1 - Aggregated Camel rocks+Hi mom+Yes it works

Before we wrap up our coverage of the Splitter, let’s take a look at what happens if one
of the split messages fails with an exception.

8.3.5 When errors occur during splitting
The Splitter processes messages and those messages can fail when some business logic
throws an exception. Camel’s error handling is active during the splitting, so the
errors you have to deal with in the Splitter are errors that Camel’s error handling
couldn’t handle.

 You have two choices for handling errors with the Splitter:
■ Stop—The Splitter will split and process each message in sequence. Suppose

the second message failed. In this situation, you could either immediately stop
and let the exception propagate back, or you could continue splitting the
remainder of the messages, and let the exception propagate back at the end
(default behavior).

■ Aggregate—You could handle the exception in the AggregationStrategy and
decide whether or not the exception should be propagated back.

Let’s look into the choices.

USING STOPONEXCEPTION

The first solution requires you to configure the stopOnException option on the Split-
ter as follows:

from("direct:start")
 .split(body(), new MyAggregationStrategy())
 .stopOnException()
 .log("Split line ${body}")
 .bean(WordTranslateBean.class)
 .to("mock:split")
 .end()
 .log("Aggregated ${body}")
 .to("mock:result");

In Spring XML, you use the stopOnException attribute on the <split> tag, as follows:

<split strategyRef="myAggregationStrategy" stopOnException="true">

The source code for the book contains this example in the chapter8/splitter direc-
tory. You can run it using the following Maven goals:

mvn test -Dtest=SplitterStopOnExceptionABCTest
mvn test -Dtest=SpringSplitterStopOnExceptionABCTest

The second option is to handle exceptions from the split messages in the
AggregationStrategy.

 www.it-ebooks.info

http://www.it-ebooks.info/

265The Splitter EIP

HANDLING EXCEPTIONS USING AGGREGATIONSTRATEGY

The AggregationStrategy allows you to handle the exception by either ignoring it or
letting it be propagated back. Here’s how you could ignore the exception.

public class MyIgnoreFailureAggregationStrategy
 implements AggregationStrategy {

 public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
 if (newExchange.getException() != null) {
 return oldExchange;
 }

 if (oldExchange == null) {
 return newExchange;
 }

 String body = newExchange.getIn().getBody(String.class);
 String existing = oldExchange.getIn().getBody(String.class);
 oldExchange.getIn().setBody(existing + "+" + body);
 return oldExchange;
 }
}

When handling exceptions in the AggregationStrategy, you can detect whether an
exception occurred or not by checking the getException method from the new-
Exchange parameter. The preceding example ignores the exception by returning the
oldExchange B.

 If you want to propagate back the exception, you need to keep it stored on the
aggregated exception, which can be done as follows.

public class MyPropagateFailureAggregationStrategy
 implements AggregationStrategy {

 public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
 if (newExchange.getException() != null) {
 if (oldExchange == null) {
 return newExchange;
 } else {
 oldExchange.setException(
 newExchange.getException());
 return oldExchange;
 }
 }

 if (oldExchange == null) {
 return newExchange;
 }

 String body = newExchange.getIn().getBody(String.class);
 String existing = oldExchange.getIn().getBody(String.class);
 oldExchange.getIn().setBody(existing + "+" + body);

Listing 8.8 Handling an exception by ignoring it

Listing 8.9 Propagating back an exception

Ignores the
exceptionB

Propagates
exception

B

 www.it-ebooks.info

http://www.it-ebooks.info/

266 CHAPTER 8 Enterprise integration patterns

 return oldExchange;
 }
}

As you can see, it requires a bit more work to keep the exception. On the first invoca-
tion of the aggregate method, the oldExchange parameter is null and you simply
return the newExchange (which has the exception). Otherwise you must transfer the
exception to the oldExchange B.

WARNING When using a custom AggregationStrategy with the Splitter, it’s
important to know that you’re responsible for handling exceptions. If you
don’t propagate the exception back, the Splitter will assume you have han-
dled the exception and will ignore it.

The source code for the book contains this example in the chapter8/splitter direc-
tory. You can run it using the following Maven goals:

mvn test -Dtest=SplitterAggregateExceptionABCTest
mvn test -Dtest=SpringSplitterAggregateExceptionABCTest

Now you’ve learned all there is to know about the Splitter. Well, almost all. We’ll revisit
the Splitter in chapter 10 when we look at concurrency. In the next two sections, we’ll
look at EIPs that support dynamic routing, starting with the Routing Slip pattern.

8.4 The Routing Slip EIP
There are times when you need to route messages dynamically. For example, you may
have an architecture that requires incoming messages to undergo a sequence of pro-
cessing steps and business rule validations. Because the steps and validations vary
widely, you can implement each step as a separate filter. The filter acts as a dynamic
model to apply the business rule and validations.

 This architecture could be implemented using the Pipes and Filters EIP together
with the Filter EIP. But as often happens with EIPs, there’s a better way, known as the
Routing Slip EIP. The Routing Slip acts as a dynamic router that dictates the next step
a message should undergo. Figure 8.11 shows this principle.

Routing
slip

Message
Endpoint B

Endpoint A

Endpoint C

Message

A
C

Route message
according to slip

Figure 8.11 The incoming
message has a slip attached
that specifies the sequence of
the processing steps. The
Routing Slip EIP reads the slip
and routes the message to the
next endpoint in the list.

 www.it-ebooks.info

http://www.it-ebooks.info/

267The Routing Slip EIP

The Camel Routing Slip EIP requires a preexisting header or Expression as the
attached slip. Either way, the initial slip must be prepared before the message is sent
to the Routing Slip EIP.

8.4.1 Using the Routing Slip EIP

We’ll start with a simple example that shows how to use the Routing Slip EIP to per-
form the sequence outlined in figure 8.11.

 In the Java DSL, the route is as simple as this:

from("direct:start").routingSlip("mySlip");

It’s also easy in Spring XML:

<route>
 <from uri="direct:start"/>
 <routingSlip>
 <header>mySlip</header>
 </routingSlip>
</route>

This example assumes the incoming message contains the slip in the header with the
key "mySlip". The following test method shows how you should fill out the key:

public void testRoutingSlip() throws Exception {
 getMockEndpoint("mock:a").expectedMessageCount(1);
 getMockEndpoint("mock:b").expectedMessageCount(0);
 getMockEndpoint("mock:c").expectedMessageCount(1);

 template.sendBodyAndHeader("direct:start", "Hello World",
 "mySlip", "mock:a,mock:c");
 assertMockEndpointsSatisfied();
}

As you can see, the value of the key is the endpoint URIs separated by commas. The
comma is the default delimiter, but the routing slip supports using custom delimiters.
For example, to use a semicolon, you could do this:

from("direct:start").routingSlip("mySlip", ";");

And in Spring XML, you’d do this:

<routingSlip uriDelimiter=";">
 <header>mySlip</header>
</routingSlip>

This example expects a preexisting header containing the routing slip. But what if the
message doesn’t contain such a header? In those situations, you have to compute the
header in any way you like. In the next example, we look at how to compute the
header using a bean.

8.4.2 Using a bean to compute the routing slip header

To keep things simple, the logic to compute a header that contains two or three steps
has been kept in a single method, as follows:

 www.it-ebooks.info

http://www.it-ebooks.info/

268 CHAPTER 8 Enterprise integration patterns

public class ComputeSlip {
 public String compute(String body) {
 String answer = "mock:a";
 if (body.contains("Cool")) {
 answer += ",mock:b";
 }
 answer += ",mock:c";
 return answer;
 }
}

All you how to do now is leverage this bean to compute the header to be used as rout-
ing slip.

 In the Java DSL, you can use the method call expression to invoke the bean and set
the header:

from("direct:start")
 .setHeader("mySlip").method(ComputeSlip.class)
 .routingSlip("mySlip");

In Spring XML, you can do it as follows:

<route>
 <from uri="direct:start"/>
 <setHeader headerName="mySlip">
 <method beanType="camelinaction.ComputeSlip"/>
 </setHeader>

 <routingSlip>
 <header>mySlip</header>
 </routingSlip>
</route>

In this example, you use a method call expression to set a header that is then used by
the routing slip. But you might want to skip the step of setting the header and instead
use the expression directly.

8.4.3 Using an Expression as the routing slip

Instead of setting a header, you can use an Expression, such as the method call
expression we covered in the previous section. Here’s how you’d do so with the Java
DSL:

from("direct:start")
 .routingSlip("mySlip").method(ComputeSlip.class);

The equivalent Spring XML is as follows:

<route>
 <from uri="direct:start"/>
 <routingSlip>
 <method beanType="camelinaction.ComputeSlip"/>
 </routingSlip>
</route>

Another way of using the Routing Slip EIP in Camel is to use beans and annotations.

 www.it-ebooks.info

http://www.it-ebooks.info/

269The Routing Slip EIP

8.4.4 Using @RoutingSlip annotation

The @RoutingSlip annotation allows you to turn a regular bean method into the
Routing Slip EIP. Let’s go over an example.

 Suppose you have the following SlipBean:

public class SlipBean {

 @RoutingSlip
 public String slip(String body) {
 String answer = "mock:a";
 if (body.contains("Cool")) {
 answer += ",mock:b";
 }
 answer += ",mock:c";
 return answer;
 }
}

As you can see, all this does is annotate the slip method with @RoutingSlip. When
Camel invokes the slip method, it detects the @RoutingSlip annotation and contin-
ues routing according to the Routing Slip EIP.

WARNING When using @RecipientList it’s important to not use recipientList
in the DSL at the same time. By doing this, Camel will double up using Recipient
List EIP, which is not the intention. Instead, do as shown in the example below.

Notice that there’s no mention of the routing slip in the DSL. The route is just invok-
ing a bean.

from("direct:start").bean(SlipBean.class);

Here it is in the Spring DSL:

<bean id="myBean" class="camelinaction.SlipBean"/>

<route>
 <from uri="direct:start"/>
 <bean ref="myBean"/>
</route>

Why might you want to use this? Well, by using @RoutingSlip on a bean, it becomes
more flexible in the sense that the bean is accessible using a endpoint URI. Any Camel
client or route could easily send a message to the bean and have it continued being
routed as a routing slip.

 For example, using a ProducerTemplate you could send a message to the bean:

ProducerTemplate template = ...
template.sendBody("bean:myBean", "Camel rocks");

That "Camel rocks" message would then be routed as a routing slip with the slip gen-
erated as the result of the myBean method invocation.

 The source code for the book contains the examples we’ve covered in the
chapter8/routingslip directory. You can try them using the following Maven goals:

 www.it-ebooks.info

http://www.it-ebooks.info/

270 CHAPTER 8 Enterprise integration patterns

mvn test -Dtest=RoutingSlipSimpleTest
mvn test -Dtest=SpringRoutingSlipSimpleTest
mvn test -Dtest=RoutingSlipHeaderTest
mvn test -Dtest=SpringRoutingSlipHeaderTest
mvn test -Dtest=RoutingSlipTest
mvn test -Dtest=SpringRoutingSlipTest
mvn test -Dtest=RoutingSlipBeanTest
mvn test -Dtest=SpringRoutingSlipBeanTest

You’ve now seen the Routing Slip EIP in action.

8.5 The Dynamic Router EIP
In the previous section, you learned that the Routing Slip pattern acts as a dynamic
router. So what’s the difference between the Routing Slip and Dynamic Router
EIPs? The difference is minimal: the Routing Slip needs to compute the slip up
front, whereas the Dynamic Router will evaluate on-the-fly where the message should
go next.

8.5.1 Using the Dynamic Router

Just like the Routing Slip, the Dynamic Router requires you to provide logic, which
determines where the message should be routed. Such logic is easily implemented
using Java code, and in this code you have total freedom to determine where the mes-
sage should go next. For example, you might query a database or a rules engine to
compute where the message should go.

 Listing 8.10 shows the Java bean used in the example.

public class DynamicRouterBean {

public String route(String body,
 @Header(Exchange.SLIP_ENDPOINT) String previous) {
 return whereToGo(body, previous);
}

private String whereToGo(String body, String previous) {
 if (previous == null) {
 return "mock://a";
 } else if ("mock://a".equals(previous)) {
 return "language://simple:Bye ${body}";
 } else {
 return null;
 }
}
}

The idea with the Dynamic Router is to let Camel keep invoking the route method
until it indicates the end. The first time the route method is invoked, the previous
parameter will be null B. On every subsequent invocation, the previous parameter
contains the endpoint URI of the last step.

Listing 8.10 Java bean deciding where the message should be routed next

Previous
endpoint URIB

Ends
routerC

 www.it-ebooks.info

http://www.it-ebooks.info/

271The Dynamic Router EIP

 As you can see in the whereToGo method, you use this fact and return different URIs
depending on the previous step. When the dynamic router is to end, you return null C.

 Using the Dynamic Router from the Java DSL is easy to do:

from("direct:start")
 .dynamicRouter(bean(DynamicRouterBean.class, "route"))
 .to("mock:result");

The same route in Spring XML is just as easy as shown:

<bean id="myDynamicRouter" class="camelinaction.DynamicRouterBean"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <dynamicRouter>
 <method ref="myDynamicRouter" method="route"/>
 </dynamicRouter>
 <to uri="mock:result"/>
 </route>
</camelContext>

The source code for the book contains this example in the chapter8/dynamicrouter
directory. You can try it using the following Maven goals:

mvn test -Dtest=DynamicRouterTest
mvn test -Dtest=SpringDynamicRouterTest

There is also a Dynamic Router annotation you can use.

8.5.2 Using the @DynamicRouter annotation

To demonstrate how to use the @DynamicRouter annotation let’s change the previous
example to use the annotation instead. To do that, just annotate the Java code from
listing 8.10 as follows:

@DynamicRouter
public String route(String body,
 @Header(Exchange.SLIP_ENDPOINT) String previous) {
 ...
}

The next step is to invoke the route method on the bean, as if it were a regular bean.
That means you should not use the Routing Slip EIP in the route, but use a bean instead.

 In the Java DSL, this is done as follows:

from("direct:start")
 .bean(DynamicRouterBean.class, "route")
 .to("mock:result");

In Spring XML, you likewise change the <dynamicRouter> to a <bean> tag:

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>

 www.it-ebooks.info

http://www.it-ebooks.info/

272 CHAPTER 8 Enterprise integration patterns

 <bean ref="myDynamicRouter" method="route"/>
 <to uri="mock:result"/>
 </route>
</camelContext>

WARNING When using @DynamicRouter its important to not use dynamic-
Router in the DSL at the same time. Instead do as shown above.

The source code for the book contains this example in the chapter8/dynamicrouter
directory. You can try it using the following Maven goals:

mvn test -Dtest=DynamicRouterAnnotationTest
mvn test -Dtest=SpringDynamicRouterAnnotationTest

This concludes the coverage of the dynamic routing patterns. In the next section,
you’ll learn about Camel’s built-in Load Balancer EIP, which is useful when an existing
load-balancing solution isn’t in place.

8.6 The Load Balancer EIP
You may already be familiar with the load balancing concept in computing. Load bal-
ancing is a technique to distribute workload across computers or other resources, “in
order to get optimal resource utilization, maximize throughput, minimize response
time, and avoid overload” (http://en.wikipedia.org/wiki/Load_balancer). This ser-
vice can be provided either in the form of a hardware device or as a piece of software,
such as the Load Balancer EIP in Camel.

NOTE The Load Balancer was not distilled in the EIP book, but it will likely
be added if there is a second edition of the book.

In this section, we’ll introduce the Load Balancer EIP by walking through an example.
Then, in section 8.6.2, we’ll look at the various types of load balancers Camel offers
out of the box. We’ll focus on the failover type in section 8.6.3 and finally show how
you can build your own load balancer in section 8.6.4.

8.6.1 Introducing the Load Balancer EIP

The Camel Load Balancer EIP is a Processor that implements the org.apache.camel.
processor.loadbalancer.LoadBalancer interface. The LoadBalancer offers methods
to add and remove Processors that should participate in the load balancing.

 By using Processors instead of Endpoints, the load balancer is capable of balanc-
ing anything you can define in your Camel routes. But, that said, you’ll most often bal-
ance across a number of remote services. Such an example is illustrated in figure 8.12,
where a Camel application needs to load balance across two services.

 When using the Load Balancer EIP, you have to select a balancing strategy. A com-
mon and understandable strategy is to take turns among the services—this is known as
the round robin strategy. In section 8.6.2, we’ll take a look at all the strategies Camel
provides out of the box.

 www.it-ebooks.info

http://en.wikipedia.org/wiki/Load_balancer
http://www.it-ebooks.info/

273The Load Balancer EIP

Let’s look at how you can use the Load Balancer with the round robin strategy. Here’s
the Java DSL with the Load Balancer:

from("direct:start")
 .loadBalance().roundRobin()
 .to("seda:a").to("seda:b")
 .end();

from("seda:a")
 .log("A received: ${body}")
 .to("mock:a");

from("seda:b")
 .log("B received: ${body}")
 .to("mock:b");

The equivalent route in Spring XML is as follows:

<route>
 <from uri="direct:start"/>
 <loadBalance>
 <roundRobin/>
 <to uri="seda:a"/>
 <to uri="seda:b"/>
 </loadBalance>
</route>

<route>
 <from uri="seda:a"/>
 <log message="A received: ${body}"/>
 <to uri="mock:a"/>
</route>

<route>
 <from uri="seda:b"/>
 <log message="B received: ${body}"/>
 <to uri="mock:b"/>
</route>

In this example, you use the SEDA component to simulate the remote services. In a
real-life situation, the remote services could be a web service.

 Suppose you start sending messages to the route. The first message would be sent
to the "seda:a" endpoint, and the next would go to "seda:b". The third message
would start over and be sent to "seda:a", and so forth.

Camel
application

Service
A

Service
B

Load balance

Figure 8.12 A Camel
application load balances
across two services.

 www.it-ebooks.info

http://www.it-ebooks.info/

274 CHAPTER 8 Enterprise integration patterns

 The source code for the book contains this example in the chapter8/loadbalancer
directory. You can try it by using the following Maven goals:

mvn test -Dtest=LoadBalancerTest
mvn test -Dtest=SpringLoadBalancerTest

If you run the example, the console will output something like this:

[Camel Thread 0 - seda://a] INFO route2 - A received: Hello
[Camel Thread 1 - seda://b] INFO route3 - B received: Camel rocks
[Camel Thread 0 - seda://a] INFO route2 - A received: Cool
[Camel Thread 1 - seda://b] INFO route3 - B received: Bye

In the next section, we’ll review the various load-balancing strategies you can use with
the Load Balancer EIP.

8.6.2 Load-balancing strategies
A load-balancing strategy dictates which Processor should process an incoming mes-
sage—it’s up to each strategy how the Processor is chosen. Camel allows the six differ-
ent strategies listed in table 8.9.

The first four strategies in table 8.9 are easy to set up and use in Camel. For example,
using the random strategy is just a matter of specifying it in the Java DSL:

from("direct:start")
 .loadBalance().random()
 .to("seda:a").to("seda:b")
 .end();

It’s similar in Spring XML:

<route>
 <from uri="direct:start"/>
 <loadBalance>
 <random/>
 <to uri="seda:a"/>
 <to uri="seda:b"/>
 </loadBalance>
</route>

Table 8.9 Load-balancing strategies provided by Camel

Strategy Description

Random Chooses a processor randomly.

Round robin Chooses a processor in a round robin fashion, which spreads the load evenly.
This is a classic and well-known strategy. We covered this in section 8.6.1.

Sticky Uses an expression to calculate a correlation key that dictates the processor
chosen. You can think of this as the session ID used in HTTP requests.

Topic Sends the message to all processors. This is like sending to a JMS topic.

Failover Retries using another processor. We’ll cover this in section 8.6.3.

Custom Uses your own custom strategy. This is covered in section 8.6.4.

 www.it-ebooks.info

http://www.it-ebooks.info/

275The Load Balancer EIP

The sticky strategy requires you provide a correlation expression, which is used to cal-
culate a hashed value to indicate which processor should be used. Suppose your mes-
sages contain a header indicating different levels. By using the sticky strategy, you can
have messages with the same level chose the same processor over and over again.

 In the Java DSL, you would provide the expression using a header expression as
shown here:

from("direct:start")
 .loadBalance().sticky(header("type"))
 .to("seda:a").to("seda:b")
 .end();

In Spring XML, you’d do the following:

<route>
 <from uri="direct:start"/>
 <loadBalance>
 <sticky>
 <correlationExpression>
 <header>type</header>
 </correlationExpression>
 </sticky>
 <to uri="seda:a"/>
 <to uri="seda:b"/>
 </loadBalance>
</route>

The source code for the book contains examples of using the strategies listed in
table 8.9 in the chapter8/loadbalancer directory. To try the random, sticky, or topic
strategies, use the following Maven goals:

mvn test -Dtest=RandomLoadBalancerTest
mvn test -Dtest=SpringRandomLoadBalancerTest
mvn test -Dtest=StickyLoadBalancerTest
mvn test -Dtest=SpringStickyLoadBalancerTest
mvn test -Dtest=TopicLoadBalancerTest
mvn test -Dtest=SpringTopicLoadBalancerTest

The failover strategy is a more elaborate strategy, which we’ll cover next.

8.6.3 Using the failover load balancer

Load balancing is often used to implement failover—the continuation of a service
after a failure. The Camel failover load balancer detects the failure when an exception
occurs and reacts by letting the next processor take over processing the message.

 Given the following route snippet, the failover will always start by sending the mes-
sages to the first processor ("direct:a") and only in the case of a failure will it let the
next processor ("direct:b") take over.

from("direct:start")
 .loadBalance().failover()
 .to("direct:a").to("direct:b")
 .end();

 www.it-ebooks.info

http://www.it-ebooks.info/

276 CHAPTER 8 Enterprise integration patterns

The equivalent snippet in Spring XML is as follows:

<route>
 <from uri="direct:start"/>
 <loadBalance>
 <failover/>
 <to uri="direct:a"/>
 <to uri="direct:b"/>
 </loadBalance>
</route>

The source code for the book contains this example in the chapter8/loadbalancer
directory. You can try it using the following Maven goals:

mvn test -Dtest=FailoverLoadBalancerTest
mvn test -Dtest=SpringFailoverLoadBalancerTest

If you run the example, it will send in four messages. The second message will failover
and be processed by the "direct:b" processor. The other three messages will be pro-
cessed successfully by "direct:a".

 In this example, the failover load balancer will react to any kind of exception being
thrown, but you can provide it with a number of exceptions to react to.

 Suppose you only want to failover if an IOException is thrown (which indicates
communication errors with remote services, such as no connection). This is easy to
configure, as shown in the Java DSL:

from("direct:start")
 .loadBalance().failover(IOException.class)
 .to("direct:a").to("direct:b")
 .end();

Here it is configured in Spring XML:

<route>
 <from uri="direct:start"/>
 <loadBalance>
 <failover>
 <exception>java.io.IOException</exception>
 </failover>
 <to uri="direct:a"/>
 <to uri="direct:b"/>
 </loadBalance>
</route>

In this example, only one exception is specified, but you can specify multiple excep-
tions, as follows:

from("direct:start")
 .loadBalance().failover(IOException.class, SQLException.class)
 .to("direct:a").to("direct:b")
 .end();

In Spring XML, you do as follows:

<route>
 <from uri="direct:start"/>
 <loadBalance>
 <failover>

 www.it-ebooks.info

http://www.it-ebooks.info/

277The Load Balancer EIP

 <exception>java.io.IOException</exception>
 <exception>java.sql.SQLException</exception>
 </failover>
 <to uri="direct:a"/>
 <to uri="direct:b"/>
 </loadBalance>
</route>

You may have noticed in the failover examples that it always chooses the first proces-
sor, and sends the failover to subsequent processors. You can think of this as the first
processor being the master, and the others slaves. But the failover load balancer also
offers a strategy that combines round robin with failure support.

USING FAILOVER WITH ROUND ROBIN

The Camel failover load balancer in round robin mode gives you the best of both
worlds; it distributes the load evenly between the services, and it provides automatic
failover.

 In this scenario, you have three configuration options on the load balancer to dic-
tate how it operates, as listed in table 8.10.

To better understand the options in table 8.10 and how the round robin mode works,
we’ll start with a fairly simple example.

 In the Java DSL, you have to configure failover with all the options in bold:

from("direct:start")
 .loadBalance().failover(1, false, true)
 .to("direct:a").to("direct:b")
 .end();

In this example, the maximumFailoverAttempts option is set to 1, which means it will
at most try to failover once (it will make one attempt for the initial request and one
more for the failover attempt). If both attempts fail, Camel will propagate the excep-
tion back to the caller.

Table 8.10 Failover load balancer configuration options

Configuration option Default Description

maximumFailover-
Attempts

-1 Specifies how many failover attempts to try before exhausting (giv-
ing up):
■ Use -1 to attempt forever (never give up).
■ Use 0 to never failover (give up immediately).
■ Use a positive value to specify a number of attempts. For example,

a value of 3 will try up to 3 failover attempts before giving up.

inheritError-
Handler

true Specifies whether or not Camel error handling is being used. When
enabled, the load balancer will let the error handler be involved. If
disabled, the load balancer will failover immediately if an exception
is thrown.

roundRobin false Specifies whether or not the load balancer operates in round robin
mode.

 www.it-ebooks.info

http://www.it-ebooks.info/

278 CHAPTER 8 Enterprise integration patterns

 The second parameter is set to false, which means it isn’t inheriting Camel’s error
handling. This allows the failover load balancer to failover immediately when an excep-
tion occurs, instead of having to wait for the Camel error handler to give up first.

 The last parameter indicates that it’s using the round robin mode.
 In Spring XML, you configure the options as attributes on the failover tag:

<route>
 <from uri="direct:start"/>
 <loadBalance>
 <failover roundRobin="true" maximumFailoverAttempts="1"/>
 <to uri="direct:a"/>
 <to uri="direct:b"/>
 </loadBalance>
</route>

The source code for the book contains this example in the chapter8/loadbalancer
directory. You can try it using the following Maven goals:

mvn test -Dtest=FailoverLoadBalancerTest
mvn test -Dtest=SpringFailoverLoadBalancerTest

If you’re curious about the inheritErrorHandler configuration option, take a look at
the following examples in the source code for the book:

mvn test -Dtest=FailoverInheritErrorHandlerLoadBalancerTest
mvn test -Dtest=SpringFailoverInheritErrorHandlerLoadBalancerTest

This concludes our tour of the failover load balancer. The next section explains how
to implement and use your own custom strategy, which you may want to do when you
need to use special load-balancing logic.

8.6.4 Using a custom load balancer

Custom load balancers allow you to be in full control of the balancing strategy in use.
For example, you could build a strategy that acquires load statistics from various ser-
vices and picks the service with the lowest load.

 Let’s look at an example. Suppose you want to implement a priority-based strategy
that sends gold messages to a certain processor and the remainder to a secondary des-
tination. Figure 8.13 illustrates this principle.

r

r

Message

Gold
message

Other
message

Figure 8.13 Using a
custom load balancer to
route gold messages to
processor 1 and other
messages to processor 2

 www.it-ebooks.info

http://www.it-ebooks.info/

279The Load Balancer EIP

When implementing a custom load balancer, you will often extend the SimpleLoad-
BalancerSupport class, which provides a good starting point. Listing 8.11 shows how
you can implement a custom load balancer.

import org.apache.camel.Exchange;
import org.apache.camel.Processor;
import org.apache.camel.processor.loadbalancer.SimpleLoadBalancerSupport;

public class MyCustomLoadBalancer extends SimpleLoadBalancerSupport {

 public boolean process(Exchange exchange) throws Exception {
 Processor target = chooseProcessor(exchange);
 target.process(exchange);
 }

 @Override
 protected Processor chooseProcessor(Exchange exchange) {
 String type = exchange.getIn().getHeader("type", String.class);
 if ("gold".equals(type)) {
 return getProcessors().get(0);
 } else {
 return getProcessors().get(1);
 }
 }
}

As you can see, it doesn’t take much code. In the process() method, you invoke the
chooseProcessor() method, which is the strategy that picks the processor to process
the message. In this example, it will pick the first processor if the message is a gold
type, and the second processor if not.

 In the Java DSL, you use a custom load balancer as shown in bold:

from("direct:start")
 .loadBalance(new MyCustomLoadBalancer())
 .to("seda:a").to("seda:b")
 .end();

In Spring XML, you need to declare a Spring bean tag:

<bean id="myCustom" class="camelinaction.MyCustomLoadBalancer"/>

Which you then refer to from the <loadBalance> tag:

<route>
 <from uri="direct:start"/>
 <loadBalance ref="myCustom">
 <to uri="seda:a"/>
 <to uri="seda:b"/>
 </loadBalance>
</route>

The source code for the book contains this example in the chapter8/loadbalancer
directory. You can try it using the following Maven goals:

mvn test -Dtest=CustomLoadBalancerTest
mvn test -Dtest=SpringCustomLoadBalancerTest

Listing 8.11 Custom load balancer

 www.it-ebooks.info

http://www.it-ebooks.info/

280 CHAPTER 8 Enterprise integration patterns

We’ve now covered the Load Balancer EIP in Camel, which brings us to the end of our
long journey to visit five great EIPs implemented in Camel.

8.7 Summary and best practices
Since the arrival of the Enterprise Integration Patterns book on the scene, we have had a
common vocabulary, graphical notation, and concepts for designing applications to
tackle today’s integration challenges. You have encountered these EIPs throughout this
book. In chapter 2 we reviewed the most common patterns, and this chapter reviews five
of the most complex and sophisticated patterns in great detail. You may view the EIP
book as the theory and Camel as the software implementation of the book.

 Here are some EIP best practices to take away from this chapter:

■ Learn the patterns. Take the time to study the EIPs, especially the common pat-
terns we covered in chapter 2 and those we presented in this chapter. Consider
getting the EIP book to read more about the patterns—there’s great advice
given in the book. The patterns are universal and the knowledge you gain when
using EIPs with Camel is something you can take with you.

■ Use the patterns. If you have a problem you don’t know how to resolve, there’s
a good chance others have scratched that itch before. Consult the EIP book
and the online Camel patterns catalog: http://camel.apache.org/enterprise-
integration-patterns.html.

■ Start simply. When learning to use an EIP, you should create a simple test to try
out the pattern and learn how to use it. Having too many new moving parts in a
Camel route can clutter your view and make it difficult to understand what’s
happening and maybe why it doesn’t do what you expected.

■ Come back to this chapter. If you’re going to use any of the five EIPs covered in this
chapter, we recommend you reread the relevant parts of the chapter. These pat-
terns are very sophisticated and have many features and options to tweak.

The Transactional Client EIP is useful for controlling transactions, and it’s the topic of
the next chapter.

 www.it-ebooks.info

http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://www.it-ebooks.info/

Part 3

Out in the wild

With Camel’s core concepts under your belt, you may feel like you can
tackle any integration problem with Camel. There is still more to cover, though.
In this final part of the book, we’ll cover the topics that are useful when you
know the core concepts and want to build something for the real world.

 One concept you’ll encounter in many real-world applications is transac-
tions. In chapter 9, we’ll explain how to use Spring’s transaction framework to
let Camel routes participate in transactions.

 In chapter 10, we’ll discuss the important, and sometimes complex, topic of
concurrency. Understanding how to configure and tune threading in Camel is a
must-read for performance-centric projects. We’ll also cover how you can
improve the scalability of your Camel applications.

 In chapter 11, we’ll discuss a topic you could really read right after part 1:
how to develop new Camel projects. In this chapter, we’ll show you how to create
new Camel projects, which could be Camel applications, custom components, or
interceptors. The Scala DSL is also touched on here.

 Once your application is running in the wild, you’ll need to know how to
manage it and monitor its operations. Chapter 12 discusses topics in this cate-
gory ranging from viewing the Camel logs to controlling Camel with JMX, to
extending the notification mechanism in Camel so it works with your own cus-
tom monitoring application.

 A topic you’ll need to read about before your Camel application is in produc-
tion is deployment. Camel was designed as a framework, and, as such, it has vir-
tually unlimited deployment possibilities. In chapter 13, we’ll discuss some of
the most popular deployment options for Camel. We’ll also cover the various
ways you can start and stop Camel.

 www.it-ebooks.info

http://www.it-ebooks.info/

 In the last chapter of the book, chapter 14, we cover what we consider "extra fea-
tures" of Camel: routing with beans and using remoting to hide Camel APIs. We think
of these as extra features because they perform routing without using any of Camel’s
DSLs and, in some cases, without any Camel APIs at all. They use a quite different
approach than what has been discussed throughout the book.

 www.it-ebooks.info

http://www.it-ebooks.info/

283

Using transactions

To help explain what transactions are, let’s look at an example from real life. You
may well have ordered this book from Manning’s online bookstore, and if you did,
you likely followed these steps:

1 Find the book Camel in Action
2 Put the book into the basket
3 Maybe continue shopping and look for other books
4 Go to the checkout
5 Enter shipping and credit card details
6 Confirm the purchase
7 Wait for the confirmation
8 Leave the web store

This chapter covers
■ Why you need transactions
■ How to use and configure transactions
■ The differences between local and global transactions
■ How to return custom reply messages on rollback
■ How to compensate when transactions aren’t supported

 www.it-ebooks.info

http://www.it-ebooks.info/

284 CHAPTER 9 Using transactions

What seems like an everyday scenario is actually a fairly complex series of events. You
have to put books in the basket before you can check out; you must fill in the shipping
and credit card details before you can confirm the purchase; if your credit card is
declined, the purchase won’t be confirmed; and so on. The ultimate resolution of this
transaction is either of two states: either the purchase was accepted and confirmed, or
the purchase was declined, leaving your credit card balance uncharged.

 This particular story involves computer systems because it’s about using an online
bookstore, but the same main points happen when you shop in the supermarket.
Either you leave the supermarket with your groceries or without.

 In the software world, transactions are often explained in the context of SQL state-
ments manipulating database tables—updating or inserting data. While the transac-
tion is in progress, a system failure could occur, and that would leave the transaction’s
participants in an inconsistent state. That’s why the series of events is described as
atomic: either they all are completed or they all fail—it’s all or nothing. In transac-
tional terms, they either commit or roll back.

NOTE I expect you know about the database ACID properties, so I won’t
explain what atomic, consistent, isolated, and durable mean in the context of
transactions. If you aren’t familiar with ACID, the Wikipedia page is a good
place to start learning about it: http://en.wikipedia.org/wiki/ACID.

In this chapter, we’ll first look at the reasons why you should use transactions (in the
context of Rider Auto Parts). Then we’ll look at transactions in more detail and at
Spring’s transaction management, which orchestrates the transactions. You’ll learn
about the difference between local and global transactions and how to configure and
use transactions. Toward the end of the chapter, you’ll see how to compensate for
when you’re using resources that don’t support transactions.

9.1 Why use transactions?
There are many good reasons why using transactions makes sense. But before we
focus on using transactions with Camel, let’s look at what can go wrong when you
don’t use transactions.

 In this section, we’ll review an application Rider Auto Parts uses to collect metrics
that will be published to an incident management system. We’ll see what goes wrong
when the application doesn’t use transactions, and then we’ll apply transactions to the
application.

9.1.1 The Rider Auto Parts partner integration application

Lately Rider Auto Parts has had a dispute with a partner about whether or not their
service meets the terms of the service level agreement (SLA). When such incidents
occur, it’s often a labor-intensive task to investigate and remedy the incident.

 In light of this, Rider Auto Parts has developed an application to record what hap-
pens, as evidence for when a dispute comes up. The application periodically measures

 www.it-ebooks.info

http://en.wikipedia.org/wiki/ACID
http://www.it-ebooks.info/

285Why use transactions?

the communication between Rider Auto Parts and its external partner servers. The
application records performance and uptime metrics, which are sent to a JMS queue,
where the data awaits further processing.

 Rider Auto Parts already has an existing incident management application with a
web user interface for upper management. What’s missing is an application to popu-
late the collected metrics to the database used by the incident management applica-
tion. Figure 9.1 illustrates the scenario.

 It’s a fairly simple task: a JMS consumer listens for new messages on the JMS
queue B. Then the data is transformed from XML to SQL C before it’s written to
the database D.

 In no time, you can come up with a route that matches figure 9.1:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route id="partnerToDB">
 <from uri="activemq:queue:partners"/>
 <bean ref="partner" method="toSql"/>
 <to uri="jdbc:myDataSource"/>
 </route>
</camelContext>

The reports are sent to the JMS queue in a simple in-house XML format, like this:

<?xml version="1.0"?>
<partner id="123">
 <date>200911150815</date>
 <code>200</code>
 <time>4387</time>
</partner>

The database table that stores the data is also mapped easily because it has the follow-
ing layout:

create table partner_metric
 (partner_id varchar(10), time_occurred varchar(20),
 status_code varchar(3), perf_time varchar(10))

That leaves you with the fairly simple task of mapping the XML to the database.
Because you’re pragmatic and want to make a simple and elegant solution that any-
body should be capable of maintaining in the future, you decide not to bring in the

JMS
queue Transform JDBC DatabaseJMS

queue

CamelJMS broker Database

B C D

Figure 9.1 Partner reports are received from the JMS broker, transformed in Camel to SQL format, and
then written to the database.

 www.it-ebooks.info

http://www.it-ebooks.info/

286 CHAPTER 9 Using transactions

big guns with the Java Persistence API (JPA) or Hibernate. You put the following map-
ping code in a good old-fashioned bean.

import org.apache.camel.language.XPath;

public class PartnerServiceBean {

 public String toSql(@XPath("partner/@id") int id,
 @XPath("partner/date/text()") String date,
 @XPath("partner/code/text()") int statusCode,
 @XPath("partner/time/text()") long responseTime) {

 StringBuilder sb = new StringBuilder();

 sb.append("INSERT INTO PARTNER_METRIC (partner_id, time_occurred,
 status_code, perf_time) VALUES (");
 sb.append("'").append(id).append("', ");
 sb.append("'").append(date).append("', ");
 sb.append("'").append(statusCode).append("', ");
 sb.append("'").append(responseTime).append("')");

 return sb.toString();
 }
}

Coding the 10 or so lines in listing 9.1 was faster than getting started on the JPA wagon
or opening any heavyweight and proprietary mapping software. The code speaks for
itself, but let’s go over it anyway.

 First you define the method to accept the four values to be mapped. Notice that
you use the @XPath annotation to grab the data from the XML document B. Then you
use a StringBuilder to construct the SQL INSERT statement with the input values C.

 To test this, you can crank up a unit test as follows:

public void testSendPartnerReportIntoDatabase() throws Exception {
 String sql = "select count(*) from partner_metric";
 assertEquals(0, jdbc.queryForInt(sql));

 String xml = "<?xml version=\"1.0\"?>
 + <partner id=\"123\"><date>200911150815</date>
 + <code>200</code><time>4387</time></partner>";

 template.sendBody("activemq:queue:partners", xml);

 Thread.sleep(5000);

 assertEquals(1, jdbc.queryForInt(sql));
}

This test method outlines the principle. First you check that the database is empty B.
Then you construct sample XML data and send it to the JMS queue using the Camel
ProducerTemplate. Because the processing of the JMS message is asynchronous,
you must wait a bit to let it process. At the end, you check that the database contains
one row C.

Listing 9.1 Using a bean to map from XML to SQL

Extracts
data from
XML payload

B

Constructs
SQL statementC

Asserts there are no
rows in databaseB

Asserts one row was
inserted into database

C

 www.it-ebooks.info

http://www.it-ebooks.info/

287Why use transactions?

9.1.2 Setting up the JMS broker and the database
To run this unit test, you need to use a local JMS broker and a database. You can use
Apache ActiveMQ as the JMS broker and HSQLDB (HyperSQL Database) as the database.
HSQLDB can be used as an in-memory database without the need to run it separately.
Apache ActiveMQ is an extremely versatile broker, and it’s even embeddable in unit tests.

 All you have to do is master a bit of Spring XML magic to set up the JMS broker and
the database. This is shown in listing 9.2.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:broker="http://activemq.apache.org/schema/core"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd
 http://activemq.apache.org/schema/core
 http://activemq.apache.org/schema/core/activemq-core.xsd">

<bean id="partner" class="camelinaction.PartnerServiceBean"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route id="partnerToDB">
 <from uri="activemq:queue:partners"/>
 <bean ref="partner" method="toSql"/>
 <to uri="jdbc:myDataSource"/>
 </route>
</camelContext>

<bean id="activemq"
 class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

<broker:broker useJmx="false" persistent="false" brokerName="localhost">
 <broker:transportConnectors>
 <broker:transportConnector uri="tcp://localhost:61616"/>
 </broker:transportConnectors>
</broker:broker>

<bean id="myDataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
 <property name="url" value="jdbc:hsqldb:mem:partner"/>
 <property name="username" value="sa"/>
 <property name="password" value=""/>
</bean>

</beans>

In listing 9.2, you first define the partner bean from listing 9.1 as a Spring bean that
you’ll use in the route. Then, to allow Camel to connect to ActiveMQ, you must define
it as a Camel component B. The brokerURL property is configured with the URL for

Listing 9.2 XML configuration for the Camel route, JMS broker, and database

Configures
ActiveMQ
component

B

Sets up embedded
JMS broker C

Sets up
database

D

 www.it-ebooks.info

http://www.it-ebooks.info/

288 CHAPTER 9 Using transactions

the remote ActiveMQ broker, which, in this example, happens to be running on the
same machine. Then you set up a local embedded ActiveMQ broker C, which is con-
figured to use TCP connectors. Finally, you set up the JDBC data source D.

The full source code for this example is located in the chapter9/riderautoparts-partner
directory, and you can try out the example by running the following Maven goal:

mvn test -Dtest=RiderAutoPartsPartnerTest

In the source code, you’ll also see how we prepared the database by creating the table
and dropping it after testing.

9.1.3 The story of the lost message
The previous test is testing a positive situation, but what happens if the connection to
the database fails. How can you test that?

 Chapter 6 covered how to simulate a connection failure using Camel interceptors.
Writing a unit test is just a matter of putting all that logic in a single method, as shown
in listing 9.3.

public void testNoConnectionToDatabase() throws Exception {
 RouteBuilder rb = new RouteBuilder() {
 public void configure() throws Exception {
 interceptSendToEndpoint("jdbc:*")
 .throwException(new ConnectException("Cannot connect"));
 }
 };

 RouteDefinition route = context.getRouteDefinition("partnerToDB");
 route.adviceWith(context, rb);

 String sql = "select count(*) from partner_metric";
 assertEquals(0, jdbc.queryForInt(sql));

 String xml = "<?xml version=\"1.0\"?>
 + <partner id=\"123\"><date>200911150815</date>

Listing 9.3 Simulating a connection failure that causes lost messages

Using VM instead of TCP with an embedded ActiveMQ broker
If you use an embedded ActiveMQ broker, you can use the VM protocol instead of
TCP; doing so bypasses the entire TCP stack and is much faster. For example, in list-
ing 9.2, you could use vm://localhost instead of tcp://localhost:61616.

Actually, the localhost in vm://localhost is the broker name, not a network ad-
dress. For example, you could use vm://myCoolBroker as the broker name and con-
figure the name on the broker tag accordingly: brokerName="myCoolBroker".

A plausible reason why you’re using vm://localhost in listing 9.2 is that the engi-
neers are lazy, and they changed the protocol from TCP to VM but left the broker name
as localhost.

Simulates no
connection to databaseB

Advises
simulation into
existing routeC

 www.it-ebooks.info

http://www.it-ebooks.info/

289Transaction basics

 + <code>200</code><time>4387</time></partner>";

 template.sendBody("activemq:queue:partners", xml);

 Thread.sleep(5000);

 assertEquals(0, jdbc.queryForInt(sql));
}

To test a failed connection to the database, you need to intercept the routing to the
database and simulate the error. You do this with the RouteBuilder, where you define
this scenario B. Next you need to add the interceptor with the existing route C,
which is done using the adviceWith method. The remainder of the code is almost
identical to the previous test, but you test that no rows are added to the database D.

NOTE You can read about simulating errors using interceptors in chapter 6,
section 6.3.3.

The test runs successfully. But what happened to the message you sent to the JMS
queue? It was not stored in the database, so where did it go?

 It turns out that the message is lost because you’re not using transactions. By default,
the JMS consumer uses auto-acknowledge mode, which means the client acknowledges the
message when it’s received, and the message is dequeued from the JMS broker.

 What you must do instead is use transacted acknowledge mode. We’ll look at how to do
this in section 9.3, but first we’ll discuss how transactions work in Camel.

9.2 Transaction basics
A transaction is a series of events. The start of a transaction is often named begin, and
the end is commit (or rollback if the transaction isn’t successfully completed). Figure 9.2
illustrates this.

To demonstrate the sequence in figure 9.2, you could write what are known as locally
managed transactions, where the transaction is managed manually in the code. The
following code illustrates this; it’s based on using JPA-managed transactions.

EntityManager em = emf.getEntityManager();
EntityTransaction tx = em.getTransaction();
try {
 tx.begin();

Asserts no rows
inserted into database

D

Event 1 Event 2 Event N...

Begin Commit

Transaction

Figure 9.2 A transaction is a series of events between begin and commit.

 www.it-ebooks.info

http://www.it-ebooks.info/

290 CHAPTER 9 Using transactions

 tx.commit();
} catch (Exception e) {
 tx.rollback();
}
em.close();

You start the transaction using the begin method. Then you have a series of events to
do whatever work needs to be done. At the end, you either commit or roll back the
transaction, depending on whether an exception was thrown or not.

 You may already be familiar with this principle, and transactions in Camel use the
same principle at a higher level of abstraction. In Camel transactions, you don’t
invoke begin and commit methods from Java code—you use declarative transactions,
which are configured in the Spring XML file. We’ll look at the details of how this works
in the next section, so don’t worry if it’s still a bit unclear.

 What are the benefits of defining transactions declaratively? With Spring’s approach,
you configure all this in the Spring XML regardless of which runtime environment
you’re using. This removes the need for changing Java code to match the targeted envi-
ronment. Spring also makes it easy to set up diverse environments using minimal con-
figuration. Spring’s transaction support is a great piece of technology, and that’s why
Camel leverages it instead of rolling out it’s own transaction framework.

NOTE For more information on Spring’s transaction management, see chapter 10,
“Transaction Management,” in the Spring Framework Reference Documentation:
http: //static.springsource.org/spring/docs/3.0.x/spring-framework-reference/
html/transaction.html.

Now that we’ve established that Camel works with Spring’s transaction support, let’s
look at how they work together.

9.2.1 About Spring’s transaction support

To understand how Camel works together
with Spring’s transaction support, take a
look at figure 9.3. This figure shows that
Spring orchestrates the transaction while
Camel takes care of the rest.

 Figure 9.4 adds more details, to illus-
trate that the JMS broker also plays an
active part in the transaction. In this
figure you can see how the JMS broker,
Camel, and the Spring JmsTransaction-
Manager work together. The Jms-
TransactionManager orchestrates the
resources that participate in the transac-
tion B, which in this example is the
JMS broker.

JMS
queue Transform JDBC

Camel

Transaction
Manager

Spring

Transaction required

Begin Commit

Figure 9.3 Spring’s TransactionManager
orchestrates the transaction by issuing begins and
commits. The entire Camel route is transacted,
and the transaction is handled by Spring.

 www.it-ebooks.info

http://www.it-ebooks.info/

291Transaction basics

When a message has been consumed from the queue and fed into the Camel applica-
tion, Camel issues a begin C to the JmsTransactionManager. Depending on whether
the Camel route completes with success or failure D, the JmsTransactionManager
will ensure the JMS broker commits or rolls back.

 It’s now time to see how this works in practice. In the next section, we’ll fix the lost-
message problem by adding transactions.

9.2.2 Adding transactions

At the end of section 9.1, you left Rider Auto Parts with the problem of losing mes-
sages because you did not use transactions. Your task now is to apply transactions,
which should remedy the problem.

 You’ll start by introducing Spring transactions to the Spring XML file and adjusting
the configuration accordingly. Listing 9.4 shows how this is done.

<bean id="activemq"
 class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="transacted" value="true"/>
 <property name="transactionManager" ref="txManager"/>
</bean>

<bean id="txManager"
 class="org.springframework.jms.connection.JmsTransactionManager">

Listing 9.4 XML configuration using Spring transactions

JmsTransaction
Manager

Spring

JMS
broker

Orchestrates

JMS
queue Transform JDBC

Camel

Transaction required

CommitBegin

B
C

D

Figure 9.4 The Spring JmsTransactionManager orchestrates the transaction with the JMS broker.
The Camel route completes successfully and signals the commit to the JmsTransactionManager.

Enables transacted
acknowledge modeBConfigures Spring

JmsTransactionManager
C

 www.it-ebooks.info

http://www.it-ebooks.info/

292 CHAPTER 9 Using transactions

 <property name="connectionFactory" ref="jmsConnectionFactory"/>
</bean>

<bean id="jmsConnectionFactory"
 class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

The first thing you do is turn on transacted for the ActiveMQ component B, which
instructs it to use transacted acknowledge mode. Then you need to refer to the
transaction manager, which is a Spring JmsTransactionManager C that manages
transactions when using JMS messaging. The transaction manager needs to know
how to connect to the JMS broker, which refers to the connection factory. In
the jmsConnectionFactory definition, you configure the brokerURL to point at the
JMS broker.

TIP The JmsTransactionManager has other options for configuring transaction
behavior, such as timeouts, strategies for rollback on commit failure, and so on.
Consult the Spring documentation for details: http://static.springsource.org/
spring/docs/3.0.x/spring-framework-reference/html/transaction.html.

So far you’ve only reconfigured beans in the Spring XML file, which is mandatory
when using Spring. In Camel, itself, you have not yet configured anything in relation
to transactions. Camel offers great convention over configuration for transaction sup-
port, so all you have to do is to add <transacted/> to the route, right after <from>, as
highlighted here:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route id="partnerToDB">
 <from uri="activemq:queue:partners"/>
 <transacted/>
 <bean ref="partner" method="toSql"/>
 <to uri="jdbc:myDataSource"/>
 </route>
</camelContext>

When you specify <transacted/> in a route, Camel uses transactions for that particu-
lar route. Under the hood, Camel looks up the Spring transaction manager and lever-
ages it. This is the convention over configuration kicking in.

 Using transacted in the Java DSL is just as easy, as shown here:

from("activemq:queue:partners")
 .transacted()
 .beanRef("partner", "toSql")
 .to("jdbc:myDataSource");

The convention over configuration only applies when you have a single Spring trans-
action manager configured. In more complex scenarios, with multiple transaction
managers, you have to do additional configuration to set up transactions. We’ll cover
that in section 9.4.1.

 www.it-ebooks.info

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/transaction.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/transaction.html
http://www.it-ebooks.info/

293Transaction basics

NOTE When using transacted() in the Java DSL, you must add it right
after from() to ensure that the route is properly configured to use transac-
tions. This isn’t enforced in the DSL because the DSL is loosely defined to
make it easy to maintain and develop Camel. There are a few tradeoffs such
as this.

In this example, all you had to do to configure Camel was to add <transacted/> in
the route. You relied on the transactional default configurations, which greatly
reduces the effort required to set up the various bits. In section 9.4, we’ll go deeper
into configuring transactions.

 Let’s see if this configuration is correct by testing it.

9.2.3 Testing transactions

When you test Camel routes using transactions, it’s common to test with live
resources, such as a real JMS broker and a database. For example, the source code for
this book uses Apache ActiveMQ and HSQLDB as live resources. We picked these
because they can be easily downloaded using Apache Maven and they’re lightweight
and embeddable, which makes them perfect for unit testing. There is no upfront
work needed to install them. To demonstrate how this works, we’ll return to the Rider
Auto Parts example.

 Last time you ran a unit test, you lost the message when there was no connection to
the database. Let’s try that unit test again, but this time with transactional support.
You can do this by running the following Maven goal from the chapter9/rider-
autoparts-partner directory:

mvn test -Dtest=RiderAutoPartsPartnerTXTest

When you run the unit test, you’ll notice a lot of stacktraces printed on the console,
and they’ll contain the following snippet:

2009-11-22 12:47:22,158 [enerContainer-1] ERROR EndpointMessageListener
 - java.net.ConnectException: Cannot connect to the database
org.apache.camel.spring.spi.TransactedRuntimeCamelException:
java.net.ConnectException: Cannot connect to the database
 at
org.apache.camel.spring.spi.TransactionErrorHandler.wrapTransacted
RuntimeException(TransactionErrorHandler.java:173)
 at
org.apache.camel.spring.spi.TransactionErrorHandler$1.doInTransaction
WithoutResult(TransactionErrorHandler.java:123)
 at
org.springframework.transaction.support.TransactionCallbackWithout
Result.doInTransaction(TransactionCallbackWithoutResult.java:33)
 at
org.springframework.transaction.support.TransactionTemplate.execute
(TransactionTemplate.java:128)
 at
org.apache.camel.spring.spi.TransactionErrorHandler.process
(TransactionErrorHandler.java:86)

 www.it-ebooks.info

http://www.it-ebooks.info/

294 CHAPTER 9 Using transactions

You can tell from the stacktrace that EndpointMessageListener (shown in bold)
logged an exception at ERROR level, which indicates the transaction is being rolled
back. This happens because EndpointMessageListener is a javax.jms.Message-
Listener, which is invoked when a new message arrives on the JMS destination. It will
roll back the transaction if an exception is thrown.

 So where is the message now? It should be on the JMS queue, so let’s add a little
code to the unit test to check that. Add the following code at the end of the unit test
method in listing 9.3.

Object body = consumer.receiveBodyNoWait("activemq:queue:partners");
assertNotNull("Should not lose message", body);

Now you can run the unit test to ensure that the message wasn’t lost—and the unit test
will fail with this assertion error:

java.lang.AssertionError: Should not lose message
 at org.junit.Assert.fail(Assert.java:74)
 at org.junit.Assert.assertTrue(Assert.java:37)
 at org.junit.Assert.assertNotNull(Assert.java:356)
 at
camelinaction.RiderAutoPartsPartnerTXTest.testNoConnectionToDatabase
(RiderAutoPartsPartnerTXTest.java:96)

We’re using transactions, and they’ve been configured correctly, but the message is
still being lost. What’s wrong? If you dig into the stacktraces, you’ll discover that the
message is always redelivered six times, and then no further redelivery is conducted.

TIP If you’re using Apache ActiveMQ, we recommend you pick up a copy of
ActiveMQ in Action, by Bruce Snyder, Dejan Bosanac, and Rob Davies. Among
other things, this book explains how to use transactions and redelivery in
more detail.

What happens is that ActiveMQ performs the redelivery according to its default set-
tings, which say it will redeliver at most six times before giving up and moving the mes-
sage to a dead letter queue. This is, in fact, the Dead Letter Channel EIP. You may
remember that we covered this in chapter 5 (look back to figure 5.4). ActiveMQ imple-
ments this pattern, which ensures that the broker won’t be doomed by a poison mes-
sage that can’t be successfully processed and that would cause arriving messages to
stack up on the queue.

 Instead of looking for the message on the partner’s queue, you should look for the
message in the default ActiveMQ dead letter queue, which is named ActiveMQ.DLQ. If
you change the code accordingly (as shown in bold), the test will pass:

Object body = consumer.receiveBodyNoWait("activemq:queue:ActiveMQ.DLQ");
assertNotNull("Should not lose message", body);

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

You need to do one additional test to cover the situation where the connection to the
database only fails at first, but works on subsequent calls. Here’s that test.

 www.it-ebooks.info

http://www.it-ebooks.info/

295Transaction basics

public void testFailFirstTime() throws Exception {
 RouteBuilder rb = new RouteBuilder() {
 public void configure() throws Exception {
 interceptSendToEndpoint("jdbc:*")
 .choice()
 .when(header("JMSRedelivered").isEqualTo("false"))
 .throwException(new ConnectException(
 "Cannot connect to the database"))
 .end();
 }
 };

 context.getRouteDefinition("partnerToDB").adviceWith(context, rb);

 String sql = "select count(*) from partner_metric";
 assertEquals(0, jdbc.queryForInt(sql));

 String xml = "<?xml version=\"1.0\"?>
 + <partner id=\"123\"><date>200911150815</date>
 + <code>200</code><time>4387</time></partner>";
 template.sendBody("activemq:queue:partners", xml);

 Thread.sleep(5000);

 assertEquals(1, jdbc.queryForInt(sql));

 Object dlq = consumer.receiveBodyNoWait("activemq:queue:ActiveMQ.DLQ");
 assertNull("Should not be in the DLQ", dlq);
}

The idea is to throw a ConnectionException only the first time. You do this by relying
on the fact that any message consumed from a JMS destination has a set of standard
JMS headers, and the JMSRedelivered header is a Boolean type indicating whether
the JMS message is being redelivered or not.

 The interceptor logic is done in a Camel RouteBuilder, so you have the full DSL at
your disposal. You use the Content-Based Router EIP B to test the JMSRedelivered
header and only throw the exception if it’s false, which means it’s the first delivery.
The rest of the unit test should verify correct behavior, so you first check that the data-
base is empty before sending the message to the JMS queue. Then you sleep a bit to let
the routing complete. After completion, you check that the database has one row.
Because you previously were tricked by the JMS broker’s dead letter queue, you also
check that it’s empty C.

 The example we’ve just covered uses what are called local transactions, because
they’re based on using only a single resource in the transaction—Spring was only
orchestrating the JMS broker. But there was also the database resource, which, in the
example, was not under transactional control. Leveraging both the JMS broker and
the database as resources participating in the same transaction requires more work,
and the next section explains about using single and multiple resources in a transac-
tion. First, we’ll look at this from the EIP perspective.

Listing 9.5 Testing a simulated rollback on the first try and a commit on the second try

Causes failure
first time

B

Asserts message
not in DLQ

C

 www.it-ebooks.info

http://www.it-ebooks.info/

296 CHAPTER 9 Using transactions

9.3 The Transactional Client EIP
The Transactional Client EIP distills the problem of how a client can control transac-
tions when working with messaging. It’s depicted in figure 9.5.

Figure 9.5 shows how this pattern was portrayed in Gregor Hohpe and Bobby Woolf’s
Enterprise Integration Patterns book, so it may be a bit difficult to understand how it
relates to using transactions with Camel. What the figure shows is that both a sender
and a receiver can be transactional by working together. When a receiver initiates the
transaction, the message is neither sent nor removed from the queue until the trans-
action is committed. When a sender initiates the transaction, the message isn’t avail-
able to the consumer until the transaction has been committed. Figure 9.6 illustrates
this principle.

Message

Sender

Message

Transaction

Receiver

Message

Transaction

Transactional
producer

Transactional
consumer

Figure 9.5 A transactional client handles the client’s session with the receivers so the client
can specify transaction boundaries that encompass the receiver.

Consumer Transactional
client Producer Queue BQueue A

Message

Message
arrivedMessage

deleted

Message
not arrived

Message

Route

In
progress

Commit

Queue A Queue B

In progress

Figure 9.6 A message is being moved from queue A to queue B. Transactions ensure the message is
moved in what appears to be an atomic operation.

 www.it-ebooks.info

http://www.it-ebooks.info/

297The Transactional Client EIP

The top section of figure 9.6 illustrates the route using EIP icons, with a message being
moved from queue A to B using a transaction. The remainder of the figure shows a
use case when one message is being moved.

 The middle section shows a snapshot in time when the message is being moved.
The message still resides in queue A and has not yet arrived in queue B. The message
stays on queue A until a commit is issued, which ensures that the message isn’t lost in
case of a severe failure.

 The bottom section shows the situation when a commit has been issued. The mes-
sage is then deleted from queue A and inserted into queue B. Transactional clients
make this whole process appear as an atomic, isolated, and consistent operation.

 When talking about transactions, we need to distinguish between single- and multi-
ple-resource transactions. The former are also known as local transactions and the lat-
ter as global transactions. In the next two sections, we’ll look at these two flavors.

9.3.1 Using local transactions

Figure 9.7 depicts the situation of using a single resource, which is the JMS broker.
 In this situation, the JmsTransactionManager orchestrates the transaction with the

single participating resource, which is the JMS broker B. The JmsTransaction-
Manager from Spring can only orchestrate JMS-based resources, so the database
isn’t orchestrated.

 In the Rider Auto Parts example in section 9.1, the database didn’t participate as a
resource in the transaction, but the approach seemed to work anyway. That was

JmsTransaction
Manager

Spring

JMS
broker Database

Orchestrates

JMS
queue Transform JDBC

Camel

Transaction required

Commit

Begin

B
C

Figure 9.7 Using JmsTransactionManager as a single resource in a transaction. The database
isn’t a participant in the transaction.

 www.it-ebooks.info

http://www.it-ebooks.info/

298 CHAPTER 9 Using transactions

because if the database decides to roll back the transaction, it will throw an exception
that the Camel TransactionErrorHandler propagates back to the JmsTransaction-
Manager, which reacts accordingly and issues a rollback C.

 This scenario isn’t exactly equivalent to enrolling the database in the transaction,
because it still has failure scenarios that could leave the system in an inconsistent state.
For example, the JMS broker could fail after the database is successfully updated, but
before the JMS message is committed. To be absolutely sure that both the JMS broker
and the database are in sync in terms of the transaction, you must use the much
heavier global transactions. Let’s take a look at that now.

9.3.2 Using global transactions

Using transactions with a single resource is appropriate when a single resource is
involved. But the situation changes dramatically when you need to span multiple
resources in the same transaction, such as JMS and JDBC resources, as depicted in fig-
ure 9.8.

 In this figure, we’ve switched to using the JtaTransactionManager, which han-
dles multiple resources. Camel consumes a message from the queue, and a begin is
issued B. The message is processed, updating the database, and it completes suc-
cessfully C.

 So what is the JtaTransactionManager, and how is it different from the JmsTrans-
actionManager used in the previous section (see figure 9.7)? To answer this, you first
need to learn a bit about global transactions and where the Java Transaction API (JTA)
fits in.

JtaTransaction
Manager

Spring

JMS
broker Database

Orchestrates

JMS
queue Transform JDBC

Camel

Transaction required

Commit
Orchestrates

Begin B

C

Figure 9.8 Using JtaTransactionManager with multiple resources in a transaction. Both
the JMS broker and the database participate in the transaction.

 www.it-ebooks.info

http://www.it-ebooks.info/

299The Transactional Client EIP

In Java, JTA is an implementation of the XA standard protocol, which is a global trans-
action protocol. To be able to leverage XA, the resource drivers must be XA-compliant,
which some JDBC and most JMS drivers are. JTA is part of the JAVA EE specification,
which means that any JAVA EE-compliant application server must provide JTA support.
This is one of the benefits of JAVA EE servers, which have JTA out of the box, unlike
some lightweight alternatives, such as Apache Tomcat.

 Using JTA outside a JAVA EE server takes some work to set up because you have to
find and use a JTA transaction manager, such as one of these:

■ JOTM—http://jotm.ow2.org/xwiki/bin/view/Main/WebHome
■ Atomikos—http://www.atomikos.com
■ Bitronix—http://www.bitronix.be

Then you need to figure out how to install and use it in your container and unit tests.
The good news is that using JTA with Camel and Spring is just a matter of configuration.

NOTE For more information on JTA, see the Wikipedia page on the subject:
http://en.wikipedia.org/wiki/Java_Transaction_API. XA is also briefly dis-
cussed: http://en.wikipedia.org/wiki/X/Open_XA.

When using JTA (XA), there are a couple of differences from using local transactions.
First, you have to use XA-capable drivers, which means you have to use the ActiveMQ-
XAConnectionFactory to let ActiveMQ participate in global transactions.

<bean id="jmsXaConnectionFactory"
 class="org.apache.activemq.ActiveMQXAConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

The same applies for the JDBC driver—you need to use an XA-capable driver. HSQLDB
doesn’t support XA, so you can fall back and use an Atomikos feature that’s capable of
simulating XA for non-XA JDBC drivers:

<bean id="myDataSource"
 class="com.atomikos.jdbc.nonxa.AtomikosNonXADataSourceBean">
 <property name="uniqueResourceName" value="hsqldb"/>
 <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
 <property name="url" value="jdbc:hsqldb:mem:partner"/>
 <property name="user" value="sa"/>
 <property name="password" value=""/>
 <property name="poolSize" value="3"/>
</bean>

In a real production system, you should prefer to use a JDBC driver that’s XA-capable,
because the simulation has a few drawbacks. You can find out more about this at the
Atomikos website listed previously.

 Having configured the XA drivers, you also need to use the Spring JtaTransac-
tionManager. It should refer to the real XA transaction manager, which is Atomikos in
this example:

 www.it-ebooks.info

http://jotm.ow2.org/xwiki/bin/view/Main/WebHome
http://www.atomikos.com
http://www.bitronix.be
http://en.wikipedia.org/wiki/Java_Transaction_API
http://en.wikipedia.org/wiki/X/Open_XA
http://www.it-ebooks.info/

300 CHAPTER 9 Using transactions

<bean id="jtaTransactionManager"
 class="org.springframework.transaction.jta.JtaTransactionManager">
 <property name="transactionManager" ref="atomikosTransactionManager"/>
 <property name="userTransaction" ref="atomikosUserTransaction"/>
</bean>

The remainder of the configuration involves configuring Atomikos itself, which
you can see in the book’s source code, in the file chapter9/xa/src/test/resources/
camel-spring.xml.

 Suppose you want to add an additional step in the route shown in figure 9.8.
You’ll process the message after it has been inserted into the database. This addi-
tional step will influence the outcome of the transaction, whether or not it throws
an exception.

 Suppose it does indeed throw an exception, as portrayed in figure 9.9.
 In figure 9.9, the message is being routed B and, at the last step in the route (in

the bottom-right corner with the X), it fails by throwing an exception. The JtaTrans-
actionManager handles this by issuing rollbacks C to both the JMS broker and the
database. Because this scenario uses global transactions, both the database and the
JMS broker will roll back, and the final result is as if the entire transaction hadn’t
taken place.

JtaTransaction
Manager

Spring

JMS
broker Database

JMS
queue Transform JDBC

Camel

Transaction required

Rollback
Orchestrates

Proce s

Orchestrates

Begin B

C

Figure 9.9 A failure to process a message at the last step in the route causes the
JtaTransactionManager to issue rollbacks to both the JMS broker and the database.

 www.it-ebooks.info

http://www.it-ebooks.info/

301Configuring and using transactions

The source code for the book contains this example in the chapter9/xa directory. You
can test it using the following Maven goals:

mvn test -Dtest=AtomikosXACommitTest
mvn test -Dtest=AtomikosXARollbackBeforeDbTest
mvn test -Dtest=AtomikosXARollbackAfterDbTest

We’ll leave the topic of global transactions here and move on to learn more about
configuring and using transactions.

9.4 Configuring and using transactions
So far, we’ve used convention over configuration when configuring transactions in
Camel, by just adding <transacted/> to the route. This is often all you’ll need to use,
but there can be situations where you need more fine-grained control, such as when
specifying transaction propagation settings.

 That’s the first thing we’ll look at in this section. Then we’ll look at how transac-
tions work when multiple routes are used. At the end of the section, we’ll look at how
you can return custom responses to the caller when a transaction fails.

9.4.1 Configuring transactions
When you configure transactions, you’ll come across the term transaction propagation.
In this section, you’ll learn what that term means and why it’s related to configuring
transactions.

 If you have ever worked with Enterprise JavaBeans (EJBs), you may be familiar with
transaction propagation already. Transaction propagation options specify what will
happen if a method is invoked and a transaction context already exists. For example,
should it join the existing transaction? Should a new transaction be started? Or should
it fail?

 In most use cases, you end up using one of two options: joining the existing trans-
action (PROPAGATION_REQUIRED) or starting a new transaction (PROPAGATION_
REQUIRES_NEW).

 To use transaction propagation, you must configure it in the Spring XML file as
shown in the following example. This example uses PROPAGATION_REQUIRED as indi-
cated in bold:

<bean id="required"
 class="org.apache.camel.spring.spi.SpringTransactionPolicy">
 <property name="transactionManager" ref="txManager"/>
 <property name="propagationBehaviorName"
 value="PROPAGATION_REQUIRED"/>
</bean>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route id="partnerToDB">
 <from uri="activemq:queue:partners"/>
 <transacted ref="required"/>
 <bean ref="partner" method="toSql"/>
 <to uri="jdbc:myDataSource"/>
 </route>
</camelContext>

Defining policy with
propagation required B

Using policy
definition in
Camel routeC

 www.it-ebooks.info

http://www.it-ebooks.info/

302 CHAPTER 9 Using transactions

First you define a bean with the id "required", which is a SpringTransactionPolicy
type B. The bean must refer to both the transaction manager and the choice of trans-
action propagation to be used. In the Camel route, you then refer to the required
bean from within the <transacted> tag, using the ref attribute C.

 If you want to use PROPAGATION_REQUIRES_NEW, it’s just a matter of changing the
property on the bean as shown in bold:

<property name="propagationBehaviorName"
 value="PROPAGATION_REQUIRES_NEW"/

If you have ever used Spring transactions, you may have named beans with the transac-
tion propagation type directly, like this:

<bean id="PROPAGATION_REQUIRED"
 class="org.apache.camel.spring.spi.SpringTransactionPolicy">
 <property name="transactionManager" ref="txManager"/>
</bean>

There is no practical difference between these two styles—it’s a matter of taste as to
which you prefer.

 Notice that you don’t have to specify the propagationBehaviorName property on
the bean. This is because Camel uses convention over configuration to detect whether
the bean id matches any of the known propagation behavior names. In this example,
the bean id is "PROPAGATION_REQUIRED", which tells Camel to use this propagating
behavior. All together, it allows you to avoid repeating yourself by specifying the prop-
agationBehaviorName property as well.

 Let’s look at what else is specified by convention over configuration.

USING CONVENTION OVER CONFIGURATION FOR TRANSACTIONS IN CAMEL ROUTES

In section 9.2, you used the default transaction configuration, which relies on conven-
tion over configuration. This works well when you want to use the required transac-
tion propagation, because it removes the need for some boilerplate configuration.

 The first example from section 9.2.2 could be reduced to only the Camel route, as
follows:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route id="partnerToDB">
 <from uri="activemq:queue:partners"/>
 <transacted/>
 <bean ref="partner" method="toSql"/>
 <to uri="jdbc:myDataSource"/>
 </route>
</camelContext>

All you do here is declare <transacted/> in the Camel route, and Camel takes it from
there. Camel will use PROPAGATION_REQUIRED by convention, and will look up the
Spring transaction manager for you.

NOTE This is a common situation. Usually all you have to do is configure the
Spring transaction manager and add <transacted/> in the Camel route.

 www.it-ebooks.info

http://www.it-ebooks.info/

303Configuring and using transactions

You have now learned how to configure and use transactions with Camel. But there’s
more to learn. In the next section, we’ll look at how transactions work when you have
multiple routes and when you need different propagation behavior.

9.4.2 Using transactions with multiple routes

In Camel, it’s common to have multiple routes and to let one route reuse another by
sending messages to it. In this section, we’ll look at how this works when one or all
routes are transacted. Then we’ll look at some of the implications of using transac-
tions with request-response messaging style.

 We’ll start out simply and look at what happens when you use a non-transacted
route from a transacted route.

USING TRANSACTIONS WITH A NON-TRANSACTED ROUTE

Listing 9.6 shows the parts of a unit test that you can use to see what happens when a
transacted route calls a non-transacted route.

public class TXToNonTXTest extends CamelSpringTestSupport {

protected AbstractXmlApplicationContext createApplicationContext() {
 return new ClassPathXmlApplicationContext("spring-context.xml");
}

protected int getExpectedRouteCount() {
 return 0;
}

protected RouteBuilder createRouteBuilder() throws Exception {
 return new SpringRouteBuilder() {
 public void configure() throws Exception {
 from("activemq:queue:a")
 .transacted()
 .to("direct:quote")
 .to("activemq:queue:b");

 from("direct:quote")
 .choice()
 .when(body().contains("Camel"))
 .transform(constant("Camel rocks"))
 .when(body().contains("Donkey"))
 .throwException(new IllegalArgumentException(
 "Donkeys not allowed"))
 .otherwise()
 .transform(body().prepend("Hello "));
 }
 };
}

In listing 9.6, you first import the Spring XML file, which contains all the Spring con-
figuration to set up the JMS broker, Spring, and the Camel ActiveMQ component. The
content of the spring-context.xml file is the same as in listing 9.4.

Listing 9.6 Unit test with a transacted route calling a non-transacted route

Transacted
route

B

Non-transacted
route

C

 www.it-ebooks.info

http://www.it-ebooks.info/

304 CHAPTER 9 Using transactions

 The getExpectedRouteCount method may at first seem a bit odd, but it’s needed
to indicate to CamelSpringTestSupport that the Spring XML file doesn’t contain any
Camel routes—it does this by saying that there are 0 routes. Next, you have the two
routes. First, the transacted route B moves messages from queue A to B. During this
move, the message is also processed by the non-transacted route C, which transforms
the message using a content-based router. Notice that if the message contains the
word "Donkey", the route will force a failure by throwing an exception.

 You can run this unit test by running the following Maven goal from the chapter9/
multuple-routes directory:

mvn test -Dtest=TXToNonTXTest

The unit test has three methods: two test situations that commit the transaction, and
one rolls back the transaction because of the exception being thrown. Here are two
tests showing the commit and rollback situations:

public void testWithCamel() throws Exception {
 template.sendBody("activemq:queue:a", "Hi Camel");
 Object reply = consumer.receiveBody("activemq:queue:b", 10000);
 assertEquals("Camel rocks", reply);
}

public void testWithDonkey() throws Exception {
 template.sendBody("activemq:queue:a", "Donkey");
 Object reply = consumer.receiveBody("activemq:queue:b", 10000);
 assertNull("There should be no reply", reply);

 reply = consumer.receiveBody("activemq:queue:ActiveMQ.DLQ", 10000);
 assertNotNull("It should have been moved to DLQ", reply);
}

What can you learn from this? The unit test proves that when a transacted route uses a
non-transacted route, the transactional behavior works as if all routes are transacted,
which is what you’d expect. The last unit test proves that when the non-transacted
route fails by throwing an exception, the transacted route detected this and issued a
rollback. You can see this because the message is moved to the JMS broker’s dead let-
ter queue.

 This is great news, because there are no surprises. It’s safe for transacted routes to
reuse existing non-transacted routes.

NOTE The transaction manager requires messages to be processed in the
same thread context, to support the transaction. This means that when you
use multiple routes, you must link them together in a way that ensures the
message is processed in the same thread. Using the Direct component does
this—the Direct component was used in listing 9.6 to link the two routes
together. This won’t work with the SEDA component, which routes messages
using another thread.

Let’s continue and see what happens when both routes are transacted.

 www.it-ebooks.info

http://www.it-ebooks.info/

305Configuring and using transactions

USING TRANSACTIONS WITH ANOTHER TRANSACTED ROUTE

Now let’s modify the unit test from listing 9.6 and create a new situation, where both
routes are transacted, and see what happens. Here are the routes.

public void configure() throws Exception {
 from("activemq:queue:a")
 .transacted()
 .to("direct:quote")
 .to("activemq:queue:b");

 from("direct:quote")
 .transacted()
 .choice()
 .when(body().contains("Camel"))
 .to("activemq:queue:camel")
 .otherwise()
 .throwException(new IllegalArgumentException
 ("Unsupported animal"));
}

You can run this example by running the following Maven goal:

mvn test -Dtest=TXToTXTest

Once again, the unit test will prove that there are no surprises here. When the excep-
tion is thrown, the entire route is rolled back, which is what you’d expect. When the
message hits the second route and the second transacted, it participates in the exist-
ing transaction. This is because PROPAGATION_REQUIRED is the default propagation
behavior when using transacted.

 Next, we’ll make it more challenging by using two different transaction propagations.

USING MULTIPLE TRANSACTIONS WITH ONE EXCHANGE

In some situations, you may need to use multiple transactions with the same
exchange, as illustrated in figure 9.10.

 In figure 9.10 an exchange is being routed in Camel. It starts off using the
required transaction, and then you need to use another transaction that’s indepen-
dent of the existing transaction. You can do this by using PROPAGATION_REQUIRES_NEW,
which will start a new transaction regardless of whether an existing transaction exists

Listing 9.7 Two transacted routes

PROPAGATION_
REQUIRED

PROPAGATION_
REQUIRES_NEW

Transaction 1 Transaction 2

Exchange

Figure 9.10 Using two independent transactions in a single exchange

 www.it-ebooks.info

http://www.it-ebooks.info/

306 CHAPTER 9 Using transactions

or not. When the exchange completes, the transaction manager will issue commits to
these two transactions, which ensures that they both commit at the same point.

NOTE The example outlined in figure 9.10 requires the transaction manager
to support the suspension and resumption of transactions. This isn’t sup-
ported by all transaction manager implementations.

In Camel, a route can only be configured to use at most one transaction propagation,
which means figure 9.10 must use two routes. The first route uses PROPAGATION_
REQUIRED and the second route uses PROPAGATION_REQUIRES_NEW.

 Suppose you have an application that updates orders in a database. The applica-
tion must store all incoming orders in an audit log, and then it either updates or
inserts the order in the order database. The audit log should always insert a record,
even if subsequent processing of the order fails. Implementing this in Camel should
be done using two routes, as follows:

from("direct:orderToDB")
 .transacted("PROPAGATION_REQUIRED")
 .beanRef("orderDAO", "auditOrder")
 .to("direct:saveOrderInDB");

from("direct:saveOrderInDB")
 .onException(Exception.class).markRollbackOnlyLast().end()
 .transacted("PROPAGATION_REQUIRES_NEW")
 .beanRef("orderDAO", "updateOrInsertOrder");

The first route uses PROPAGATION_REQUIRED to make the route transactional. The sec-
ond route, in contrast, uses PROPAGATION_REQUIRES_NEW to ensure that a new transac-
tion is used within this route.

 Now suppose an error occurs while processing the second route—you could either
let both routes roll back, or only roll back the second route. Camel will, by default,
roll back both routes, and because you only want the second route to roll back, you
have to tell Camel this. This is done by declaring a route-level onException where you
leverage markRollbackOnlyLast, to instruct Camel to only roll back the last (current)
transaction. If you wanted to roll back both routes, you could either remove the onEx-
ception declaration or use markRollbackOnly instead of markRollbackOnlyLast.

 In the next section, we’ll return to Rider Auto Parts and look at an example that
covers a common use case: using web services together with transactions. How do you
return a custom web service response if a transaction fails?

9.4.3 Returning a custom response when a transaction fails

Rider Auto Parts has a Camel application that exposes a web service to a selected num-
ber of business partners. The partners use this application to submit orders. Figure 9.11
illustrates the application.

 As you can see in the figure, the business partners invoke a web service to submit
an order B. The received order is stored in a database for audit purposes C. The

 www.it-ebooks.info

http://www.it-ebooks.info/

307Configuring and using transactions

order is then processed by the enterprise resource planning (ERP) system D, and a
reply is returned to the waiting business partner E.

 The web service is deliberately kept simple so partners can easily leverage it with
their IT systems. There is a single return code that indicates whether or not the order
succeeded or failed. The following code snippet is part of the WSDL definition for the
reply (outputOrder):

<xs:element name="outputOrder">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="code"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The code field should contain "OK" if the order was accepted; any other value is con-
sidered a failure. This means that the Camel application must deal with any thrown
exceptions and return a custom failure message, instead of propagating the thrown
exception back to the web service.

 Your Camel application needs to do the following three things:

■ Catch the exception and handle it to prevent it propagating back
■ Mark the transaction to roll back
■ Construct a reply message with a code value of "ERROR"

Camel can support such complex use cases because you can leverage onException,
which you learned about in chapter 5. What you do is add an onException to the Camel-
Context, as shown here:

<onException>
 <exception>java.lang.Exception</exception>
 <handled><constant>true</constant></handled>
 <transform><method bean="order" method="replyError"/></transform>
 <rollback markRollbackOnly="true"/>
</onException>

You first tell Camel that this onException should trigger for any kind of exception
that’s thrown. You then mark the exception as handled, which removes the exception

Order
web service

Process
order

Camel

Partner

Rider
Auto
Parts
ERP

Order
copy

B C D

E

Figure 9.11 A web service used by business partners to submit orders. A copy of the order is
stored in a database before it’s processed by the ERP system.

 www.it-ebooks.info

http://www.it-ebooks.info/

308 CHAPTER 9 Using transactions

from the exchange, because you want to use a custom reply message instead of the
thrown exception.

NOTE The <rollback/> definition must always be at the end of the onExcep-
tion because it stops the message from being further routed. That means you
must have prepared the reply message before you issue the <rollback/>.

To construct the reply message, you use the order bean, invoking its replyError
method:

public OutputOrder replyError(Exception cause) {
 OutputOrder error = new OutputOrder();
 error.setCode("ERROR: " + cause.getMessage());
 return error;
}

This is easy to do, as you can see. You first define the replyError method to have an
Exception as a parameter—this will contain the thrown exception. You then create
the OutputOrder object, which you populate with the "ERROR" text and the excep-
tion message.

 The source code for the book contains this example in the chapter9/
riderautoparts-order directory. You can start the application by using the following
Maven goal:

mvn camel:run

Then you can send web service requests to http://localhost:9000/order. The WSDL is
accessible at http://localhost:9000/order?wsdl.

 To work with this example, you need to use web services. SoapUI (http://
www.soapui.org/) is a popular application for testing with web services. It’s also easy to
set up and get started. You create a new project and import the WSDL file from http:
//localhost:9000/order?wsdl. Then you create a sample web service request and fill in
the request parameters, as shown in figure 9.12. You then send the request by clicking
the green play button, and it will display the reply in the pane on the right side.

 Figure 9.12 shows an example where we caused a failure to occur. Our example
behaves according to what you specify in the refNo field. You can force different behav-
ior by specifying either FATAL or FAIL-ONCE in the refNo field. Entering any other value

Figure 9.12 A web service message causes the transaction to roll back, and a custom reply message
is returned.

 www.it-ebooks.info

http://www.soapui.org/
http://www.soapui.org/
http://www.it-ebooks.info/

309Compensating for unsupported transactions

will cause the request to succeed. As figure 9.12 shows, we entered FATAL, which causes
an exception to occur and an ERROR reply to be returned.

 So far we’ve been using resources that support transactions, such as JMS and JDBC,
but the majority of components don’t support transactions. So what can you do instead?
In the next section, we’ll look at compensating when transactions aren’t supported.

9.5 Compensating for unsupported transactions
The number of resources that can participate in transactions is limited—they’re
mostly confined to JMS- and JDBC-based resources. This section covers what you can
do to compensate for the absence of transactional support in other resources. Com-
pensation, in Camel, involves the unit of work concept.

 First, we’ll look at how a unit of work is represented in Camel and how you can use
this concept. Then we’ll walk through an example demonstrating how the unit of
work can help simulate the orchestration that a transaction manager does. We’ll also
discuss how you can use a unit of work to compensate for the lack of transactions by
doing the work that a transaction manager’s rollback would do in the case of failure.

9.5.1 Introducing UnitOfWork

The concept of the unit of work is to batch together a group of tasks as a single coher-
ent unit. The idea is to use the unit of work as a way of mimicking transactional
boundaries.

 In Camel the unit of work is represented by the org.apache.camel.spi.UnitOf-
Work interface offering a range of methods including the following:

void addSynchronization(Synchronization synchronization);
void removeSynchronization(Synchronization synchronization);
void done(Exchange exchange);

The addSynchronization and removeSynchronization methods are used to register
and unregister a Synchronization (a callback), which we’ll look at shortly. The done
method is invoked when the unit of work is complete, and it invokes the registered
callbacks.

 The Synchronization callback is the interesting part for Camel end users because
it’s the interface you use to execute custom logic when an exchange is complete. It’s
represented by the org.apache.camel.spi.Synchronization interface and offers
these two methods:

void onComplete(Exchange exchange);
void onFailure(Exchange exchange);

When the exchange is done, either the onComplete or onFailure method is invoked,
depending on whether the exchange failed or not.

 Figure 9.13 illustrates how these concepts are related to each other. As you can see
from this figure, each Exchange has exactly one UnitOfWork, which you can access
using the getUnitOfWork method from the Exchange. The UnitOfWork is private to
the Exchange and is not shared with others.

 www.it-ebooks.info

http://www.it-ebooks.info/

310 CHAPTER 9 Using transactions

When an Exchange is done being routed, you hit the end boundary of the UnitOf-
Work, and the registered Synchronization callbacks are invoked one by one. This is
the same mechanism the Camel components leverage to add their custom Synchro-
nization callbacks to the Exchange. For example, the File and FTP components use
this mechanism to perform after-processing operations such as moving or deleting pro-
cessed files.

TIP Use Synchronization callbacks to execute any after-processing you want
done when the Exchange is complete. Don’t worry about throwing exceptions
from your custom Synchronization—Camel will catch those and log them at
WARN level, and will then continue to invoke the next callback. This ensures
that all callbacks are invoked even if one happens to fail.

A good way of understanding how this works is to review an example, which we’ll do now.

9.5.2 Using Synchronization callbacks

Rider Auto Parts has a Camel application that sends email messages containing
invoice details to customers. First, the email content is generated, and then, before
the email is sent, a backup of the email is stored in a file for reference. Whenever an
invoice is to be sent to a customer, the Camel application is involved. Figure 9.14
shows the principle of this application.

 Imagine what would happen if there were a problem sending an email. You can’t
use transactions to roll back, because filesystem resources can’t participate in transac-
tions. Instead, you can perform custom logic, which compensates for the failure by
deleting the file.

getUnitOfWork
getIn
getOut

id
Exchange

addSynchronization
removeSynchronization
done

id
UnitOfWork

onComplete
onFailure

Synchronization
has

*
has

1

Figure 9.13 An Exchange has one UnitOfWork, which in turn has from zero to many
Synchronizations.

How UnitOfWork is orchestrated
Camel will automatically inject a new UnitOfWork into an Exchange when it’s routed.
This is done by an internal processor, UnitOfWorkProcessor, which is involved in
the start of every route. When the Exchange is done, this processor invokes the reg-
istered Synchronization callbacks. The UnitOfWork boundaries are always at the
beginning and end of Camel routes.

 www.it-ebooks.info

http://www.it-ebooks.info/

311Compensating for unsupported transactions

The compensation logic is trivial to implement, as shown here:

public class FileRollback implements Synchronization {

 public void onComplete(Exchange exchange) {
 }

 public void onFailure(Exchange exchange) {
 String name = exchange.getIn().getHeader(
 Exchange.FILE_NAME_PRODUCED, String.class);
 LOG.warn("Failure occurred so deleting backup file: " + name);
 FileUtil.deleteFile(new File(name));
 }
}

In the onFailure method, you delete the backup file, retrieving the filename used by
the Camel File component from the Exchange.FILE_NAME_PRODUCED header.

 What you must do next is instruct Camel to use the FileRollback class to perform
this compensation. To do so, you can add it to the UnitOfWork by using the add-
Synchronization method, which was depicted in figure 9.13. This can be done using
the Java DSL as highlighted:

public void configure() throws Exception {
 from("direct:confirm")
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getUnitOfWork()
 .addSynchronization(new FileRollback());
 }
 })
 .bean(OrderService.class, "createMail")
 .log("Saving mail backup file")
 .to("file:target/mail/backup")
 .log("Trying to send mail to ${header.to}")
 .bean(OrderService.class, "sendMail")
 .log("Mail send to ${header.to}");
}

The source code for the book contains this example in the chapter9/uow directory.
You can try it by using the following Maven goal:

mvn test -Dtest=FileRollbackTest

If you run the example, it will output something like the following to the console:

Mail copyTranslate Send emailInvoice

Camel

Figure 9.14
Emails are sent
to customers listing
their invoice details.
Before the email is
sent, a backup is
stored in the file
system.

 www.it-ebooks.info

http://www.it-ebooks.info/

312 CHAPTER 9 Using transactions

INFO route1 - Saving mail backup file
INFO route1 - Trying to send to FATAL
ERROR DefaultErrorHandler - Failed delivery for exchangeId:
 9edc1ecb-43be-43ee-9f32-7371452967bd.
WARN FileRollback - Failure occurred so deleting backup file:
 target/mail/backup/02630ec4-724d-4e73-8eb6-c969720578c

One thing that may bother you is that you must use an inlined Processor to add the
FileRollback class as a Synchronization. Camel offers a convenient method on the
Exchange, so you could do it with less code:

exchange.addOnCompletion(new FileRollback());

But it still requires the inlined Processor. Isn’t there a more convenient way? Yes
there is, and that’s where onCompletion comes into the picture.

9.5.3 Using onCompletion

OnCompletion takes the Synchronization into the world of routing, enabling you to
easily add the FileRollback class as Synchronization.

 So let’s see how it’s done. OnCompletion is available in both Java DSL and Spring
XML variations. Here’s how onCompletion is used with Spring XML.

<bean id="orderService" class="camelinaction.OrderService"/>

<bean id="fileRollback" class="camelinaction.FileRollback"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">

 <onCompletion onFailureOnly="true">
 <bean ref="fileRollback" method="onFailure"/>
 </onCompletion>

 <route>
 <from uri="direct:confirm"/>
 <bean ref="orderService" method="createMail"/>
 <log message="Saving mail backup file"/>
 <to uri="file:target/mail/backup"/>
 <log message="Trying to send mail to ${header.to}"/>
 <bean ref="orderService" method="sendMail"/>
 <log message="Mail send to ${header.to}"/>
 </route>

</camelContext>

As you can see from the code, <onCompletion> is defined as a separate Camel route. It
will be executed right after the regular route has completed. You’re only interested in
executing onCompletion when the exchange fails, so you can specify this by setting the
onFailureOnly attribute to true.

 The source code for the book contains this example, which you can run using the
following Maven goal:

mvn test -Dtest=SpringFileRollbackTest

Listing 9.8 Using onCompletion as a transactional rollback

 www.it-ebooks.info

http://www.it-ebooks.info/

313Summary and best practices

When you run it, you’ll find that it acts just like the previous example. It will delete the
backup file if the exchange fails.

OnCompletion can also be used in situations where the exchange did not fail. Suppose
you want to log activity about exchanges being processed. For example, in the Java
DSL you could do it as follows:

onCompletion().beanRef("logService", "logExchange");

OnCompletion also supports scoping, exactly the same onException does at either
context or route scope (as you saw in chapter 5). You could create a Java DSL–based
version of listing 9.8 using route-scoped onCompletion as follows:

from("direct:confirm")
 .onCompletion().onFailureOnly()
 .bean(FileRollback.class, "onFailure")
 .end()
 .bean(OrderService.class, "createMail")
 .log("Saving mail backup file")
 .to("file:target/mail/backup")
 .log("Trying to send mail to ${header.to}")
 .bean(OrderService.class, "sendMail")
 .log("Mail send to ${header.to}");

Now you’ve learned all there is to know about onCompletion, which brings us to the
end of this chapter.

9.6 Summary and best practices
Transactions play a crucial role when grouping distinct events together so that they act
as a single, coherent, atomic event.

 In this chapter, we looked at how transactions work in Camel and discovered that
Camel lets Spring orchestrate and manage transactions. By leveraging Spring
transactions, Camel lets you use an existing and proven transaction framework that

The difference between onCompletion and Synchronization
There is one major difference between using onCompletion and using a Synchro-
nization, and that’s the thread model in use. Synchronization uses the same thread
to perform the tasks, so it will block and wait until it completes. In contrast, onCom-
pletion transfers the exchange to be executed by a separate thread.

The reason for this design decision is that onCompletion should not affect the original
exchange and its outcome. Suppose during onCompletion an exception was
thrown—what should happen then? Or what if onCompletion unexpectedly or delib-
erately changed the content of the exchange, which would affect the reply being sent
back to the caller?

The bottom line is that onCompletion uses a separate route based on a copy of the
completed exchange. It will not affect the outcome of the original route.

 www.it-ebooks.info

http://www.it-ebooks.info/

314 CHAPTER 9 Using transactions

works well with the most popular application servers, message brokers, and data-
base systems.

 Here are the best practices you should take away from this chapter:

■ Use transactions when appropriate. Transactions can only be used by a limited num-
ber of resources, such as JMS and JDBC. Therefore, it only makes sense to use
transactions when you can leverage these kinds of resources. If transactions
aren’t applicable, you can consider using your own code to compensate and to
work as a rollback mechanism.

■ Local or global transactions. If your route only involves one transactional resource,
use local transactions. They’re simpler and much less resource-intensive. Only
use global transactions if multiple resources are involved.

■ Test your transactions. Build unit and integration tests to ensure that your transac-
tions work as expected.

We’ll now turn our attention to using concurrency with Camel. You’ll learn to how to
improve performance, understand the threading model used in Camel, and more.

 www.it-ebooks.info

http://www.it-ebooks.info/

315

Concurrency
 and scalability

Concurrency is another word for multitasking, and we multitask all the time in our
daily lives. We put the coffee on, start up the computer, and while it’s booting grab
the paper to glance at the news. Computers are also capable of doing multiple
tasks—you may have multiple tabs open in your web browser while your mail appli-
cation is fetching new email, for example.

 Juggling multiple tasks is also very common in enterprise systems, such as when
you’re processing incoming orders, handling invoices, and doing inventory man-
agement, and these demands only grow over time. With concurrency, you can

This chapter covers
■ Camel’s threading model
■ Configuring thread pools and thread profiles
■ Using concurrency with EIPs
■ Message synchronicity and concurrency
■ Camel’s client concurrency API
■ Scalability with Camel

 www.it-ebooks.info

http://www.it-ebooks.info/

316 CHAPTER 10 Concurrency and scalability

achieve higher performance; by executing in parallel, you can get more work done in
less time.

 Camel processes multiple messages concurrently in Camel routes, and it leverages
the concurrency features from Java, so we’ll first discuss how concurrency works in Java
before we can move on to how thread pools work and how you define and use them in
Camel. The thread pool is the mechanism in Java that orchestrates multiple tasks. After
we’ve discussed thread pools, we’ll move on to how you can use concurrency with the
EIPs, and we’ll dive into how message synchronicity works. We’ll then look at Camel’s
client concurrency API, which makes it easier for clients to work with concurrency. The
last section of this chapter focuses on how you can achieve high scalability with Camel
and how you can leverage this in your custom components.

10.1 Introducing concurrency
As we’ve mentioned, you can achieve higher performance with concurrency. When
performance is limited by the availability of a resource, we say it’s bound by that
resource: CPU-bound, IO-bound, database-bound, and so on. Integration applications
are often IO-bound, waiting for replies to come back from remote servers, or for files
to load from a disk. This usually means you can achieve higher performance by utiliz-
ing resources more effectively, such as by keeping CPUs busy doing useful work.

 Camel is often used to integrate disparate systems, where data is exchanged over the
network. This means there’s often a mix of resources, which are either CPU-bound or
IO-bound. It’s very likely you can achieve higher performance by using concurrency.

 To help explain the world of concurrency, we’ll look at an example. Rider Auto
Parts has an inventory of all the parts its suppliers currently have in stock. It’s vital for
any business to have the most accurate and up-to-date information in their central
ERP system. Having the information locally in the ERP system means the business can
operate without depending on online integration with their suppliers. Figure 10.1
illustrates this business process.

Update inventory
Camel application

Rider
Auto
Parts
ERP

Supplier

Supplier

Supplier
Figure 10.1 Suppliers send inventory updates, which are picked up by a Camel
application. The application synchronizes the updates to the ERP system.

 www.it-ebooks.info

http://www.it-ebooks.info/

317Introducing concurrency

Figure 10.2 shows the route of the inventory-updating Camel application from fig-
ure 10.1. This application is responsible for loading the files and splitting the file con-
tent on a line-by-line basis using the Splitter EIP, which converts the line from CSV format
to an internal object model. The model is then sent to another route that’s responsible
for updating the ERP system. Implementing this in Camel is straightforward.

public void configure() throws Exception {
 from("file:rider/inventory")
 .log("Starting to process file: ${header.CamelFileName}")
 .split(body().tokenize("\n")).streaming()
 .bean(InventoryService.class, "csvToObject")
 .to("direct:update")
 .end()
 .log("Done processing file: ${header.CamelFileName}");

 from("direct:update")
 .bean(InventoryService.class, "updateInventory");
}

Listing 10.1 shows the configure method of the Camel RouteBuilder that contains
the two routes for implementing the application. As you can see, the first route picks
up the files and then splits the file content line by line B. This is done by using the
Splitter EIP in streaming mode. The streaming mode ensures that the entire file isn’t
loaded into memory; instead it’s loaded piece by piece on demand, which ensures low
memory usage.

 To convert each line from CSV to an object, you use a bean—the InventorySer-
vice class. To update the ERP system, you use the updateInventory method of the
InventoryService, as shown in the second route C.

 Now suppose you’re testing the application by letting it process a big file
with 100,000 lines. If each line takes a tenth of a second to process, processing the
file would take 10,000 seconds, which is roughly 167 minutes. That’s a long time. In
fact, you might end up in a situation where you can’t process all the files within the
given timeframe.

 In a moment, we’ll look at different techniques for speeding things up by leverag-
ing concurrency. But first we’ll set up the example to run without concurrency to cre-
ate a baseline to compare to the concurrent solutions.

Listing 10.1 Rider Auto Parts application for updating inventory

File CSV to
object

Update
inventory

Split lines

Figure 10.2 A route picks up incoming files, which are split and transformed to be
ready for updating the inventory in the ERP system.

Splits file
line by lineB

Updates
ERP systemC

 www.it-ebooks.info

http://www.it-ebooks.info/

318 CHAPTER 10 Concurrency and scalability

10.1.1 Running the example without concurrency

The source code for the book contains this example (both with and without concur-
rency) in the chapter10/bigfile directory.

 First, you need a big file to be used for testing. To create a file with 1000 lines, use
the following Maven goal:

mvn compile exec:java -PCreateBigFile -Dlines=1000

A bigfile.csv file will be created in the target/inventory directory.
 The next step is to start a test that processes the bigfile.csv without concurrency.

This is done by using the following Maven goal:

mvn test -Dtest=BigFileTest

When the test runs, it will output its progress to the console.
BigFileTest simulates updating the inventory by sleeping for a tenth of a second,

which means it should complete processing the bigfile.csv in approximately 100 sec-
onds. When the test completes, it should log the total time taken:

[ad 0 - file://target/inventory] INFO - Inventory 997 updated
[ad 0 - file://target/inventory] INFO - Inventory 998 updated
[ad 0 - file://target/inventory] INFO - Inventory 999 updated
[ad 0 - file://target/inventory] INFO - Done processing big file
Took 102 seconds

In the following section, we’ll see three different solutions to run this test more
quickly using concurrency.

10.1.2 Using concurrency

The application can leverage concurrency by updating the inventory in parallel. Fig-
ure 10.3 shows this principle by using the Concurrent Consumers EIP.

 As you can see in figure 10.3, the idea is to use concurrency D after the lines have
been split C. By doing this, you can parallelize steps E and F in the route. In this
example, those two steps could process messages concurrently.

 The last step F, which sends messages to the ERP system concurrently, is only pos-
sible if the system allows a client to send messages concurrently to it. There can be sit-
uations where a system does not permit concurrency, or it may only allow up to a

File CSV to
object

Update
inventory

Split lines Concurrent
consumers

B C D E F

Figure 10.3 Using the Concurrent Consumers EIP to leverage concurrency and process inventory
updates in parallel

 www.it-ebooks.info

http://www.it-ebooks.info/

319Introducing concurrency

certain number of concurrent messages. Check the SLA (service level agreement) for
the system you integrate with. Another reason to disallow concurrency would be if the
messages have to be processed in the exact order they are split.

 Let’s try out three different ways to run the application faster with concurrency:

■ Using parallelProcessing options on the Splitter EIP
■ Using a custom thread pool on the Splitter EIP
■ Using staged event-driven architecture (SEDA)

The first two solutions are features that the Splitter EIP provides out of the box. The
last solution is based on the SEDA principle, which uses queues between tasks.

USING PARALLELPROCESSING

The Splitter EIP offers an option to switch on parallel processing, as shown here:

.split(body().tokenize("\n")).streaming().parallelProcessing()
 .bean(InventoryService.class, "csvToObject")
 .to("direct:update")
.end()

Configuring this in Spring XML is very simple as well:

<split streaming="true" parallelProcessing="true">
 <tokenize token="\n"/>
 <bean beanType="camelinaction.InventoryService"
 method="csvToObject"/>
 <to uri="direct:update"/>
</split>

To run this example, use the following Maven goals:

mvn test -Dtest=BigFileParallelTest
mvn test -Dtest=SpringBigFileParallelTest

As you’ll see, the test is now much faster and completes in about a tenth of the previ-
ous time.

[Camel Thread 1 - Split] INFO - Inventory 995 updated
[Camel Thread 4 - Split] INFO - Inventory 996 updated
[Camel Thread 9 - Split] INFO - Inventory 997 updated
[Camel Thread 3 - Split] INFO - Inventory 998 updated
[Camel Thread 2 - Split] INFO - Inventory 999 updated
[e://target/inventory?n] INFO - Done processing big file
Took 11 seconds

What happens is that when parallelProcessing is enabled, the Splitter EIP uses a
thread pool to process the messages concurrently. The thread pool is, by default, con-
figured to use 10 threads, which helps explain why it’s about 10 times faster: the appli-
cation is mostly IO-bound (reading files and remotely communicating with the ERP
system involves a lot of IO activity). The test would not be 10 times faster if it were
solely CPU-bound; for example, if all it did was “crunch numbers.”

 www.it-ebooks.info

http://www.it-ebooks.info/

320 CHAPTER 10 Concurrency and scalability

NOTE In the console output you’ll see that the thread name is displayed, con-
taining a unique thread number, such as Camel Thread 4 - Split. This thread
number is a sequential, unique number assigned to each thread as it’s cre-
ated, in any thread pool. This means if you use a second Splitter EIP, the sec-
ond splitter will most likely have numbers assigned from 11 upwards.

You may have noticed from the previous console output that the lines were processed
in order; it ended by updating 995, 996, 997, 998, and 999. This is a coincidence,
because the 10 concurrent threads are independent and they run at their own pace.
The reason why they appear in order here is because we simulated the update by
delaying the message for a tenth of a second, which means they’ll all take approxi-
mately the same amount of time. But if you take a closer look in the console output,
you’ll probably see some interleaved lines, such as with order lines 954 and 953:

[Camel Thread 5 - Split] INFO - Inventory 951 updated
[Camel Thread 7 - Split] INFO - Inventory 952 updated
[Camel Thread 8 - Split] INFO - Inventory 954 updated
[Camel Thread 9 - Split] INFO - Inventory 953 updated

You now know that parallelProcessing will use a default thread pool to achieve con-
currency. What if you want to have more control over which thread pool is being
used?

USING A CUSTOM THREAD POOL

The Splitter EIP also allows you to use a custom thread pool for concurrency. You can
create a thread pool using the java.util.Executors factory:

ExecutorService threadPool = Executors.newCachedThreadPool();

The newCachedThreadPool method will create a thread pool suitable for executing
many small tasks. The pool will automatically grow and shrink on demand.

 To use this pool with the Splitter EIP, you need to configure it as shown here:

.split(body().tokenize("\n")).streaming().executorService(threadPool)
 .bean(InventoryService.class, "csvToObject")
 .to("direct:update")
.end()

Creating the thread pool using Spring XML is done as follows:

<bean id="myPool" class="java.util.concurrent.Executors"
 factory-method="newCachedThreadPool"/>

The Splitter EIP uses the pool by referring to it, using the executorServiceRef attri-
bute, as shown:

<split streaming="true" executorServiceRef="myPool">
 <tokenize token="\n"/>
 <bean beanType="camelinaction.InventoryService"
 method="csvToObject"/>
 <to uri="direct:update"/>
</split>

 www.it-ebooks.info

http://www.it-ebooks.info/

321Introducing concurrency

To run this example, use the following Maven goals:

mvn test -Dtest=BigFileCachedThreadPoolTest
mvn test -Dtest=SpringBigFileCachedThreadPoolTest

The test is now much faster and completes within a few seconds:

[pool-1-thread-442] INFO - Inventory 971 updated
[pool-1-thread-443] INFO - Inventory 972 updated
[pool-1-thread-449] INFO - Inventory 982 updated
[e://target/invene] INFO - Done processing big file
Took 2 seconds

You may wonder why it’s now so fast. The reason is that the cached thread pool is
designed to be very aggressive and to spawn new threads on demand. It has no upper
bounds and no internal work queue, which means that when a new task is being handed
over, it will create a new thread if there are no available threads in the thread pool.

 You may also have noticed the thread name in the console output, which indicates
that many threads were created; the output shows thread numbers 442, 443, and 449.
Many threads have been created because the Splitter EIP splits the file lines more
quickly than the tasks update the inventory. This means that the thread pool receives
new tasks at a higher pace than it can execute them; new threads are created to keep up.

 This can cause unpredicted side effects in an enterprise system—a high number of
newly created threads may impact applications in other areas. That’s why it’s often
desirable to use thread pools with an upper limit for the number of threads.

 For example, instead of using the cached thread pool, you could use a fixed thread
pool. You can use the same Executors factory to create such a pool:

ExecutorService threadPool = Executors.newFixedThreadPool(20);

Creating a fixed thread pool in Spring XML is done as follows:

<bean id="myPool" class="java.util.concurrent.Executors"
 factory-method="newFixedThreadPool">
 <constructor-arg index="0" value="20"/>
</bean>

To run this example, use the following Maven goals:

mvn test -Dtest=BigFileFixedThreadPoolTest
mvn test -Dtest=SpringBigFileFixedThreadPoolTest

The test is now limited to use 20 threads at most.

[pool-1-thread-13] INFO - Inventory 997 updated
[pool-1-thread-19] INFO - Inventory 998 updated
[pool-1-thread-5] INFO - Inventory 999 updated
[ntory?noop=true] INFO - Done processing big file
Took 6 seconds

As you can see by running this test, you can process the 1,000 lines in about 6 seconds
using only 20 threads. The previous test was faster, as it completed in about 2 seconds,
but it used nearly 500 threads (this number can vary on different systems). By increasing

 www.it-ebooks.info

http://www.it-ebooks.info/

322 CHAPTER 10 Concurrency and scalability

the fixed thread pool to a reasonable size, you should be able to reach the same time-
frame as with the cached thread pool. For example, running with 50 threads completes
in about 3 seconds. You can experiment with different pool sizes.

 Now, on to the last concurrency solution, SEDA.

USING SEDA

SEDA (staged event-driven architecture) is an architecture design that breaks down a
complex application into a set of stages connected by queues. In Camel lingo, that
means using internal memory queues to hand over messages between routes.

NOTE The Direct component in Camel is the counterpart to SEDA. Direct is
fully synchronized, and it works like a direct method call invocation.

Figure 10.4 shows how you can use SEDA to implement the example. The first route
runs sequentially in a single thread. The second route uses concurrent consumers
to process the messages that arrive on the SEDA endpoint, using multiple concur-
rent threads.

Listing 10.2 shows how to implement this solution in Camel by using the seda end-
points, shown in bold.

public void configure() throws Exception {
 from("file:rider/inventory")
 .log("Starting to process file: ${header.CamelFileName}")
 .split(body().tokenize("\n")).streaming()
 .bean(InventoryService.class, "csvToObject")
 .to("seda:update")
 .end()
 .log("Done processing file: ${header.CamelFileName}");

 from("seda:update?concurrentConsumers=20")
 .bean(InventoryService.class, "updateInventory");
}

Listing 10.2 Rider Auto Parts inventory-update application using SEDA

File CSV to
object

Update
inventory

Split lines SEDA

Concurrent
consumers

Second route

First route

Figure 10.4 Messages pass from the first to the second route using SEDA. Concurrency is used in
the second route.

SEDA
consumers
using
concurrencyB

 www.it-ebooks.info

http://www.it-ebooks.info/

323Using thread pools

By default, a seda consumer will only use one thread. To leverage concurrency, you
use the concurrentConsumers option to increase the number of threads—to 20 in this
listing B.

 To run this example, use the following Maven goals:

mvn test -Dtest=BigFileSedaTest
mvn test -Dtest=SpringBigFileSedaTest

The test is fast and completes in about 6 seconds.

[ead 20 - seda://update] INFO - Inventory 997 updated
[ead 18 - seda://update] INFO - Inventory 998 updated
[read 9 - seda://update] INFO - Inventory 999 updated
Took 6 seconds

As you can see from the console output, you’re now using 20 concurrent threads to
process the inventory update. For example, the last three thread numbers from the
output are 20, 18, and 9.

NOTE When using concurrentConsumers with SEDA endpoints, the thread
pool uses a fixed size, which means that a fixed number of active threads are wait-
ing at all times to process incoming messages. That’s why it’s best to leverage the
concurrency features provided by the EIPs, such as the parallelProcessing on
the Splitter EIP. It will leverage a thread pool that can grow and shrink on
demand, so it won’t consume as many resources as a SEDA endpoint will.

We’ve now covered three different solutions for applying concurrency to an existing
application, and they all greatly improve performance. We were able to reduce
the 11-second processing time down to 3 to 7 seconds, using a reasonable size for the
thread pool.

 In the next section, we’ll review thread pools in more detail and learn about the
threading model used in Camel. With this knowledge, you can go even further with
concurrency.

10.2 Using thread pools
Using thread pools is common when using concurrency. In fact, thread pools were
used in the example in the previous section. It was a thread pool that allowed the
Splitter EIP to work in parallel and speed up the performance of the application.

 In this section, we’ll start from the top and briefly recap what a thread pool is and
how it’s represented in Java. Then we’ll look at the default thread pool profile used by
Camel and how to create custom thread pools using Java DSL and Spring XML. We’ll
also look at how you can use a custom strategy to delegate the creation of thread pools
to an external resource, such as a Java WorkManager on a JAVA EE server.

10.2.1 Understanding thread pools in Java

A thread pool is a group of threads that are created to execute a number of tasks in a
task queue. Figure 10.5 shows this principle.

 www.it-ebooks.info

http://www.it-ebooks.info/

324 CHAPTER 10 Concurrency and scalability

NOTE For more info on the Thread Pool pattern, see the Wikipedia article on
the subject: http://en.wikipedia.org/wiki/Thread_pool.

Thread pools were introduced into Java 1.5 by the new concurrency API residing in
the java.util.concurrent package. In the concurrency API, the ExecutorService
interface is the client API that you use to submit tasks for execution. Clients of this API
are both Camel end users and Camel itself, because Camel fully leverages the concur-
rency API from Java.

NOTE Readers already familiar with Java’s concurrency API may be in familiar
waters as we go further in this chapter. If you want to learn in depth about the
Java concurrency API, we highly recommend the book Java Concurrency in
Practice by Brian Goetz.

In Java, the ThreadPoolExecutor class is the implementation of the ExecutorService
interface, and it provides a thread pool with the options listed in table 10.1.

Table 10.1 Options provided by thread pools

Option Type Description

corePoolSize int Specifies the number of threads to keep
in the pool, even if they’re idle

maximumPoolSize int Specifies the maximum number of
threads to keep in the pool

keepAliveTime long Sets the idle time for excess threads to
wait before they’re discarded

unit TimeUnit Specifies the time unit used for the
keepAliveTime option

rejected RejectedExecutionHandler Identifies a handler to use when execu-
tion is blocked because the thread pool
is exhausted

Task
queue Task

Completed
task

Thread pool

Figure 10.5 Tasks from
the task queue wait to be
executed by a thread from
the thread pool.

 www.it-ebooks.info

http://en.wikipedia.org/wiki/Thread_pool
http://www.it-ebooks.info/

325Using thread pools

As you can see from table 10.1, there are many options you can use when creating
thread pools in Java. To make it easier to create commonly used types of pools, Java
provides Executors as a factory, which you saw in section 10.1.2. In section 10.2.3,
you’ll see how Camel makes creating thread pools even easier.

 When working with thread pools, there are often additional tasks you must deal
with. For example, it’s important to ensure the thread pool is shut down when your
application is being shut down; otherwise it can lead to memory leaks. This is particu-
larly important in server environments when running multiple applications in the
same server container, such as a JAVA EE or OSGi container.

 When using Camel to create thread pools, the activities listed in table 10.2 are
taken care of out of the box.

Another good practice that’s often neglected is to use human-understandable thread
names, because those names are logged in production logs. By allowing Camel to
name the threads using a common naming standard, you can better understand what
happens when looking at log files (particularly if your application is running together
with other frameworks that create their own threads). For example, this log entry indi-
cates it’s a thread from the Camel File component:

[Camel Thread 7 - file://riders/inbox] DEBUG - Total 3 files to consume

If Camel didn’t do this, the thread name would be generic and wouldn’t give any hint
that it’s from Camel, nor that it’s the file consumer.

[Thread 0] DEBUG - Total 3 files to consume

TIP Camel uses a customizable pattern for naming threads. The default pattern is
"Camel Thread ${counter} - ${name}". A custom pattern can be configured using
ExecutorServiceStrategy. In Camel 2.6 the default pattern has been improved to
include the Camel id "Camel (${camelId}) thread ${counter} - ${name}".

workQueue BlockingQueue Identifies the task queue for holding wait-
ing tasks before they’re executed

threadFactory ThreadFactory Specifies a factory to use when a new
thread is created

Table 10.2 Activities for managing thread pools

Activity Description

Shutdown Ensures the thread pool will be properly shut down, which happens when Camel
shuts down.

Management Registers the thread pool in JMX, which allows you to manage the thread pool at
runtime. We’ll look at management in chapter 12.

Unique thread names Ensures the created threads will use unique and human-readable names.

Activity logging Logs lifecycle activity of the pool.

Table 10.1 Options provided by thread pools (continued)

Option Type Description

 www.it-ebooks.info

http://www.it-ebooks.info/

326 CHAPTER 10 Concurrency and scalability

We’ll cover the options listed in table 10.1 in more detail in the next section, when we
review the default thread profile used by Camel.

10.2.2 Camel thread pool profiles

Thread pools aren’t created and configured directly, but via the configuration of
thread pool profiles. A thread pool profile is a profile that dictates how a thread pool
should be created, based on a selection of the options listed earlier in table 10.1.

 Thread pool profiles are organized in a simple two-layer hierarchy with custom
and default profiles. There is always one default profile and you can optionally have
multiple custom profiles.

 The default profile is defined using the options listed in table 10.3.

As you can see from the default values in table 10.3, the default thread pool can use
from 10 to 20 threads to execute tasks concurrently. The rejectedPolicy option
corresponds to the rejected option from table 10.1, and it’s an enum type allowing
four different values: Abort, CallerRuns, DiscardOldest, and Discard. The Caller-
Runs option will use the caller thread to execute the task itself. The other three
options will either abort by throwing an exception, or discard an existing task from
the task queue.

 There is no one-size-fits-all solution for every Camel application, so you may have
to tweak the default profile values. But usually you’re better off leaving the default val-
ues alone. Only by load testing your applications can you determine that tweaking the
values will produce better results.

CONFIGURING THE DEFAULT THREAD POOL PROFILE

You can configure the default thread pool profile from either Java or Spring XML.
 In Java, you access the ThreadPoolProfile starting from CamelContext. The fol-

lowing code shows how to change the maximum pool size to 50.

ExecutorServiceStrategy strategy = context.getExecutorServiceStrategy();
ThreadPoolProfile profile = strategy.getDefaultThreadPoolProfile();
profile.setMaxPoolSize(50);

Table 10.3 Settings for the default thread pool profile

Option Default value Description

poolSize 10 The thread pool will always contain at least 10 threads in the pool.

maxPoolSize 20 The thread pool can grow up to at most 20 threads.

keepAliveTime 60 Idle threads are kept alive for 60 seconds, after which they’re
terminated.

maxQueueSize 1000 The task queue can contain up to 1000 tasks before the pool
is exhausted.

rejectedPolicy CallerRuns If the pool is exhausted, the caller thread will execute the task.

 www.it-ebooks.info

http://www.it-ebooks.info/

327Using thread pools

The default ThreadPoolProfile is accessible from ExecutorServiceStrategy, which
is an abstraction in Camel allowing you to plug in different thread pool providers.
We’ll cover ExecutorServiceStrategy in more detail in section 10.2.4.

 In Spring XML, you configure the default thread pool profile using the <thread-
PoolProfile> tag:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <threadPoolProfile id="myDefaultProfile"

 defaultProfile="true"
 maxPoolSize="50"/>
 ...
</camelContext>

It’s important to set the defaultProfile attribute to true to tell Camel that this is the
default profile. You can add additional options if you want to override any of the other
options from table 10.3.

 There are situations where one profile isn’t sufficient, so you can also define cus-
tom profiles.

CONFIGURING CUSTOM THREAD POOL PROFILES

Defining custom thread pool profiles is much like configuring the default profile.
 In Java DSL, a custom profile is created using the ThreadPoolProfileSupport class:

ThreadPoolProfile custom = new ThreadPoolProfileSupport("bigPool");
custom.setMaxPoolSize(200);
context.getExecutorServiceStrategy().registerThreadPoolProfile(custom);

This example increases the maximum pool size to 200. All other options will be
inherited from the default profile, which means it will use the default values listed in
table 10.3; for example, keepAliveTime will be 60 seconds. Notice that this custom
profile is given the name bigPool; you can refer to the profile in the Camel routes
by using executorServiceRef:

.split(body().tokenize("\n")).streaming().executorServiceRef("bigPool")
 .bean(InventoryService.class, "csvToObject")
 .to("direct:update")
.end()

When Camel creates this route with the Splitter EIP, it refers to a thread pool with the
name bigPool. Camel will now look in the registry for an ExecutorService type regis-
tered with the ID bigPool. If none is found, it will fall back and see if there is a known
thread pool profile with the ID bigPool. And because such a profile has been regis-
tered, Camel will use the profile to create a new thread pool to be used by the Splitter
EIP. All of which means that executorServiceRef supports using thread pool profiles
to create the desired thread pools.

 When using Spring XML, it’s simpler to define custom thread pool profiles. All you
have to do is use the <threadPoolProfile> tag:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <threadPoolProfile id="bigPool" maxPoolSize="100"/>
</camelContext>

 www.it-ebooks.info

http://www.it-ebooks.info/

328 CHAPTER 10 Concurrency and scalability

Besides using thread pool profiles, you can create thread pools in other ways. For
example, you may need to create custom thread pools if you’re using a third-party
library that requires you to provide a thread pool. Or you may need to create one as
we did in section 10.1 to leverage concurrency with the Splitter EIP.

10.2.3 Creating custom thread pools

Creating thread pools with the Java API is a bit cumbersome, so Camel provides a nice
way of doing this in both Java DSL and Spring XML.

CREATING CUSTOM THREAD POOLS IN JAVA DSL

In Java DSL, you use org.apache.camel.builder.ThreadPoolBuilder to create
thread pools, as follows:

ThreadPoolBuilder builder = new ThreadPoolBuilder(context);
ExecutorService myPool = builder.poolSize(5).maxPoolSize(25)
 .maxQueueSize(200).build("MyPool");

The ThreadPoolBuilder requires CamelContext in its constructor, because it will use
the default thread pool profile as the baseline when building custom thread pools. That
means myPool will use the default value for keepAliveTime, which would be 60 seconds.

CREATING CUSTOM THREAD POOLS IN SPRING XML

In Spring XML, creating a thread pool is done using the <threadPool> tag:

<camelContext xmlns="http://camel.apache.org/schema/spring">

 <threadPool id="myPool" threadName="Cool"
 poolSize="5" maxPoolSize="15" maxQueueSize="250"/>

 <route>
 <from uri="direct:start"/>
 <to uri="log:start"/>
 <threads executorServiceRef="myPool">
 <to uri="log:hello"/>
 </threads>
 </route>
</camelContext>

As you can see, the <threadPool> is used inside a <camelContext> tag. This is because
it needs access to the default thread profile, which is used as baseline (just as the
ThreadPoolBuilder requires CamelContext in its constructor).

 The preceding route uses a <threads> tag, that references the custom thread
pool B. If a message is sent to the direct:start endpoint, it should be routed to
<threads>, which will continue routing the message using the custom thread pool.
This can be seen in the console output that logs the thread names:

[Camel Thread 0 - Cool] INFO hello - Exchange[Body:Hello Camel]

NOTE When using executorServiceRef to look up a thread pool, Camel will
first check for a custom thread pool. If none are found, Camel will fall back
and see if a thread pool profile exists with the given name; if so, a new thread
pool is created based on that profile.

Using thread pool
in the route

B

 www.it-ebooks.info

http://www.it-ebooks.info/

329Using thread pools

All thread pool creation is done using ExecutorServiceStrategy, which defines a
pluggable API for using thread pool providers.

10.2.4 Using ExecutorServiceStrategy

The org.apache.camel.spi.ExecutorServiceStrategy interface defines a plugga-
ble API for thread pool providers. Camel will, by default, use the DefaultExecu-
torServiceStrategy class, which creates thread pools using the concurrency API in
Java. When you need to use a different thread pool provider, for example, a provider
from a JAVA EE server, you can create a custom ExecutorServiceStrategy to work
with the provider.

 In this section, we’ll show you how to configure Camel to use a custom Execu-
torServiceStrategy, leaving the implementation of the provider up to you.

CONFIGURING CAMEL TO USE A CUSTOM EXECUTORSERVICESTRATEGY

In Java, you configure Camel to use a custom ExecutorServiceStrategy via the
setExecutorServiceStrategy method on CamelContext:

CamelContext context = ...
context.setExecutorServiceStrategy(myExecutorServiceStrategy);

In Spring XML, it’s easy because all you have to do is define a Spring bean. Camel will
automatically detect and use it:

<bean id="myExecutorService"
 class="camelinaction.MyExecutorServiceStrategy"/>

So far in this chapter, we’ve mostly used thread pools in Camel routes, but they’re also
used in other areas, such as in some Camel components.

USING EXECUTORSERVICESTRATEGY IN A CUSTOM COMPONENT

The ExecutorServiceStrategy defines methods for working with thread pools.
 Suppose you’re developing a custom Camel component and you need to run a

scheduled background task. When running a background task, it’s recommended that
you use the ScheduledExecutorService as the thread pool, because it’s capable of
executing tasks in a scheduled manner.

 Creating the thread pool is easy with the help of Camel’s ExecutorServiceStrategy.

public class MyComponent extends DefaultComponent implements Runnable {
 private static final Log LOG = LogFactory.getLog(MyComponent.class);
 private ScheduledExecutorService executor;

 public void run() {
 LOG.info("I run now");
 }

 protected void doStart() throws Exception {
 super.doStart();
 executor = getCamelContext().getExecutorServiceStrategy()
 .newScheduledThreadPool(this,

Listing 10.3 Using ExecutorServiceStrategy to create a thread pool

Runs
scheduled task

B

 www.it-ebooks.info

http://www.it-ebooks.info/

330 CHAPTER 10 Concurrency and scalability

 "MyBackgroundTask", 1);
 executor.scheduleWithFixedDelay(this, 1, 1, TimeUnit.SECONDS);
 }

 protected void doStop() throws Exception {
 getCamelContext().getExecutorServiceStrategy().shutdown(executor);
 super.doStop();
 }
}

Listing 10.3 illustrates the principle of using a scheduled thread pool to repeatedly
execute a background task. The custom component extends DefaultComponent,
which allows you to override the doStart and doStop methods to create and shut
down the thread pool. In the doStart method, you create the ScheduledExecu-
torService using ExecutorServiceStrategy C and schedule it to run the task B
once every second using the scheduleWithFixedDelay method.

 The source code for the book contains this example in the chapter10/pools direc-
tory. You can try it using the following Maven goal:

mvn test -Dtest=MyComponentTest

When it runs, you’ll see the following output in the console:

Waiting for 10 seconds before we shutdown
[Camel Thread 0 - MyBackgroundTask] INFO MyComponent - I run now
[Camel Thread 0 - MyBackgroundTask] INFO MyComponent - I run now

You now know that thread pools are how Java achieves concurrency; they’re used as
executors to execute tasks concurrently. You also know how to leverage this to process
messages concurrently in Camel routes, and you saw several ways of creating and
defining thread pools in Camel.

 When modeling routes in Camel, you’ll often use EIPs to build the routes to sup-
port your business cases. In section 10.1, you used the Splitter EIP and learned to
improve performance using concurrency. In the next section, we’ll take a look at
other EIPs you can use with concurrency.

10.3 Using concurrency with EIPs
Some of the EIPs in Camel support concurrency out of the box—they’re listed in
table 10.4. In this section, we’ll take a look at them and the benefits they offer.

Table 10.4 EIPs in Camel that supports concurrency

EIP Description

Aggregate The Aggregator EIP allows concurrency when sending out completed and aggregated mes-
sages. We covered this pattern in chapter 8.

Multicast The Multicast EIP allows concurrency when sending a copy of the same message to multi-
ple recipients. We discussed this pattern in chapter 2, and we’ll use it in an example in sec-
tion 10.3.2.

Creates scheduled
thread pool C

 www.it-ebooks.info

http://www.it-ebooks.info/

331Using concurrency with EIPs

All the EIPs from table 10.4 can be configured to enable concurrency in the same way.
You can turn on parallelProcessing to use thread pool profiles to apply a matching
thread pool; this is likely what you’ll want to use in most cases. Or you can refer to a
specific thread pool using the executorService option. You’ve already seen this in
action in section 10.1.2, where you used the Splitter EIP.

 In the following three sections, we’ll look at how to use the Threads, Multicast, and
Wire Tap EIPs in a concurrent way.

10.3.1 Using concurrency with the Threads EIP

The Threads EIP is the only EIP that has additional options in the DSL offering fine-
grained definition of the thread pool to be used. These additional options are listed
in table 10.3.

 For example, the thread pool from section 10.2.3 could be written as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:start"/>
 <to uri="log:start"/>
 <threads threadName="Cool" poolSize="5" maxPoolSize="15"
 maxQueueSize="250">
 <to uri="log:cool"/>
 </threads>
 </route>
</camelContext>

Figure 10.6 illustrates which threads are in use when a message is being routed using
the Threads EIP.

 There will be two threads active when a message is being routed. The caller thread
will hand over the message to the thread pool. The thread pool will then find an avail-
able thread in its pool to continue routing the message.

Recipient
List

The Recipient List EIP allows concurrency when sending copies of a single message to a
dynamic list of recipients. This works in the same way as the Multicast EIP, so what you
learned there also applies for this pattern. We covered this pattern in chapter 2.

Splitter The Splitter EIP allows concurrency when each split message is being processed. You saw
how to do this in section 10.1. This pattern was also covered in chapter 8.

Threads The Threads EIP always uses concurrency to hand over messages to a thread pool that will
continue processing the message. You saw an example of this in section 10.2.3, and we’ll
cover it a bit more in section 10.3.1.

Wire Tap The Wire Tap EIP allows you to spawn a new message and let it be sent to an endpoint
using a new thread, while the calling thread can continue to process the original message.
The Wire Tap EIP always uses a thread pool to execute the spawned message. This is cov-
ered in section 10.3.3. We encountered the Wire Tap pattern in chapter 2.

Table 10.4 EIPs in Camel that supports concurrency (continued)

EIP Description

 www.it-ebooks.info

http://www.it-ebooks.info/

332 CHAPTER 10 Concurrency and scalability

You can run this example from the chapter10/pools directory using the following
Maven goal:

mvn test -Dtest=SpringInlinedThreadPoolTest

You’ll see the following in the console:

[main] INFO start - Exchange[Body:Hello Camel]
[Camel Thread 0 - Cool] INFO hello - Exchange[Body:Hello Camel]

The first set of brackets contains the thread name. You see, as expected, two threads in
play: main is the caller thread, and Cool is from the thread pool.

TIP You can use the Threads EIP to achieve concurrency when using Camel
components that don’t offer concurrency. A good example is the Camel file
component, which uses a single thread to scan and pick up files. By using the
Threads EIP, you can allow the picked up files to be processed concurrently.

Let’s look at how Rider Auto Parts improves performance by leveraging concurrency
with the Multicast EIP.

10.3.2 Using concurrency with the Multicast EIP

Rider Auto Parts has a web portal where its employees can look up information, such
as the current status of customer orders. When selecting a particular order, the portal
needs to retrieve information from three different systems to gather an overview of
the order. Figure 10.7 illustrates this.

log:sta t log:coolTask queue

Caller thread

Thread pool

Pooled thread

direct:start

Figure 10.6 Caller and pooled threads are in use when a message is routed.

CRM

ERP

Shipping

Web portal

Employee

Figure 10.7
The web portal gathers
information from three
systems to compile the
overview that’s presented
to the employee.

 www.it-ebooks.info

http://www.it-ebooks.info/

333Using concurrency with EIPs

Your boss has summoned you to help with this portal. The employees have started to
complain about poor performance, and it doesn’t take you more than an hour to find
out why; the portal retrieves the data from the three sources in sequence. This is obvi-
ously a good use case for leveraging concurrency to improve performance.

 You also look in the production logs and see that a single overview takes 4.0 sec-
onds (1.4 + 1.1 + 1.5 seconds) to complete. You tell your boss that you can improve the
performance by gathering the data in parallel.

 Back at your desk, you build a portal prototype in Camel that resembles the cur-
rent implementation. The prototype uses the Multicast EIP to retrieve data from the
three external systems as follows:

<route>
 <from uri="direct:portal"/>
 <multicast strategyRef="aggregatedData">
 <to uri="direct:crm"/>
 <to uri="direct:erp"/>
 <to uri="direct:shipping"/>
 </multicast>
 <bean ref="combineData"/>
</route>

The Multicast EIP will send copies of a message to the three endpoints and aggregate
their replies using the aggregatedData bean. When all data has been aggregated, the
combineData bean is used to create the reply that will be displayed in the portal.

 You decide to test this route by simulating the three systems using the same
response times as from the production logs. Running your test yields the following
performance metrics:

TIMER - [Message: 123] sent to: direct://crm took: 1404 ms.
TIMER - [Message: 123] sent to: direct://erp took: 1101 ms.
TIMER - [Message: 123] sent to: direct://shipping took: 1501 ms.
TIMER - [Message: 123] sent to: direct://portal took: 4139 ms.

As you can see, the total time is 4.1 seconds when running in sequence. Now you
enable concurrency with the parallelProcessing options:

<route>
 <from uri="direct:portal"/>
 <multicast strategyRef="aggregatedData"
 parallelProcessing="true">
 <to uri="direct:crm"/>
 <to uri="direct:erp"/>
 <to uri="direct:shipping"/>
 </multicast>
 <bean ref="combineData"/>
</route>

This gives much better performance:

TIMER - [Message: 123] sent to: direct://erp took: 1105 ms.
TIMER - [Message: 123] sent to: direct://crm took: 1402 ms.
TIMER - [Message: 123] sent to: direct://shipping took: 1502 ms.
TIMER - [Message: 123] sent to: direct://portal took: 1623 ms.

 www.it-ebooks.info

http://www.it-ebooks.info/

334 CHAPTER 10 Concurrency and scalability

The numbers show that response time went from 4.1 to 1.6 seconds, which is an
improvement of roughly 250 percent. Note that the logged lines aren’t in the same
order as the sequential example. With concurrency enabled, the lines are logged in
the order that the remote services’ replies come in. Without concurrency, the order is
always fixed in the sequential order defined by the Camel route.

 The source code for the book contains this example in the chapter10/eip direc-
tory. You can try the two scenarios using the following Maven goals:

mvn test -Dtest=MulticastTest
mvn test -Dtest=MulticastParallelTest

You have now seen how the Multicast EIP can be used concurrently to improve perfor-
mance. The Aggregate, Recipient List, and Splitter EIPs can be configured with con-
currency in the same way as the Multicast EIP.

 The next pattern we’ll look at using with concurrency is the Wire Tap EIP. We
encountered it the first time in chapter 2, section 2.5.5.

10.3.3 Using concurrency with the Wire Tap EIP
The Wire Tap EIP leverages a thread pool to process the tapped messages concurrently.
You can configure which thread pool it should use, and if no pool has been configured,
it will fall back and create a thread pool based on the default thread pool profile.

 Suppose you want to use a custom thread pool when using the Wire Tap EIP. First
you must create the thread pool to be used, and then you pass that in as a reference to
the wire tap in the route, as highlighted in bold:

public void configure() throws Exception {
 ExecutorService lowPool = new ThreadPoolBuilder(context)
 .poolSize(1).maxPoolSize(5).build("LowPool");

 from("direct:start")
 .log("Incoming message ${body}")
 .wireTap("direct:tap", lowPool)
 .to("mock:result");

 from("direct:tap")
 .log("Tapped message ${body}")
 .to("mock:tap");
}

The equivalent route in Spring XML is as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">

 <threadPool id="lowPool"
 poolSize="1" maxPoolSize="5" threadName="LowPool"/>

 <route>
 <from uri="direct:start"/>
 <log message="Incoming message ${body}"/>
 <wireTap uri="direct:tap" executorServiceRef="lowPool"/>
 <to uri="mock:result"/>
 </route>

 <route>

 www.it-ebooks.info

http://www.it-ebooks.info/

335Synchronicity and threading

 <from uri="direct:tap"/>
 <log message="Tapped message ${body}"/>
 <to uri="mock:tap"/>
 </route>

</camelContext>

The source code for the book contains this example in the chapter10/eip directory.
You can run the example using the following Maven goals:

mvn test -Dtest=WireTapTest
mvn test -Dtest=SpringWireTapTest

When you run the example, the console output should indicate that the tapped mes-
sage is being processed by a thread from the LowPool thread pool.

[main] INFO route1 - Incoming message Hello Camel
[Camel Thread 0 - LowPool] INFO route2 - Tapped message Hello Camel

You now have a better understanding of the overall concept of using thread pools for
concurrency in Java. We’ll next look at how the synchronicity of messages impacts the
way thread pools are leveraged.

10.4 Synchronicity and threading
A caller can invoke a service either synchronously or asynchronously. If the caller has
to wait until all the processing steps are complete before it can continue, it’s a syn-
chronous process. If the caller can continue before the processing has been com-
pleted, it’s an asynchronous process.

 The service being invoked can leverage as many threads as it wants to complete the
message. The number of threads doesn’t affect whether or not the caller is considered
synchronous or asynchronous.

 Now imagine from this point forward that the service being invoked is a Camel
route. As just mentioned, the service can use multiple threads to process the message.
In this section, we’ll focus on which factors affect how many threads are involved in
processing messages in Camel.

 These factors may affect the threading model:

■ Component—The Camel component that originates the exchange is either
based on a fire-and-forget or a request-response messaging style.

■ EIPs—As you saw in section 10.3, some EIPs support concurrency.
■ Configured synchronicity—Some components can be configured to be either syn-

chronous or asynchronous.
■ Transactions—If the route is transacted, the transactional context is limited to

run within one thread only.
■ Message exchange pattern (MEP)—MEP is information stored on the exchange that

tells Camel whether the message is using a fire-and-forget or request-response
messaging style. Camel uses the terminology from the Java Business Integration
(JBI) specification (http://en.wikipedia.org/wiki/JBI): InOnly means fire-and-
forget, and InOut means request-response.

 www.it-ebooks.info

http://en.wikipedia.org/wiki/JBI
http://www.it-ebooks.info/

336 CHAPTER 10 Concurrency and scalability

In the next four sections (10.4.1 through 10.4.4), we’ll cover four different scenarios
showing how synchronicity and MEP affect the threading model:

■ Asynchronous caller, and Camel uses one thread to process the message
■ Synchronous caller, and Camel uses one thread to process the message
■ Asynchronous caller, and Camel uses multiple threads to process the message
■ Synchronous caller, and Camel uses multiple threads to process the message

We’ll discuss the pros and cons of each scenario and give an example of where it may
be used in a real-life situation.

 The source code for the book contains these examples in the chapter10/synchron-
icity directory. You can use these Maven goals to run the examples:

mvn test -Dtest=AsyncOneThreadTest
mvn test -Dtest=SyncOneThreadTest
mvn test -Dtest=AsyncMultipleThreadsTest
mvn test -Dtest=SyncMultipleThreadsTest

10.4.1 Asynchronous caller using one thread

In figure 10.8, you’ll see that Camel uses the consumer thread all along the processing
of the message. In this figure, an arrow represents a thread, and the consumer thread
is shown as one long arrow.

 This scenario can be implemented in a simple Camel route:

from("seda:start")
 .to("log:A")
 .to("log:B");

Consumer

Caller Camel

Log A Log B

Consumer
thread pool

Figure 10.8 In asynchronous InOnly mode, the caller doesn’t wait for a reply. On the
Camel side, only one thread is used for all the processing of the message.

 www.it-ebooks.info

http://www.it-ebooks.info/

337Synchronicity and threading

You can try the route from a unit test by sending an InOnly message using the send-
Body method from ProducerTemplate:

public void testSyncInOnly() throws Exception {
 String body = "Hello Camel";
 LOG.info("Caller calling Camel with message: " + body);
 template.sendBody("seda:start", body);
 LOG.info("Caller finished calling Camel");
}

If you run this example, you should see output to the console that shows the threads
in use during routing:

[main] INFO Caller - Caller calling Camel with message: Hello Camel
[main] INFO Caller - Caller finished calling Camel
[Camel Thread 0 - seda://start] INFO A - InOnly, Hello Camel
[Camel Thread 0 - seda://start] INFO B - InOnly, Hello Camel

The first two log lines are the caller sending the message to Camel. The last two show
that the consumer thread [Camel Thread 0 - seda://start] is used to process the
message in the entire route.

 The caller is sending in a fire-and-forget message (InOnly), which means the caller
doesn’t expect a reply (and it doesn’t wait for a reply). As a result, the caller can continue
while the message is being processed. We view the caller’s synchronicity as asynchronous.

 From the Camel perspective, only one thread is involved in processing the mes-
sage, which simplifies things. Table 10.5 outlines the pros and cons of this approach
from the Camel perspective.

The asynchronous InOnly scenario is often used with JMS messaging, where it’s com-
mon to use Camel to route messages from JMS queues to other destinations. Real-
world systems might use this scenario when routing messages between JMS destina-
tions, such as a new order queue that’s routed to a validated order queue if the order
passes a sanity check. Orders that are invalid would be routed to an invalid order
queue for further manual inspection.

 In this example, the caller didn’t expect a reply because it sent an InOnly message.
The next scenario shows what happens when the caller sends an InOut (request-
response) message.

10.4.2 Synchronous caller using one thread

This scenario is only slightly different from the previous one. In figure 10.9 you can see
that Camel is still only using one thread (represented as one arrow). The difference is

Table 10.5 Pros and cons of using one thread from the Camel perspective

Pros Cons

■ Simple and easy
■ Supports transactional propagation

■ All the load is handled by the Camel consumer threads.
■ The consumer can be overloaded by the number of

received messages.

 www.it-ebooks.info

http://www.it-ebooks.info/

338 CHAPTER 10 Concurrency and scalability

that this time the caller expects a reply, which the consumer thread in Camel has to
deliver back to the waiting caller.

 The route in Camel is also a bit different, because you want to transform the mes-
sage to return a reply to the caller: "Bye Camel".

from("seda:start")
 .to("log:A")
 .transform(constant("Bye Camel"))
 .to("log:B");

You can test this by using the requestBody method from ProducerTemplate, which
sends an InOut message:

public void testSyncInOut() throws Exception {
 String body = "Hello Camel";
 LOG.info("Caller calling Camel with message: " + body);
 Object reply = template.requestBody("seda:start", body);
 LOG.info("Caller received reply: " + reply);
}

If you run this example, you should see output to the console showing the threads in
use during routing.

[main] INFO Caller - Caller calling Camel with message: Hello Camel
[Camel Thread 0 - seda://start] INFO A - InOut, Hello Camel
[Camel Thread 0 - seda://start] INFO B - InOut, Bye Camel
[main] INFO Caller - Caller received reply: Bye Camel

Notice how the caller waits for the reply while the consumer thread [Camel Thread 0 -
seda://start] is used to process the message for the entire route. You can see that

Consumer

Caller Camel

Log A Log B

Consumer
thread pool

Figure 10.9 In synchronous InOut mode, the caller waits for a reply. In Camel, the consumer
thread is used for all the processing of the message, and it delivers the reply to the waiting caller.

 www.it-ebooks.info

http://www.it-ebooks.info/

339Synchronicity and threading

the caller is waiting—it will log to the console after Camel has processed the message.
Because the caller waits for a reply, we consider it synchronous.

 The pros and cons of this configuration from the Camel perspective are the same
as in the previous section and are listed in table 10.5.

 The synchronous InOut scenario can be used with JMS messaging because you can
return replies if the JMSReply JMS property is provided on the incoming message.
Real-world systems may want to use this approach with components that natively sup-
port request-response messaging, such as web services. A system could expose a web
service that clients can call to query order status.

 The next two scenarios we’ll cover show what happens when Camel uses multiple
threads to process the messages.

10.4.3 Asynchronous caller using multiple threads

The asynchronous InOnly scenario is illustrated in figure 10.10. This time you’re lever-
aging two threads in Camel to process the messages (represented by the two arrows).

 This time there are two thread pools involved in Camel. The consumer thread will
process the first part of the routing, and then the message is transferred to another
thread pool, which continues routing the message.

 The Camel route is yet again different. You use the Threads EIP to add the asyn-
chronous behavior to the route:

from("seda:start")
 .to("log:A")
 .threads(5, 10)

 .to("log:B");

Consumer

Caller Camel

Log A Log B

Consumer
thread pool

Threads

Threads
thread pool

Figure 10.10 In asynchronous InOnly mode, the caller doesn’t wait for a reply. On
the Camel side, multiple threads are involved during the routing of the message.

 www.it-ebooks.info

http://www.it-ebooks.info/

340 CHAPTER 10 Concurrency and scalability

By using threads(5, 10), you create a thread pool with a pool size of 5 and a maxi-
mum size of 10.

 To test this scenario, you can use the following unit test:

public void testAsyncInOnly() throws Exception {
 String body = "Hello Camel";
 LOG.info("Caller calling Camel with message: " + body);
 template.sendBody("seda:start", body);
 LOG.info("Caller finished calling Camel");
}

If you run this example, you should see output to the console that shows the threads
in use during routing:

[main] INFO Caller - Caller calling Camel with message: Hello Camel
[main] INFO Caller - Caller finished calling Camel
[Camel Thread 0 - seda://start] INFO A - InOnly, Hello Camel
[Camel Thread 1 - Threads] INFO B - InOnly, Hello Camel

The first two log lines indicate the caller sending the message to Camel. The last two
lines show the other two threads involved in routing the message inside Camel.

 In this scenario, the caller is asynchronous because it can continue without waiting
for a reply.

 This model has a different set of pros and cons from the Camel perspective, as
listed in table 10.6.

In a real-world situation, you might want to use this scenario when consuming files, as
we did in section 10.1. By not having the consumer thread process the file, it’s free to
pick up new files. And by using multiple threads in Camel, you can maximize through-
put as multiple threads can work simultaneously on multiple files.

 Another use case when multiple threads can be an advantage is when you process
big messages that can be split into smaller submessages for further processing. This is
what we did in section 10.1 using the parallelProcessing option on the Splitter EIP.

 The next scenario is similar to this one, but it uses a request-response messaging style.

10.4.4 Synchronous caller using multiple threads

The synchronous InOut scenario involving multiple threads inside Camel is illustrated
in figure 10.11. In this scenario, the situation is a bit more complex because the caller
is waiting for a reply and Camel is using multiple threads to process the message. This
means the consumer thread that received the request must block until the routing is

Table 10.6 Pros and cons of using an asynchronous caller and having multiple threads, from the Camel
 perspective

Pros Cons

■ Leverages the SEDA principle of decoupled stages
■ Dispatching is decoupled from consuming

■ Transaction propagation isn’t supported
■ Little overhead of thread-context switching

 www.it-ebooks.info

http://www.it-ebooks.info/

341Synchronicity and threading

complete, so it can deliver the reply back to the waiting caller. If this sounds a bit con-
fusing, don’t be alarmed. We’ll unlock how this works when we look at the asynchro-
nous client API in section 10.5.

 The route you use for testing this scenario is as follows:

from("seda:start")
 .to("log:A")
 .threads(5, 10)
 .transform(constant("Bye Camel"))
 .to("log:B");

The unit test uses the requestBody method to send an InOut message to Camel:

public void testAsyncInOut() throws Exception {
 String body = "Hello Camel";
 LOG.info("Caller calling Camel with message: " + body);
 Object reply = template.requestBody("seda:start", body);
 LOG.info("Caller received reply: " + reply);
}

If you run this example, you should see output to the console that shows the threads
in use during routing:

[main] INFO Caller - Caller calling Camel with message: Hello Camel
[Camel Thread 0 - seda://start] INFO A - InOut, Hello Camel
[Camel Thread 1 - Threads] INFO B - InOut, Bye Camel
[main] INFO Caller - Caller received reply: Bye Camel

These lines reveal that the caller waits for the reply and that two threads are involved
during the routing of the message in Camel.

Consumer

Caller Camel

Log A Log B

Consumer
thread pool

Threads

Threads
thread pool

Figure 10.11 In synchronous mode, the caller waits for a reply. On the Camel side, multiple
threads are involved during the routing of the message. The consumer thread has to block,
waiting for the reply, which it must send back to the waiting caller.

 www.it-ebooks.info

http://www.it-ebooks.info/

342 CHAPTER 10 Concurrency and scalability

 What the lines also reveal is that the caller received "Bye Camel" as the reply. This
may seem a bit like magic, as the "Bye Camel" message was constructed in the last part
of the route. That means the consumer thread somehow knew that it had to block
until the reply message was ready.

 Although this might seem like magic, there is no such magic in Camel or the Java
language. It’s the Java concurrency API that allows you to wait for an asynchronous
task to complete, using what is called a Future handle. We’ll cover this in more detail
in section 10.5.

 Table 10.7 presents the pros and cons of this scenario.

This scenario can be used when you want to return an early reply to the waiting caller.
Suppose you expose a web service and want to return an OK reply as quickly as possible.
By dispatching the received messages asynchronously, you allow the consumer thread
to continue and return the early reply to the caller. This may sound easy, but the MEP
impacts how this can be done correctly. Let’s take a moment to map out the pitfalls.

10.4.5 Returning an early reply to a caller

Consider an example in which a caller invokes a Camel service in a synchronous man-
ner—the caller is blocked while waiting for a reply. In the Camel service, you want to
send a reply back to the waiting caller as soon as possible; the reply is an acknowledge-
ment that the input has been received, so "OK" is returned to the caller. In the mean-
time, Camel continues processing the received message in another thread.

 Figure 10.12 illustrates this example in a sequence diagram.
 Implementing this example as a Camel route with the Java DSL can be done as

follows:

Table 10.7 Pros and cons of using a synchronous caller and having multiple threads, from the Camel
 perspective

Pros Cons

■ Leverages the SEDA principle of decoupled stages
■ Dispatching is decoupled from consuming
■ Allows consumer to return early reply

■ Transaction propagation isn’t supported
■ Minor overhead of thread-context switching
■ The consumer thread has to block while wait-

ing for the reply to be ready

Caller Service W ire tap

Synchronous

Synchronous

Asynchronous
Early reply

Figure 10.12 A synchronous caller invokes a Camel service. The service lets the
wire tap continue processing the message asynchronously while the service returns
an early reply to the waiting caller.

 www.it-ebooks.info

http://www.it-ebooks.info/

343Synchronicity and threading

from("jetty:http://localhost:8080/early").routeId("input")
 .wireTap("direct:incoming")
 .transform().constant("OK");

 from("direct:incoming").routeId("process")
 .convertBodyTo(String.class)
 .log("Incoming ${body}")
 .delay(3000)
 .log("Processing done for ${body}")
 .to("mock:result");
}

You leverage the Wire Tap EIP B to continue routing the incoming message in a sepa-
rate thread. This gives room for the consumer to immediately reply C to the waiting
caller.

 Here’s an equivalent example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">

 <route routeId="input">
 <from uri="jetty:http://localhost:8080/early"/>
 <wireTap uri="direct:incoming"/>
 <transform>
 <constant>OK</constant>
 </transform>
 </route>

 <route routeId="process">
 <from uri="direct:incoming"/>
 <convertBodyTo type="String"/>
 <log message="Incoming ${body}"/>
 <delay>
 <constant>3000</constant>
 </delay>
 <log message="Processing done for ${body}"/>
 <to uri="mock:result"/>
 </route>

</camelContext>

The source code for the book contains this example in the chapter8/synchronicity
directory. You can run the example using the following Maven goals:

mvn test -Dtest=EarlyReplyTest
mvn test -Dtest=SpringEarlyReplyTest

When you run the example, you should see the console output showing how the mes-
sage is processed:

11:18:15 [main] INFO - Caller calling Camel with message: Hello Camel
11:18:15 [Camel Thread 0 - WireTap] INFO - Incoming Hello Camel
11:18:15 [main] INFO - Caller finished calling Camel and received reply: OK
11:18:18 [Camel Thread 0 - WireTap] INFO - Processing done for Hello Camel

Notice in the console output how the caller immediately receives a reply within the
same second it sent the request. The last log line shows that the Wire Tap EIP finished
processing the message 3 seconds after the caller received the reply.

Tap
incoming
messageB

Return early
replyC

Tap incoming
message

B

Return early
reply

C

 www.it-ebooks.info

http://www.it-ebooks.info/

344 CHAPTER 10 Concurrency and scalability

NOTE In the preceding example, the route with ID "process", you need to
convert the body to a String type to ensure that you can read the message
multiple times. This is necessary because Jetty is stream-based, which causes it
to only be able to read the message once. Or, instead of converting the body,
you could enable stream caching—we’ll cover stream caching in chapter 13.

So far in this chapter, you’ve seen concurrency used in Camel routes by the various
EIPs that support them. But Camel also has a strong client API, manifested in the Pro-
ducerTemplate and ConsumerTemplate classes (see appendix C). These classes have
easy-to-use methods for sending messages to any endpoint you choose. In the next sec-
tion, you’ll learn what those classes have to offer when it comes to concurrency.

10.5 The concurrency client API
You can use the concurrency client API directly from Java code, which means you’re in
full control of what should happen. You don’t have to use Camel routes and EIPs to
achieve concurrency.

 To fully understand the concurrency API from the client point of view, we’ll look at
how you can achieve concurrency with pure Java. Then we’ll look at the same example
using Camel’s ProducerTemplate. We’ll end this section by looking at how the Camel
client API allows you to easily submit concurrent messages to different endpoints and
leverage a callback mechanism to gather the replies when they come back.

10.5.1 The concurrency client API in Java

The concurrency API in Java is located in the java.util.concurrent package, and it
was introduced in Java 5 (aka JDK 1.5). All the concurrency behavior in Camel is built
on top of this API. For example, the Camel thread pools are all ExecutorService
instances, which are capable of executing tasks concurrently and asynchronously.

 Java’s concurrency API includes the following classes that are interesting to learn
about and understand from a developer’s point of view:

■ ExecutorService—This is the foundation for executing tasks in an asynchro-
nous manner.

■ Callable—This represents an asynchronous task. Think of it as an improved
Runnable that can return a result or throw an exception.

■ Future—This represents the lifecycle of an asynchronous task and provides
methods to test whether the task has completed or been cancelled, to retrieve
its result, and to cancel the task.

Figure 10.13 is a sequence diagram that depicts how these three concepts are related
and how they’re involved in a typical use case where an asynchronous task is being
executed.

 Figure 10.13 shows how a client creates a new Callable, which represents the tasks
(the code) you want to be executed asynchronously. The task is then submitted to an
ExecutorService, which is responsible for further processing the task. Before the task

 www.it-ebooks.info

http://www.it-ebooks.info/

345The concurrency client API

is executed, a Future is returned to the client. The Future is a handle that the client
can use at any point later on to retrieve the result of the task.

 Listing 10.4 shows how this works in Java code.

public void testFutureWithDone() throws Exception {
 Callable<String> task = new Callable<String>() {
 public String call() throws Exception {
 Thread.sleep(5000);
 return "Camel rocks";
 }
 };

 ExecutorService executor = Executors.newCachedThreadPool();
 Future<String> future = executor.submit(task);

 boolean done = false;
 while (!done) {
 done = future.isDone();
 LOG.info("Is the task done? " + done);
 if (!done) {
 Thread.sleep(2000);
 }
 }

 String answer = future.get();
 LOG.info("The answer is: " + answer);
}

The task to be executed is located within the call method of the Callable B. Note
that you can use generics to specify the result type as a String. The task is then sub-
mitted to the ExecutorService C, which returns a Future<String> handle; the
generic type matches the type from the task. While the task is being processed, you
can do other computations, but in this example you just loop and wait for the task to
be done D. At the end, you can retrieve the result using the get method E.

Listing 10.4 Asynchronous task execution using the Java API

ExecutorService Future

Submit

Creates

Returns

CallableClient

New

Figure 10.13 The client submits tasks (Callable) to be executed asynchronously by
ExecutorService, which returns a Future handle to the client.

Creates
taskB

Submits
taskC

Waits until
task is doneD

Gets task
result

E

 www.it-ebooks.info

http://www.it-ebooks.info/

346 CHAPTER 10 Concurrency and scalability

 The source code for the book contains this example in the chapter10/client direc-
tory. You can use the following Maven goal to run the example:

mvn test -Dtest=CamelFutureDoneTest

When you run the example, the console should output what’s happening:

07:29:30 [main] - Submitting task to ExecutorService
07:29:30 [main] - Task submitted and we got a Future handle
07:29:30 [pool-1-thread-1] - Starting to process task
07:29:30 [main] - Is the task done? false
07:29:32 [main] - Is the task done? false
07:29:34 [main] - Is the task done? false
07:29:35 [pool-1-thread-1] - Task is now done
07:29:36 [main] - Is the task done? true
07:29:36 [main] - The answer is: Camel rocks

As you can see from the console output, the task executes in a thread named "pool-1-
thread-1" while the caller executes in the main thread. This output also proves that the
client waits until the task is done.

 There’s a smarter way to retrieve the result than by looping and testing whether the
task is done—you can use the get method on the Future handle which will automatically
wait until the task is done. Removing the while loop from the code in listing 10.4 and
running the example will output the following:

07:37:20 [main] - Submitting task to ExecutorService
07:37:20 [main] - Task submitted and we got a Future handle
07:37:20 [pool-1-thread-1] - Starting to process task
07:37:25 [pool-1-thread-1] - Task is now done
07:37:25 [main] - The answer is: Camel rocks

As you can see, this time you don’t have to test whether the task is done. Invoking the
get method on Future causes it to wait until the task is done and to react promptly
when it is done.

 The source code for the book contains this example in the chapter10/client direc-
tory. You can use the following Maven goal to run the example:

mvn test -Dtest=CamelFutureGetTest

You’ve seen how clients leverage Future to retrieve the result of tasks that have been
submitted for asynchronous execution. Table 10.8 lists the most commonly used
methods provided by Future.

Table 10.8 Commonly used methods in the java.util.concurrent.Future class

Method Description

get() Waits, if necessary, for tasks to complete, and then returns the result. Will throw an
ExecutionException if the tasks throw an exception.

get(timeout,
TimeUnit)

Waits, if necessary, for at most the specified time for the task to complete, and
then returns the result if available. Will throw an ExecutionException if the
tasks throw an exception. TimeoutException is thrown if timed out.

isDone() Returns true if the task is done; otherwise false is returned.

 www.it-ebooks.info

http://www.it-ebooks.info/

347The concurrency client API

Understanding the principle of Future is important because it’s the same mechanism
Camel leverages internally when it processes messages asynchronously. Future also
plays a role in the concurrency client API provided by Camel, which we’re going to
take a look at now.

10.5.2 The concurrency client API in Camel

The client concurrency API in Camel is provided in the ProducerTemplate class. It
offers a range of methods that Camel end users can leverage to submit messages to
Camel to be further processed asynchronously.

 Consider the following route:

from("seda:quote")
 .log("Starting to route ${body}")
 .delay(5000)
 .transform().constant("Camel rocks")
 .log("Route is now done");

You can see that this route will delay processing the message for 5 seconds, which
means it will take at least 5 seconds for the reply to be returned. This is the same situa-
tion as in the previous example (section 10.5.1), where the Callable tasks also took 5
seconds to complete. This allows us to compare this example with the previous one to
see how easy it is in Camel to use the concurrency client API.

 Sending a message asynchronously to the "seda:quote" endpoint is easy to do in
Camel by using the asyncRequestBody method as shown here:

public void testFutureWithoutDone() throws Exception {
 LOG.info("Submitting task to Camel");
 Future<String> future = template.asyncRequestBody("seda:quote",
 "Hello Camel", String.class);
 LOG.info("Task submitted and we got a Future handle");

 String answer = future.get();
 LOG.info("The answer is: " + answer);
}

The source code for the book contains this example in the chapter10/client directory.
You can use the following Maven goal to run the example:

mvn test -Dtest=CamelFutureTest

If you run this example, the console should output something like the following:

11:02:49 [main] - Submitting task to Camel
11:02:49 [main] - Task submitted and we got a Future handle
11:02:49 [Camel Thread 0 - seda://quote] - Starting to route Hello Camel
11:02:54 [Camel Thread 0 - seda://quote] - Route is now done
11:02:54 [main] - The answer is: Camel rocks

What you should notice in this example is that the Camel concurrency client API also
uses the Future handle to retrieve the result. This allows Camel end users to more eas-
ily learn and use the Camel concurrency API, as it’s based on and similar to the Java
concurrency API.

 www.it-ebooks.info

http://www.it-ebooks.info/

348 CHAPTER 10 Concurrency and scalability

 Table 10.9 lists the most commonly used methods, provided by ProducerTemplate.
All the methods listed will return a Future handle.

Notice that all the methods listed in table 10.9 start with async in their method name.
This makes them easy to remember when you need to send a message asynchronously.

 The last three methods in table 10.9 support a callback mechanism, which makes
sense in situations where you may need to use the same callback for several tasks. Let’s
look at an example now, to make this all a bit clearer.

USING ASYNCCALLBACK

Rider Auto Parts has a selected number of premium partners who are promoted
exclusively on the Rider Auto Parts web store. Whenever a customer browses the items
catalog, the partners are listening and can provide feedback about related items. For
example, if you browse for bumper parts, the partners can suggest related items, such
as bumper extensions or other car parts. The partners have to return their feedback
within a given time period, so the user experience of browsing the website isn’t slowed
down noticeably.

 Implementing such a use case is possible using the Camel concurrency client API.
You can use a callback to gather the partner feedback within the given time period.

 The callback is defined in Camel as the org.apache.camel.spi.Synchronization
interface:

Table 10.9 Commonly used asynchronous methods in the ProducerTemplate class

Method Description

asyncSend(endpoint, exchange) Sends the exchange to the given endpoint

asyncSendBody(endpoint, body) Sends the body to the given endpoint using InOnly
as the exchange pattern

asyncSendBodyAndHeader
(endpoint, body, header)

Sends the body and header to the given endpoint
using InOnly as the exchange pattern

asyncRequestBody(endpoint, body) Sends the body to the given endpoint using InOut as
the exchange pattern

asyncRequestBodyAndHeader
(endpoint, body, header)

Sends the body and header to the given endpoint
using InOut as the exchange pattern

asyncCallback
(endpoint, exchange, callback)

Sends the exchange to the given endpoint and invokes
the callback when the task is done

asyncCallbackSendBody
(endpoint, body, callback)

Sends the body to the given endpoint using InOnly
as the exchange pattern, and invokes the callback
when the task is done

asyncCallbackRequestBody
(endpoint, body, callback)

Sends the body to the given endpoint using InOut as
the exchange pattern, and invokes the callback when
the task is done

 www.it-ebooks.info

http://www.it-ebooks.info/

349The concurrency client API

public interface Synchronization {
 void onComplete(Exchange exchange);
 void onFailure(Exchange exchange);
}

The callback has two methods: the first is invoked when the Exchange is processed suc-
cessfully, and the second is invoked if the Exchange fails.

 Listing 10.5 shows how this can be implemented in Camel.

public void testCallback() throws Exception {
 final List<String> relates = new ArrayList<String>();
 final CountDownLatch latch = new CountDownLatch(5);

 Synchronization callback =
 new SynchronizationAdapter() {
 public void onComplete(Exchange exchange) {
 relates.add(exchange.getOut().getBody(String.class));
 latch.countDown();
 }

 public void onFailure(Exchange exchange) {
 latch.countDown();
 }
 };

 String body = "bumper";
 for (int i = 0; i < 5; i++) {
 template.asyncCallbackRequestBody(
 "seda:partner:" + i, body, callback);
 }
 LOG.info("Send " + 5 + " messages to partners.");

 boolean all = latch.await(1500,
 TimeUnit.MILLISECONDS);

 LOG.info("Got " + relates.size() + " replies, is all? " + all);
 for (String related : relates) {
 LOG.info("Related item category is: " + related);
 }

You use a CountDownLatch B to let you know when you’ve received all the replies or the
given time period is up. The callback is used to gather the replies in the relates list.

 You use the org.apache.camel.impl.SynchronizationAdapter class to imple-
ment the callback logic C. It allows you to override the onComplete and onFailure
methods. The onComplete method is invoked when the message is routed successfully,
so we get a valid reply for the business partner. The onFailure method is invoked if
the routing fails. In both situations, you need to count down the latch to keep track of
the number of replies coming back.

 Now you’re ready to send messages to the partners about which category the user is
browsing. In this test, the category is set to "bumper". You use the asyncCallback-
RequestBody method D, listed in table 10.9, to send the "bumper" message to the

Listing 10.5 Using a callback to gather replies asynchronously

Counts replies
received

B

Gathers
replies

C

Invokes
partners

D

Waits for replies
with timeout

E

 www.it-ebooks.info

http://www.it-ebooks.info/

350 CHAPTER 10 Concurrency and scalability

partners and have their replies gathered by the callback. This is done asynchronously,
so you need to wait until the replies are gathered or the time period is up. For that, you
use the countdown latch E. In this example, you wait until all five replies have been
gathered or the timeout is triggered.

 The source code for the book includes this example in the chapter10/client direc-
tory. You can run it by invoking the following Maven goal:

mvn test -Dtest=RiderAutoPartsCallbackTest

If you run this example, you should get the following output on the console:

11:03:23,078 [main] INFO - Send 5 messages to partners.
11:03:24,629 [main] INFO - Got 3 replies, is all? false
11:03:24,629 [main] INFO - Related item category is: bumper extension
11:03:24,630 [main] INFO - Related item category is: bumper filter
11:03:24,630 [main] INFO - Related item category is: bumper cover

In this example, you send to five different partners but only three respond within the
time period.

 As you’ve seen, the Camel concurrency client API is powerful, as it combines the
power from Camel with an API resembling the equivalent concurrency API in Java.
That’s all we have to say about the asynchronous client API. The next section covers
what you can do in Camel to improve scalability.

10.6 The asynchronous routing engine
Camel uses its routing engine to route messages either synchronously or asynchro-
nously. In this section we focus on scalability and learn that higher scalability can be
achieved with the help of the asynchronous routing engine.

 For a system, scalability is the desirable property of being capable of handling a
growing amount of work gracefully. In section 10.1, we covered the Rider Auto Parts
inventory application, and you saw you could increase throughput by leveraging con-
current processing. In that sense, the application was scalable, as it could handle a
growing amount of work in a graceful manner. That application could scale because it
had a mix of CPU-bound and IO-bound processes, and because it could leverage
thread pools to distribute work.

 In this section, we’ll look at scalability from a different angle. We’ll look at what
happens when messages are processed asynchronously.

10.6.1 Hitting the scalability limit

Rider Auto Parts uses a Camel application to service its web store, as illustrated in fig-
ure 10.14.

 A Jetty consumer handles all requests from the customers. There are a variety of
requests to handle, such as updating shopping carts, performing searches, gathering
production information, and so on—the usual functions you expect from a web store.
But there’s one function that involves calculating pricing information for customers.
The pricing model is complex and individual for each customer—only the ERP system

 www.it-ebooks.info

http://www.it-ebooks.info/

351The asynchronous routing engine

can calculate the pricing. As a result, the Camel application communicates with the
ERP system to gather the prices. While the prices are being calculated by the ERP sys-
tem, the web store has to wait until the reply comes back, before it returns its response
to the customer.

 The business is doing well for the company, and an increasing number of custom-
ers are using the web store, which puts more load on the system. Lately there have
been problems during peak hours, with customers reporting that they can’t access the
web store or that it’s generally responding slowly.

 The root cause has been identified: the communication with the ERP system is fully
synchronous, and the ERP system takes an average of 5 seconds to compute the pric-
ing. This means each request that gathers pricing information has to wait (the thread
is blocked) an average of 5 seconds for the reply to come back. This puts a burden on
the Jetty thread pool, as there are fewer free threads to service new requests.

 Figure 10.15 illustrates this problem. You can see that the thread is blocked (the
white boxes) while waiting for the ERP system to return a reply.

Rider
Auto
Parts
ERPCustomer

Web store
service

Rider Auto Parts
web store application

Jetty
consumer

Figure 10.14 The Rider Auto Parts web store communicates with the ERP system to gather
pricing information.

Web store
service

Jetty
consumer

ERPCustomer

HTTP request

Process

Request

Reply

HTTP response
Return true

Figure 10.15 A scalability problem illustrated by the thread being blocked (represented as white
boxes) while waiting for the ERP system to return a the reply.

 www.it-ebooks.info

http://www.it-ebooks.info/

352 CHAPTER 10 Concurrency and scalability

Figure 10.15 reveals that the Jetty consumer is using one thread per request. This
leads to a situation where you run out of threads as traffic increases. You’ve hit a scal-
ability limit. Let’s look into why, and look at what Camel has under the hood to help
mitigate such problems.

10.6.2 Scalability in Camel

It would be much better if the Jetty consumer could somehow borrow the thread while
it waits for the ERP system to return the reply, and use the thread in the meantime to
service new requests. This can be done by using an asynchronous processing model.
Figure 10.16 shows the principle.

 If you compare figures 10.15 and 10.16, you can see that the threads are much less
blocked in the latter (the white boxes are smaller). In fact, there are no threads
blocked while the ERP system is processing the request. This is a huge scalability
improvement because the system is much less affected by the processing speed of the
ERP system. If it takes 1, 2, 5, or 30 seconds to reply, it doesn’t affect the web store’s
resource utilization as much as it would otherwise do. The threads in the web store are
much less IO-bound and are put to better use doing actual work.

 Figure 10.17 shows a situation in which two customer requests are served by the
same thread without impacting response times.

 In this situation, customer 1 sends a request that requires a price calculation, so
the ERP system is invoked asynchronously. A short while thereafter, customer 2 sends a
request that can be serviced directly by the web shop service, so it doesn’t leverage the

Web store
service

Jetty
consumer

ERPCustomer

HTTP request

Process

Request

Reply

Return false

HTTP response

Done

Return

Figure 10.16 The scalability problem is greatly improved. Threads are much less blocked (represented
by white boxes) when you leverage asynchronous communication between the systems.

 www.it-ebooks.info

http://www.it-ebooks.info/

353The asynchronous routing engine

asynchronous processing model (it’s synchronous). The response is sent directly back
to customer 2. Later, the ERP system returns the reply, which is sent back to the wait-
ing customer 1.

 In this example, you can successfully process two customers without any impact on
their response time. You’ve achieved higher scalability.

In the next section, we’ll look under the hood to see how this is possible in Camel
using the asynchronous processing model.

10.6.3 Components supporting asynchronous processing
The routing engine in Camel is capable of routing messages either synchronously or
asynchronously. The latter requires the Camel component to support asynchronous
processing, which in turn depends on the underlying transport supporting asynchro-
nous communication. Table 10.10 lists the components in Camel 2.5 that support
asynchronous communication.

Web store
service

Jetty
consumer

ERPCustomer 1

Process

Request

Reply

Return false

Done

Return

Customer 2

Process

Return true

Figure 10.17 The same thread services multiple customers without blocking (white and grey boxes)
and without impacting response times, resulting in much higher scalability.

Apache ServiceMix supports high scalability
Apache ServiceMix (http://servicemix.apache.org/) is an enterprise service bus (ESB)
that can host your Camel application. In terms of high scalability, ServiceMix offers a
message bus (the JBI and NMR components) for passing messages inside your ap-
plication or between applications. The message bus supports the asynchronous pro-
cessing model described in this chapter, which means it’s highly scalable.

 www.it-ebooks.info

http://servicemix.apache.org/
http://www.it-ebooks.info/

354 CHAPTER 10 Concurrency and scalability

NOTE The Camel team will add support for additional components in the
future. You can check the online documentation for an updated list of sup-
ported components: http://camel.apache.org/asynchronous-routing-engine.
html.

In order to achieve high scalability in the Rider Auto Parts web store, you need to use
asynchronous routing at two points. The communication with the ERP system and
with the Jetty consumer must both happen asynchronously. The camel-jetty compo-
nent already supports this.

Communication with the ERP system must happen asynchronously too. To understand
how this is possible with Camel, we’ll take a closer look at figure 10.16. The figure
reveals that after the request has been submitted to the ERP system, the thread won’t
block but will return to the Jetty consumer. It’s then up to the ERP transport to notify
Camel when the reply is ready. When Camel is notified, it will be able to continue
routing and let the Jetty consumer return the HTTP response to the waiting customer.
To enable all this to work together, Camel provides an asynchronous API that the com-
ponents must use. In the next section, we’ll walk through this API.

10.6.4 Asynchronous API

Camel supports an asynchronous processing model, which we refer to as the asynchro-
nous routing engine. There are advantages and disadvantages of using asynchronous

Table 10.10 Components that support asynchronous processing

Component Description

camel-cxf Supports asynchronous routing at both the consumer and producer levels.

camel-jbi Supports asynchronous routing at both the consumer and producer levels. Requires
Apache ServiceMix.

camel-jetty Supports asynchronous routing at both the consumer and producer levels.

camel-jms Supports asynchronous routing at the producer level when using request-response
over JMS queues.

camel-netty Supports asynchronous routing at the producer level.

camel-nmr Supports asynchronous routing at both the consumer and producer levels. Requires
Apache ServiceMix.

Jetty and continuations
The Jetty servlet engine uses continuations to achieve high scalability. It allows Camel
to park a request and later retrieve the request and continue processing it. You can
read more about continuations at the Jetty website: http://wiki.eclipse.org/Jetty/
Feature/Continuations.

 www.it-ebooks.info

http://camel.apache.org/asynchronous-routing-engine.html
http://camel.apache.org/asynchronous-routing-engine.html
http://wiki.eclipse.org/Jetty/Feature/Continuations
http://wiki.eclipse.org/Jetty/Feature/Continuations
http://www.it-ebooks.info/

355The asynchronous routing engine

processing, compared to using the standard synchronous processing model. They’re
listed in table 10.11.

The asynchronous processing model is manifested by an API that must be imple-
mented to leverage asynchronous processing. You’ve already seen a glimpse of this API
in figure 10.16; the arrow between the Jetty consumer and the web store service has
the labels Return false and Done. Let’s see the connection that those labels have with
the asynchronous API.

ASYNCPROCESSOR

The AsyncProcessor is an extension of the synchronous Processor API:

public interface AsyncProcessor extends Processor {
 boolean process(Exchange exchange, AsyncCallback callback);
}

The AsyncProcessor defines a single process method that’s similar to its synchro-
nous Processor.process sibling.

 Here are the rules that apply when using AsyncProcessor:
■ A non-null AsyncCallback must be supplied; it will be notified when the

exchange processing is completed.
■ The process method must not throw any exceptions that occur while processing

the exchange. Any such exceptions must be stored on the exchange’s exception
property.

■ The process method must know whether it will complete the processing syn-
chronously or asynchronously. The method will return true if it completes syn-
chronously; otherwise it returns false.

■ When the processor has completed processing the exchange, it must call the
callback.done(boolean doneSync) method. The doneSync parameter must
match the value returned by the process method.

The preceding rules may seem a bit confusing at first. Don’t worry, the asynchronous
API isn’t targeted at Camel end users but at Camel component writers.

 In the next section, we’ll cover an example of how to implement a custom compo-
nent that acts asynchronously. You’ll be able to use this example as a reference if you
need to implement a custom component.

NOTE You can read more about the asynchronous processing model at the
Camel website: http://camel.apache.org/asynchronous-processing.html.

Table 10.11 Advantages and disadvantages of using the asynchronous processing model

Advantages Disadvantage

■ Processing messages asynchronously doesn’t use up threads,
forcing them to wait for processors to complete on blocking calls.

■ It increases the scalability of the system by reducing the number
of threads needed to manage the same workload.

■ Implementing asynchronous
processing is more complex.

 www.it-ebooks.info

http://camel.apache.org/asynchronous-processing.html
http://www.it-ebooks.info/

356 CHAPTER 10 Concurrency and scalability

The AsyncCallback API is a simple interface with one method:

public interface AsyncCallback {
 void done(boolean doneSync);
}

It’s this callback that’s invoked when the ERP system returns the reply. This notifies the
asynchronous routing engine in Camel that the exchange is ready to be continued,
and the engine can then continue routing it.

 Let’s see how this all fits together by digging into the example and looking at some
source code.

10.6.5 Writing a custom asynchronous component

The source code for the book contains the web store example in the chapter10/scal-
ability directory. This example contains a custom ERP component that simulates asyn-
chronous communication with an ERP system. Listing 10.6 shows how the
ErpProducer is implemented.

import java.util.concurrent.ExecutorService;

import org.apache.camel.AsyncCallback;
import org.apache.camel.Endpoint;
import org.apache.camel.Exchange;
import org.apache.camel.impl.DefaultAsyncProducer;

public class ErpProducer extends DefaultAsyncProducer {
 private ExecutorService executor;

 public ErpProducer(Endpoint endpoint) {
 super(endpoint);
 executor = endpoint.getCamelContext()
 .getExecutorServiceStrategy()
 .newFixedThreadPool(this, "ERP", 10);
 }

 public boolean process(final Exchange exchange,
 final AsyncCallback callback) {
 executor.submit(new ERPTask(exchange, callback));

 log.info("Returning false");
 return false;
 }

 private class ERPTask implements Runnable {

 private final Exchange exchange;
 private final AsyncCallback callback;

 private ERPTask(Exchange exchange, AsyncCallback callback) {
 this.exchange = exchange;
 this.callback = callback;
 }

 public void run() {

Listing 10.6 ErpProducer using the asynchronous processing model

Extends
DefaultAsyncProducer

B

Implements
asynchronous
process method

C

Returns false to
use asynchronous
processingD

 www.it-ebooks.info

http://www.it-ebooks.info/

357The asynchronous routing engine

 log.info("Calling ERP");
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 // ignore
 }
 log.info("ERP reply received");

 String in = exchange.getIn().getBody(String.class);
 exchange.getOut().setBody(in + ";516");

 log.info("Continue routing");
 callback.done(false);
 }
 }
}

When implementing a custom asynchronous component, it’s most often the Producer
that leverages asynchronous communication, and a good starting point is to extend
the DefaultAsyncProducer B.

 To simulate asynchronous communication, you use a thread pool to execute tasks
asynchronously; this means you need to create a thread pool in the constructor. To
support the asynchronous processing model, the ErpProducer must also implement
the asynchronous process method C.

 To simulate the communication, which takes 5 seconds to reply, you submit
ERPTask to the thread pool. When the 5 seconds are up, the reply is ready, and it’s set
on the exchange E.

 According to the rules, when you’re using AsyncProcessor the callback must be
notified when you’re done with a matching synchronous parameter F. In this exam-
ple, false is used as the synchronous parameter because the process method
returned false D. By returning false, you instruct the Camel routing engine to
leverage asynchronous routing from this point forward for the given exchange.

 You can try this example by running the following Maven goal from the
chapter10/scalability directory:

mvn test -Dtest=ScalabilityTest

This runs two test methods: one request is processed fully synchronously (not using
the ERP component), and the other is processed asynchronously (by invoking the ERP
component).

 When running the test, pay attention to the console output. The synchronous test
will log input and output as follows:

2010-07-16 11:41:42 [qtp1444378545-11] INFO input
 - Exchange[ExchangePattern:InOut, Body:1234;4;1719;bumper]
2010-07-16 11:41:42 [qtp1444378545-11] INFO output
 - Exchange[ExchangePattern:InOut, Body:Some other action here]

Notice that both the input and output are being processed by the same thread.

Sets reply
on exchangeE

Notifies callback
reply is readyF

 www.it-ebooks.info

http://www.it-ebooks.info/

358 CHAPTER 10 Concurrency and scalability

 The asynchronous example is different, as the console output reveals:

2010-07-16 11:49:48 [qtp515060127-11] INFO input
 - Exchange[ExchangePattern:InOut, Body:1234;4;1719;bumper]
2010-07-16 11:49:48 [qtp515060127-11] INFO ErpProducer
 - Returning false (processing will continue asynchronously)
2010-07-16 11:49:48 [Camel Thread 0 - ERP] INFO ErpProducer
 - Calling ERP
2010-07-16 11:49:53 [Camel Thread 0 - ERP] INFO ErpProducer
 - ERP reply received
2010-07-16 11:49:53 [Camel Thread 0 - ERP] INFO ErpProducer
- Continue routing
2010-07-16 11:49:53 [Camel Thread 0 - ERP] INFO output
- Exchange[ExchangePattern:InOut, Body:1234;4;1719;bumper;516]

This time there are two threads used during the routing. The first is the thread from
Jetty, which received the HTTP request. As you can see, this thread was used to route the
message to the ErpProducer. The other thread takes over communication with the ERP
system. When the reply is received from the ERP system, the callback is notified, which
lets Camel highjack the thread and use it to continue routing the exchange. You can see
this from the last line, which shows the exchange routed to the log component.

 This concludes our coverage of scalability with Camel.

10.7 Summary and best practices
In this chapter, we looked at thread pools, which are the foundation for concurrency
in Java. We saw how concurrency greatly improves performance and we looked at all
the possible ways to create, define, and use thread pools in Camel. You saw how easy it
was to use concurrency with the numerous EIPs in Camel, and you also saw how syn-
chronicity affects the way threading occurs in Camel.

 Java provides a concurrency API, which we compared to the Camel concurrency API.
Both APIs offer you full control over submitting and executing asynchronous tasks.

 Here are some best practices related to concurrency:

■ Leverage concurrency if possible. Concurrency can greatly speed up your applica-
tions. Note that using concurrency requires business logic that can be invoked
in a concurrent manner.

■ Tweak thread pools judiciously. Only tweak the thread pools when you have a
means of measuring the changes. It’s often better to rely on the default settings.

■ Know the JDK API. Understand the asynchronous API from Java, such as Callable
and the Future handle.

■ Use asynchronous processing for high scalability. If you require high scalability, try
using the Camel components that support the asynchronous processing model
(listed in table 10.10).

In the next chapter we get more practical and learn how to develop with Camel. You
will learn, among other things, how to start a new Camel project from scratch.

 www.it-ebooks.info

http://www.it-ebooks.info/

359

Developing
 Camel projects

At this point you should know a thing or two about how to develop Camel routes
and how to take advantage of many Camel features. But do you know how to best
start a Camel project from scratch? You could take an existing example and modify
it to fit your use case, but that’s not always ideal. And what if you need to integrate
with a system that isn’t supported out of the box by Camel?

 In this chapter, we’ll show you how to build your own Camel applications. We’ll
go over the Maven archetype tooling that’ll allow you to skip the boring boilerplate
project setup and create new Camel projects with a single command. We’ll also
show you how to start a Camel project from Eclipse, when you need the extra
power that an IDE provides.

This chapter covers
■ Creating Camel projects with Maven
■ Creating Camel projects in the Eclipse IDE
■ Creating custom components
■ Creating custom interceptors
■ Using Camel in alternative languages

 www.it-ebooks.info

http://www.it-ebooks.info/

360 CHAPTER 11 Developing Camel projects

 After that, we’ll show you how to extend Camel by creating custom components
and custom interceptors. Finally, we’ll wrap up by showing you how Camel projects
can be created in languages other than Java, like Scala.

11.1 Managing projects with Maven
Camel was built using Apache Maven right from the start, so it makes sense that creat-
ing new Camel projects is easiest when using Maven. In this section, we’ll show you
Camel’s Maven archetypes, which are preconfigured templates for creating various
types of Camel projects. After that, we’ll talk about using Maven dependencies to load
Camel modules and their third-party dependencies into your project.

 Section 1.2 of chapter 1 has an overview of Apache Maven. If you need a Maven
refresher, you might want to review that section before continuing on here.

11.1.1 Using Camel Maven archetypes

Creating Maven-based projects is a pretty simple task. You mainly have to worry about
creating a POM file and the various standard directories that you’ll be using in your
project. But if you’re creating many projects, this can get pretty repetitive because
there’s a lot of boilerplate setup required for new projects.

 Archetypes in Maven provide a means to define project templates and generate
new projects based on those templates. They make creating new Maven-based projects
easy because they create all the boilerplate POM elements, as well as key source and
configuration files useful for particular situations.

NOTE For more information on Maven archetypes, see the guide on the
official Maven website: http://maven.apache.org/guides/introduction/
introduction-to-archetypes.html. Sonatype also provides a chapter on arche-
types in the freely available Maven: The Complete Reference book: http://
www.sonatype.com/books/mvnref-book/reference/archetypes.html.

As illustrated in figure 11.1, this is all coordinated by the Maven archetype plugin.
This plugin accepts user input and replaces portions of the archetype to form a new
project.

 To demonstrate how this works, let’s look at the Maven quickstart archetype, which
will generate a plain Java application (no Camel dependencies). It’s the default
option when you run this command:

mvn archetype:generate

Maven
archetype

plugin

New Camel
project

Camel
archetype

Creates

Developer

Figure 11.1 A Camel archetype
and user input are processed by the
Maven archetype plugin, which then
creates a new Camel project.

 www.it-ebooks.info

http://maven.apache.org/guides/introduction/introduction-to-archetypes.html
http://maven.apache.org/guides/introduction/introduction-to-archetypes.html
http://www.sonatype.com/books/mvnref-book/reference/archetypes.html
http://www.sonatype.com/books/mvnref-book/reference/archetypes.html
http://www.it-ebooks.info/

361Managing projects with Maven

The archetype plugin will ask you various questions, like what groupId and artifactId
to use for the generated project. When it’s complete, you’ll have a directory structure
similar to this:

myApp
|-- pom.xml
`-- src
 |-- main
 | `-- java
 | `-- camelinaction
 | `-- App.java
 `-- test
 `-- java
 `-- camelinaction
 `-- AppTest.java

In this structure, myApp is the artifactId and camelinaction is the groupId. The
archetype plugin created a pom.xml file, a Java source file, and a unit test, all in the
proper locations.

NOTE Maven follows the convention over configuration paradigm, so loca-
tions are very important.

Without any additional configuration, Maven knows that it should compile the Java
source under the src/main/java directory and run all unit tests under the src/test/
java directory. To kick off this process, you just need to run the following Maven
command:

mvn test

If you want to take it a step further, you could tell Maven to create a JAR file after com-
piling and testing by replacing the test goal with package.

 You could start using Camel right from this example project, but it would involve
adding Camel dependencies like camel-core, starting up the CamelContext, and creat-
ing the routes. Although this wouldn’t take that long, there’s a much quicker solution:
you can use one of the six archetypes provided by Camel to generate all this boiler-
plate Camel stuff for you. Table 11.1 lists these archetypes and their main use cases.

Table 11.1 Camel’s Maven archetypes

Archetype name Description

camel-archetype-activemq Creates a Camel project that has an embedded Apache ActiveMQ broker.

camel-archetype-component Creates a new Camel component.

camel-archetype-java Creates a Camel project that loads up a CamelContext in Spring and
defines a sample route in Java.

camel-archetype-scala Creates a Camel project with a sample route in the Scala DSL. In sec-
tion 11.5, we’ll talk more about the Scala DSL.

 www.it-ebooks.info

http://www.it-ebooks.info/

362 CHAPTER 11 Developing Camel projects

Out of these six archetypes, the most commonly used one is probably the camel-
archetype-java archetype. We’ll try this out next.

USING THE CAMEL-ARCHETYPE-JAVA ARCHETYPE

The camel-archetype-java archetype listed in table 11.1 boots up a Spring-based
CamelContext and a Java DSL route. With this, we’ll show you how to re-create the
order-routing service for Rider Auto Parts as described in chapter 2. The project will
be named order-router and the package name in the source will be camelinaction.

 To create the skeleton project for this service, run the following Maven command:

mvn archetype:create \
 -DarchetypeGroupId=org.apache.camel.archetypes \
 -DarchetypeArtifactId=camel-archetype-java \
 -DarchetypeVersion=2.5.0 \
 -DgroupId=camelinaction \
 -DartifactId=order-router

You specify the archetype to use by setting the archetypeArtifactId property to
camel-archetype-java. You could replace this with any of the archetype names listed
in table 11.1. The archetypeVersion property is set to the version of Camel that you
want to use.

After a few seconds of activity, Maven will have created an order-router subdirectory in
the current directory. The order-router directory layout is shown in the following listing.

order-router
|-- ReadMe.txt
|-- pom.xml

camel-archetype-spring Creates a Camel project that loads up a CamelContext in Spring and
defines a sample route in the Spring DSL (similar to camel-archetype-
java, but with the route transposed to the Spring DSL).

camel-archetype-war Creates a Camel project that includes the Camel web console, REST API,
and a few sample routes as a WAR file.

Listing 11.1 Layout of the project created by camel-archetype-java

Table 11.1 Camel’s Maven archetypes (continued)

Archetype name Description

Create versus generate
The Maven archetype plugin has two main goals: archetype:generate and arche-
type:create. The generate goal is used when you need an interactive shell, prompt-
ing you through what you want to create. You can select the Camel archetypes through
this interactive shell as well, so it’s a useful option for developers new to Camel. The
create goal is useful when you know what you want to create up front and can enter
it all on one command line.

 www.it-ebooks.info

http://www.it-ebooks.info/

363Managing projects with Maven

`-- src
 |-- data
 | |-- message1.xml
 | `-- message2.xml
 `-- main
 |-- java
 | `-- camelinaction
 | `-- MyRouteBuilder.java
 `-- resources
 |-- META-INF
 | `-- spring
 | `-- camel-context.xml
 `-- log4j.properties

The archetype gives you a runnable Camel project, with a sample route and test data
to drive it. The Readme.txt file tells you how to run this sample project: run mvn
camel:run. Camel will continue to run until you press Ctrl-C, which causes the con-
text to stop.

 While running, the sample route will consume files in the src/data directory and,
based on the content, will route them to one of two directories. If you look in the tar-
get/messages directory, you should see something like this:

target/messages
|-- others
| `-- message2.xml
`-- uk
 `-- message1.xml

Now you know that Camel is working on your system, so you can start editing
MyRouteBuilder.java to look like the order-router application. You can start by setting
up FTP and web service endpoints that route to a JMS queue for incoming orders:

from("ftp://rider@localhost:21000/order?password=secret&delete=true")
 .to("jms:incomingOrders");
from("cxf:bean:orderEndpoint")
 .inOnly("jms:incomingOrders")
 .transform(constant("OK"));

At this point, if you try to run the application again using mvn camel:run, you’ll get
the following error message:

Failed to resolve endpoint: ftp://rider@localhost:21000/order?password=secret
due to: No component found with scheme: ftp

Camel couldn’t find the FTP component because it isn’t on the classpath. You’d get the
same error message for the CXF and JMS endpoints. There are, of course, other bits you
have to add to your project to make this a runnable application: a test FTP server running
on localhost, a CXF configuration, a JMS connection factory, and so on. A complete proj-
ect is available in the book’s source under chapter11/order-router-full.

 For now, we’ll focus on adding component dependencies using Maven.

Test
data

Spring
CamelContext Logging

configuration

 www.it-ebooks.info

http://www.it-ebooks.info/

364 CHAPTER 11 Developing Camel projects

11.1.2 Camel Maven dependencies

Technically, Camel is just a Java application. To use it, you just need to add its JARs to
your project’s classpath. But using Maven to access these JARs will make your life a
whole lot easier. Camel itself was developed using Maven for this very reason.

 In the previous section, you saw that using an FTP endpoint with only the camel-
core module as a dependency won’t work. You need to add the camel-ftp module as a
dependency to your project. Back in chapter 7 you saw that this was accomplished by
adding the following to the dependencies section of the POM file:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-ftp</artifactId>
 <version>2.5.0</version>
</dependency>

This dependency element will tell Maven to download the camel-ftp JAR from
Maven’s central repository at http://repo2.maven.org/maven2/org/apache/camel/
camel-ftp/2.5.0/camel-ftp-2.5.0.jar. This download URL is built up from Maven’s cen-
tral repository URL (http://repo2.maven.org/maven2) and Maven coordinates
(groupId, artifactId, and so on) specified in the dependency element. After the
download is complete, Maven will add the JAR to the project’s classpath.

 One detail that may not be obvious at first is that this dependency also has transitive
dependencies. What are transitive dependencies? Well, in this case you have a project
called order-router and you’ve added a dependency on camel-ftp. The camel-ftp mod-
ule also has a dependency on commons-net, among others. So you can say that com-
mons-net is a transitive dependency of order-router. Transitive dependencies are
dependencies that a dependency has—the dependencies of the camel-ftp module, in
this case.

 When you add camel-ftp as a dependency, Maven will look up camel-ftp’s POM file
from the central Maven repository and look at the dependencies it has. Maven will
then download and add those dependencies to this project’s classpath.

 The camel-ftp module adds a whopping 24 transitive dependencies to our project!
Luckily only 5 of them are needed at runtime; the other 19 are used during testing.
The 5 transitive runtime dependencies can be viewed as a tree, as shown in figure 11.2.

camel-core
2.5.0

camel-ftp
2.5.0

commons-management
1.0

commons-logging-api
1.1

jsch
0.1.43

commons-net
2.0

Figure 11.2 Transitive runtime
dependencies of the camel-ftp
module. When you add a depen-
dency on camel-ftp to your proj-
ect, you’ll also get its transitive
dependencies added to your class-
path. In this case, commons-net,
camel-core, commons-logging-api,
and jsch are added. Additionally,
camel-core has a dependency on
commons-management, so that’s
added to the classpath as well.

 www.it-ebooks.info

http://repo2.maven.org/maven2/org/apache/camel/camel-ftp/2.5.0/camel-ftp-2.5.0.jar
http://repo2.maven.org/maven2/org/apache/camel/camel-ftp/2.5.0/camel-ftp-2.5.0.jar
http://repo2.maven.org/maven2
http://www.it-ebooks.info/

365Managing projects with Maven

You’re already depending on camel-core in the order-router project, so only two
dependencies—commons-net and jsch—are brought in by camel-ftp.

 This is a view of only a small number of dependencies, but you can recognize that
the dependency tree can get quite complex. Fortunately, Maven finds these dependen-
cies for you and resolves any duplicate dependencies. The bottom line is that when
you’re using Maven, you don’t need to worry much about your project’s dependencies.

 If you want to know what your project’s dependencies are (including transitive
ones), Maven offers the dependency:tree command. To see the dependencies in your
project, run the following command:

mvn dependency:tree

After a few seconds of work, Maven will print out a listing like this:

+- org.apache.camel:camel-core:jar:2.5.0:compile
| +- commons-logging:commons-logging-api:jar:1.1:compile
| +- org.fusesource.commonman:commons-management:jar:1.0:compile
| \- com.sun:tools:jar:1.5.0:system
+- org.apache.camel:camel-spring:jar:2.5.0:compile
| +- org.springframework:spring-context:jar:3.0.4.RELEASE:compile
| | +- org.springframework:spring-beans:jar:3.0.4.RELEASE:compile
| | +- org.springframework:spring-core:jar:3.0.4.RELEASE:compile
| | | \- commons-logging:commons-logging:jar:1.1.1:compile
| | +- org.springframework:spring-expression:jar:3.0.4.RELEASE:compile
| | \- org.springframework:spring-asm:jar:3.0.4.RELEASE:compile
| +- org.springframework:spring-aop:jar:3.0.4.RELEASE:compile
| | \- aopalliance:aopalliance:jar:1.0:compile
| \- org.springframework:spring-tx:jar:3.0.4.RELEASE:compile
+- org.apache.camel:camel-ftp:jar:2.5.0:compile
| +- com.jcraft:jsch:jar:0.1.43:compile
| \- commons-net:commons-net:jar:2.0:compile
\- log4j:log4j:jar:1.2.16:compile

Here, you can see that Maven is adding 18 JARs to your project’s compile-time class-
path, even though you only added camel-core, camel-spring, camel-ftp, and log4j.
Some dependencies are coming from several levels deep in the dependency tree.

Surviving without Maven
As you can imagine, adding all these dependencies to your project without the help
of Maven would be a bit tedious. If you absolutely must use an alternative build sys-
tem, you can still use Maven to get the required dependencies for you by following
these steps:

1 Download the POM file of the artifact you want. For camel-ftp, this would be
http://repo2.maven.org/maven2/org/apache/camel/camel-ftp/2.5.0/camel-
ftp-2.5.0.pom.

2 Run mvn -f camel-ftp-2.5.0.pom dependency:copy-dependencies
3 The dependencies for camel-ftp will be located in the target/dependency direc-

tory. You can now use these in whatever build system you’re using.

 www.it-ebooks.info

http://repo2.maven.org/maven2/org/apache/camel/camel-ftp/2.5.0/camel-ftp-2.5.0.pom
http://repo2.maven.org/maven2/org/apache/camel/camel-ftp/2.5.0/camel-ftp-2.5.0.pom
http://www.it-ebooks.info/

366 CHAPTER 11 Developing Camel projects

You now know all you need to develop Camel projects using Maven. To make you an
even more productive Camel developer, let’s now look at how you can develop Camel
applications inside an IDE, like Eclipse.

11.2 Using Camel in Eclipse
We haven’t mentioned IDEs much so far, mostly because you don’t need an IDE to use
Camel. Certainly, though, you can’t match the power and ease of use an IDE gives you.
From a Camel point of view, having the Java or Spring DSLs autocomplete for you
makes route development a whole lot easier. The common Java debugging facilities
and other tools will further improve your experience.

 Because Maven is used as the primary build tool for Camel projects, we’ll show you
how to use Maven tools to load up your Camel project in Eclipse. In this section, we’ll
demonstrate two ways of getting Camel projects into Eclipse: by using the Maven
Eclipse plugin and by using the m2eclipse plugin for Eclipse.

11.2.1 Using the Maven Eclipse plugin

The Maven Eclipse plugin can take any Maven-based project and generate an Eclipse
project. It allows you to get a Camel project into Eclipse as a plain Java project. It
offers a quick way to start Camel development, but you don’t get any frills beyond
what a regular Java project would give you.

 You can run this plugin on a project by executing the following command in the
project’s root directory:

mvn eclipse:eclipse

After this command completes, an Eclipse project will be available, having all the
dependencies you listed in your POM as entries in the project’s build path.

 If you run this command on the order-router project you created in the previous
section, a directory listing will show that you now have three extra files and an addi-
tional directory:

order-router/
|-- .classpath
|-- .project
|-- .settings
| `-- org.eclipse.jdt.core.prefs
|-- ReadMe.txt
|-- pom.xml
|-- src

(continued)
If you absolutely can’t use Maven but would still like to use Maven repos, Apache Ivy
(http://ant.apache.org/ivy) is a great dependency management framework for Apache
Ant that can download from Maven repos. Other than that, you will have to download
the JARs yourself from the Maven central repo.

 www.it-ebooks.info

http://ant.apache.org/ivy
http://www.it-ebooks.info/

367Using Camel in Eclipse

These are files that Eclipse interprets as a Java project. The next step after this is to
import the project into Eclipse. This is an easy task in Eclipse:

1 Select File > Import > General > Existing Projects into Workspace.
2 In the wizard, select the directory where the project is located, and then select

the project name (chapter11-order-router, in this case) from the list. The wiz-
ard dialog box should look something like what’s shown in figure 11.3.

3 Click Finish, and your project will be imported into your Eclipse workspace.

If you take a look at the Package Explorer view now, you should see the chapter11-
order-router project listed. Figure 11.4 shows an expanded view of what is inside the
project. It looks mostly like what you saw from the previous directory listing, but now it
includes a list of project dependencies.

Figure 11.3 Final screen of wizard to import the chapter11-order-router project into Eclipse

 www.it-ebooks.info

http://www.it-ebooks.info/

368 CHAPTER 11 Developing Camel projects

Listed to the right of each project
dependency in figure 11.4 are details of
where the artifact exists on your local
disk. This information contains a vari-
able named M2_REPO, which points to
your local Maven repository. This is the
area where Maven caches downloaded
dependencies so you don’t download
these things for every build. This vari-
able needs to be defined for Eclipse to
access your project’s dependencies. To
specify this, follow these steps:

1 Open up the Preferences dialog
box by selecting Window > Pref-
erences.

2 Go to Java > Build Path > Class-
path Variables.

3 In the Classpath Variables pane,
you need to add a variable named
M2_REPO with a path pointing to
the directory of your local Maven
repo (recall that this is Maven’s
local cache of downloaded arti-
facts). For example, this could be
something like /home/janstey/
.m2/repository on Linux, C:\
Documents and Settings\janstey\
.m2\repository on Windows XP, or
C:\Users\janstey\.m2\repository
on Windows Vista/7.

From this point on, you can develop as
if this project were a regular Java proj-
ect in Eclipse. But keep in mind when adding new dependencies to your Maven POM
that they won’t be automatically added to the Eclipse project. The mvn
eclipse:eclipse command will have to be run again and the project will have to be
refreshed in the Package Explorer view.

11.2.2 Using the m2eclipse plugin
When using the Maven Eclipse plugin, you’ll find yourself often darting back and
forth between Eclipse and the command line. Eclipse will be where you develop, and
the command line will be where you build. If you decide instead to use the m2eclipse
plugin to develop your Camel project, you’ll experience a much nicer integration
with Maven and never have to leave the IDE.

Figure 11.4 Package Explorer view of the order-
router project

 www.it-ebooks.info

http://www.it-ebooks.info/

369Using Camel in Eclipse

To install m2eclipse into your Eclipse runtime, follow the latest instructions at http:
//m2eclipse.sonatype.org. During the writing of this book, we used m2eclipse ver-
sion 0.10.2.

 One thing that some developers will like right away is that you don’t have to leave
the IDE to run Maven command-line tools during development. You can even access
the Camel archetypes right from Eclipse. To demonstrate this feature, let’s recreate
the chapter11-order-router example we looked at previously.

 Click File > New > Maven Project to start up the New Maven Project wizard. Click
Next on the first screen, and you’ll be presented with a list of available archetypes, as
shown in figure 11.5. This list includes the Camel archetypes.

When to use m2eclipse
The m2eclipse plugin does add a bit of complexity to development, so in some cases
the simpler Maven Eclipse plugin is a better choice. For instance, if you already have
a Maven project created, and you know you probably won’t be adding new dependen-
cies, it’s much quicker to use the Maven Eclipse plugin. It will also require a lot less
system resources to develop the project in Eclipse.

M2eclipse has had performance issues in the past when you have many projects open
at the same time. The recommendation is to turn off automatic building for all projects.
This way you can control when builds get kicked off. New versions of the plugin are
improving performance all the time, so this may not be an issue in future builds.

Figure 11.5 The New Maven Project wizard allows you to generate a new Camel project right in Eclipse.

 www.it-ebooks.info

http://m2eclipse.sonatype.org
http://m2eclipse.sonatype.org
http://www.it-ebooks.info/

370 CHAPTER 11 Developing Camel projects

Using Camel archetypes in this way is equivalent to the technique you used back in
section 11.1.1. The m2eclipse plugin will also allow you to add Maven dependencies
without having to regenerate your project every time, which can be forgotten if you
use the Maven Eclipse plugin.

NOTE If you can only see version 2.2.0 of the Camel archetypes, you'll need to
perform a few additional steps. At the time of writing, an error at Maven's cen-
tral repository was preventing newer Camel archetypes from being shown in
m2eclipse. To get around this you'll need to do the following:

1 Click the menu item Window > Preferences and drill down to Maven >
Archetypes.

2 Click Add Remote Catalog and enter http://camelinaction.googlecode.
com/svn/trunk/misc/archetype-catalog.xml as the catalog file. Click OK
and close out the Preferences dialog box.

3 When creating a new project as in figure 11.5, make sure to select the cat-
alog you just added.

To run the order-router project with m2eclipse, right-click on the project in the Pack-
age Explorer and click Run As > Maven Build. This will bring up an Edit Configuration
dialog box where you can specify the Maven goals to use as well as any parameters. For
the order-router project, use the camel:run goal, as shown in figure 11.6.

Figure 11.6 Right-clicking on the order-router project in the Package Explorer and clicking Run As >
Maven Build will bring up the Edit Configuration dialog box shown here. The camel:run Maven goal
has been entered.

 www.it-ebooks.info

http://camelinaction.googlecode.com/svn/trunk/misc/archetype-catalog.xml
http://camelinaction.googlecode.com/svn/trunk/misc/archetype-catalog.xml
http://www.it-ebooks.info/

371Developing custom components

Clicking Run in this dialog box will execute the mvn camel:run command in Eclipse,
with console output showing in the Eclipse Console view.

 Now you can say that you know how to create Camel projects from the command
line and from Eclipse. You’ve also seen the two ways you can develop Camel applica-
tions in Eclipse, and the pitfalls of each. These projects only leverage what is built into
Camel itself. We’ll now move on to the more advanced topic of extending Camel
itself, by developing custom components.

11.3 Developing custom components
For most integration scenarios, there’s a Camel component available to help. Some-
times, though, there’s no Camel component available, and you need to bridge Camel
to another transport, API, data format, and so on. You can do this by creating your
own custom component.

 Creating a Camel component is relatively easy, which may be one of the reasons
that custom Camel components frequently show up on other community sites, in
addition to the official Camel distribution. In this section, we’ll look at how you can
create your own custom component for Camel.

11.3.1 Setting up a new Camel component

Just like a regular Camel project, you can start creating a new component by using a
Maven archetype to generate a skeleton project. To create a new Camel component
with camelinaction.component as the package name and custom as the artifactId,
run the following Maven command:

mvn archetype:create \
 -DarchetypeGroupId=org.apache.camel.archetypes \
 -DarchetypeArtifactId=camel-archetype-component \
 -DarchetypeVersion=2.5.0 \
 -DgroupId=camelinaction.component \
 -DartifactId=custom

This will generate a project structure like that shown here.

custom
|-- pom.xml
|-- ReadMe.txt
`-- src
|-- main
 | |-- java
 | | `-- camelinaction
 | | `-- component
 | | |-- HelloWorldComponent.java
 | | |-- HelloWorldConsumer.java
 | | |-- HelloWorldEndpoint.java
 | | `-- HelloWorldProducer.java
 | `-- resources
 | |-- log4j.properties

Listing 11.2 Layout of a project created by camel-archetype-component

B Component
implementation

 www.it-ebooks.info

http://www.it-ebooks.info/

372 CHAPTER 11 Developing Camel projects

 | `-- META-INF
 | `-- services
 | `-- org
 | `-- apache
 | `-- camel
 | `-- component
 | `-- helloworld
 `-- test
 `-- java
 `-- camelinaction
 `-- component
 `-- HelloWorldComponentTest.java

This is a fully functional “Hello World” demo component containing a simple con-
sumer that generates dummy messages at regular intervals, and a producer that prints
a message to the console. You can run the test case included with this sample compo-
nent by running the following Maven command:

mvn test

One of the first things to do when developing a custom component is to decide what
endpoint name to use. This name is what will be used to reference the custom compo-
nent in an endpoint URI. You need to make sure this name doesn’t conflict with a com-
ponent that already exists by checking the online component list (http://
camel.apache.org/components.html). For instance, to use mycomponent as the end-
point name, you need to rename the helloworld file C to mycomponent. For an expla-
nation on how this file is used to load Camel components, see section 7.1 in chapter 7.

 You should also rename the skeleton implementation classes B to better match
your new component name. The src directory now looks like this:

src
`-- main
 |-- java
 | `-- camelinaction
 | `-- component
 | |-- MyComponent.java
 | |-- MyConsumer.java
 | |-- MyEndpoint.java
 | `-- MyProducer.java
 | `-- resources
 | |-- log4j.properties
 | `-- META-INF
 | `-- services
 | `-- org
 | `-- apache
 | `-- camel
 | `-- component
 | `-- mycomponent
 `-- test
 `-- java
 `-- camelinaction
 `-- component
 `-- MyComponentTest.java

File that maps
URI scheme to
component class

C

Test case for
component

 www.it-ebooks.info

http://camel.apache.org/components.html
http://camel.apache.org/components.html
http://www.it-ebooks.info/

373Developing custom components

This project, with the appropriate renaming, is available in the chapter11/custom
directory of the book’s source.

 When you change the component class name, to MyComponent, for example, you
also need to modify the mycomponent file to point to this new class. It should now
contain a line like this:

class=camelinaction.component.MyComponent

Your component can now be used in a Camel endpoint URI. But you shouldn’t stop
here. To understand how these classes make up a functioning component, you need
to understand the implementation details of each.

11.3.2 Diving into the implementation
The four classes that make up a component in Camel
have been mentioned several times before. To recap, it
all starts with the Component class, which then creates an
Endpoint. An Endpoint, in turn, can create Producers
and Consumers. This is illustrated in figure 11.7.

 We’ll first look into the Component and Endpoint
implementations of the custom MyComponent
component.

COMPONENT AND ENDPOINT CLASSES

The first entry point into a Camel component is the
class implementing the Component interface. A compo-
nent’s main job is to be a factory of new endpoints. It
does a bit more than this under the hood, but typically
you don’t have to worry about these details because
they’re contained in the DefaultComponent class.

 The component class generated by the camel-archetype-component archetype
extends this default class and forms a pretty simple and typical component class struc-
ture, as shown here:

public class MyComponent extends DefaultComponent {

 protected Endpoint createEndpoint(
 String uri, String remaining,
 Map<String, Object> parameters) throws Exception {
 Endpoint endpoint = new MyEndpoint(uri, this);
 setProperties(endpoint, parameters);
 return endpoint;
 }
}

This class is pretty straightforward, except perhaps for the way in which properties are
set with the setProperties method. This method takes in the properties set in the
endpoint URI string, and for each will invoke a setter method on the endpoint
through reflection. For instance, say you used the following endpoint URI:

mycomponent:endpointName?prop1=value1&prop2=value2

Endpoint

Component

Consumer Producer

Creates

Creates Creates

Figure 11.7 A Component
creates an Endpoint, which
then creates Producers and
Consumers.

 www.it-ebooks.info

http://www.it-ebooks.info/

374 CHAPTER 11 Developing Camel projects

The setProperties method, in this case, would try to invoke setProp1("value1")
and setProp2("value2") on the endpoint. Camel will take care of converting those
values to the appropriate type.

 The endpoint, itself, is also a relatively simple class, as shown here.

public class MyEndpoint extends DefaultEndpoint {
 public MyEndpoint() {
 }

 public MyEndpoint(String uri, MyComponent component) {
 super(uri, component);
 }

 public MyEndpoint(String endpointUri) {
 super(endpointUri);
 }

 public Producer createProducer() throws Exception {
 return new MyProducer(this);
 }

 public Consumer createConsumer(Processor processor) throws Exception {
 return new MyConsumer(this, processor);
 }

 public boolean isSingleton() {
 return true;
 }

}

The first thing you’ll notice is that you’re deriving from another default implementa-
tion class from camel-core B. In this case, you’re extending the DefaultEndpoint
class. It’s very common when creating a new Camel component to have the Compo-
nent, Endpoint, Consumer, and Producer all derive from default implementations in
camel-core. This isn’t necessary, but it makes new component development much eas-
ier, and you always benefit from the latest improvements to the default implementa-
tions without having to code them yourself.

 As we mentioned in chapter 7, the Endpoint class acts as a factory for both con-
sumers and producers. In this example, you’re creating both producers C and con-
sumers D, which means that this endpoint can be used in a to or from Java DSL
method. Sometimes you may need to create a component that only has a producer or
consumer, not both. In that case, it’s recommended that you throw an exception, so
users know that it isn’t supported:

public Producer createProducer() throws Exception {
 throw new UnsupportedOperationException(
 "You cannot send messages to this endpoint:" + getEndpointUri());
}

Listing 11.3 Custom Camel endpoint—MyEndpoint

Extends from
 default endpoint classB

Creates new
producer

C

Creates new event-
driven consumerD

 www.it-ebooks.info

http://www.it-ebooks.info/

375Developing custom components

The real bulk of most components is in the producer and consumer. The Component
and Endpoint classes are mostly designed to fit the component into Camel. In the pro-
ducers and consumers, which we’ll look at next, you have to interface with the remote
APIs or marshal data to a particular transport.

PRODUCERS AND CONSUMERS

The producer and consumer are where you get to implement how messages will get
on or off a particular transport—in effect, bridging Camel to something else. This is
illustrated in figure 11.8.

 In your skeleton component project that was generated from an archetype, a pro-
ducer and consumer are implemented and ready to go. These were instantiated by
the MyEndpoint class in listing 11.3. The producer, named MyProducer, is shown in
this listing.

public class MyProducer extends DefaultProducer {
 private static final transient Log LOG =
 ➥LogFactory.getLog(MyProducer.class);
 private MyEndpoint endpoint;

 public MyProducer(MyEndpoint endpoint) {
 super(endpoint);
 this.endpoint = endpoint;
 }

 public void process(Exchange exchange)
 ➥throws Exception {
 System.out.println(exchange.getIn().getBody());
 }
}

Like the component and endpoint classes, the producer also extends from a default
implementation class from camel-core called DefaultProducer B. The Producer
interface extends from the Processor interface, so you use a process method C. As
you can probably guess, a producer is called in the same way a processor is, so the
entry point into the producer is the process method.

Listing 11.4 Custom Camel producer—MyProducer

...

Route

Consumer Producer

FTP server

JMS queue
Processor Processor

Figure 11.8 A simplified view of a route where the consumer and producer
handle interfacing with external systems. Consumers take messages from an
external system into Camel, and producers send messages to external systems.

Extends from
default producer
classB

C Serves as
entry point
to producer

Prints
message bodyD

 www.it-ebooks.info

http://www.it-ebooks.info/

376 CHAPTER 11 Developing Camel projects

The sample component that was created automatically has a very basic producer—it
just prints the body of the incoming message to the screen D. If you were sending
to an external system instead of the screen, you’d have to handle a lot more here,
such as connecting to a remote system and marshaling data. In the case of data mar-
shaling, it’s often a good idea to implement this using a custom TypeConverter, as
described in chapter 3, which makes the converters available to other parts of your
Camel application.

 You can see how messages could be sent out of a route, but how do they get into
a route? Consumers, like the MyConsumer class generated in your custom compo-
nent project, get the messages into a route. The MyConsumer class is shown in list-
ing 11.5.

public class MyConsumer extends ScheduledPollConsumer {
 private final MyEndpoint endpoint;

 public MyConsumer(MyEndpoint endpoint, Processor processor) {
 super(endpoint, processor);
 this.endpoint = endpoint;
 }

 @Override
 protected void poll() throws Exception {
 Exchange exchange = endpoint.createExchange();

 Date now = new Date();
 exchange.getIn().setBody("Hello World! The time is " + now);

 try {
 getProcessor().process(exchange);
 } finally {
 if (exchange.getException() != null) {
 getExceptionHandler().handleException(
 "Error processing exchange", exchange,
 exchange.getException());
 }
 }
 }
}

The Consumer interface, itself, doesn’t impose many restrictions or give any guide-
lines as to how a consumer should behave, but the DefaultConsumer class does, so
it’s helpful to extend from this class when implementing your own consumer. In list-
ing 11.5, you extend from a subclass of DefaultConsumer, the ScheduledPoll-
Consumer B. This consumer has a timer thread that will invoke the poll method
every 500 milliseconds C.

TIP See the discussion of the Timer and Quartz components in chapter 7 for
more information on creating routes that need to operate on a schedule.

Listing 11.5 Custom Camel consumer—MyConsumer

Extends from
built-in consumerB

Is called every
500 ms

C

Sends to next
processor in route

 www.it-ebooks.info

http://www.it-ebooks.info/

377Developing interceptors

Typically, a consumer will either poll a resource for a message or set up an event-
driven structure for accepting messages from remote sources. In this example, you
have no remote resource, so you can create an empty exchange and populate it with a
“Hello World” message. A real consumer still would need to do this.

 A common pattern for consumers is something like this:

Exchange exchange = endpoint.createExchange();
// populate exchange with data
getProcessor().process(exchange);

Here you create an empty exchange, populate it with data, and send it to the next pro-
cessor in the route.

 At this point, you should have a good understanding of what is required to create a
new Camel component. You may even have a few ideas about what you’d like to bridge
Camel to next! Another useful way of extending Camel is by writing custom intercep-
tors. Let’s look at this next.

11.4 Developing interceptors
Interceptors in Camel are used to perform some action on a message as it goes in
and out of a processor. Features like the tracer discussed in chapter 12 use a custom
interceptor to trace each message going in and out of processors. We also talked
about interceptors back in chapter 6, where you used them to simulate errors occur-
ring on a particular endpoint. Convenience methods built into Camel’s DSL were
used in that case.

 In this section, we’ll look at how you can create your own custom interceptor.

11.4.1 Creating an InterceptStrategy

To create a new interceptor, you need to use the InterceptStrategy interface. By
implementing a custom InterceptStrategy, you gain complete control over what the
interceptor does.

 The InterceptStrategy interface only has a single method:

Processor wrapProcessorInInterceptors(
 CamelContext context,
 ProcessorDefinition<?> definition,
 Processor target,
 Processor nextTarget) throws Exception;

This method essentially wraps each processor within a route with another processor.
This wrapper processor will contain the logic you want for your interceptor.

 In Camel, InterceptStrategy classes are used to implement a delay after each
node in a route, to trace messages as they flow through a route, and to record perfor-
mance metrics. Figure 11.9 shows a conceptual view of how an InterceptStrategy
modifies a route.

 Every processor in the route shown in figure 11.9 is wrapped by an interceptor pro-
cessor. This work of modifying the route is done automatically when you add the

 www.it-ebooks.info

http://www.it-ebooks.info/

378 CHAPTER 11 Developing Camel projects

InterceptStrategy to the CamelContext. You can add an InterceptStrategy
directly to the CamelContext with a single method call:

context.addInterceptStrategy(new MyInterceptor());

Adding an InterceptStrategy in Spring is also easy. You just add one as a bean, and
Camel will automatically find it on startup and add it to the CamelContext. This is all
you would need to write:

<bean id="myInterceptor" class="camelinaction.MyInterceptor"/>

What happens if you define more than one strategy? Figure 11.10 shows that in this
case Camel will stack the interceptors used for each real processor.

 You may be wondering what an actual interceptor looks like. In the simplest case,
you could just log an entry message before the processor and an exit message after the
processor has completed. This is demonstrated in listing 11.6.

Consumer

Producer Processor

Interceptor
processor

Consumer Producer Processor

Interceptor
processor

Apply InterceptStrategy

Figure 11.9 Applying an
InterceptStrategy to a route
essentially wraps each processor
with an interceptor processor.

Consumer

Producer Processor

Interceptor
processor 1

Interceptor
processor 1

Interceptor
processor 2

Interceptor
processor 2

Figure 11.10 Interceptors are
stackable, meaning the more
InterceptStrategy classes you
add to the CamelContext, the more
interceptor processors will be added
before each real processor is executed.

 www.it-ebooks.info

http://www.it-ebooks.info/

379Developing interceptors

public class MyInterceptor implements InterceptStrategy {
 private static final transient Log log
 = LogFactory.getLog(MyInterceptor.class);

 public Processor wrapProcessorInInterceptors(
 CamelContext context,
 ProcessorDefinition<?> definition,
 final Processor target,
 Processor nextTarget)
 throws Exception {
 return new DelegateAsyncProcessor(new Processor() {

 public void process(Exchange exchange) throws Exception {
 log.info("Entering the processor...");
 target.process(exchange);
 log.info("Exiting the processor...");
 }
 });
 }

}

The wrapProcessorInInterceptors method gives the interceptor developer plenty of
information to help create a custom interceptor. First off, you have access to the entire
CamelContext, which lets you access many different services, like the bean registry or
the many type converters. Next, and most importantly, you have access to the target pro-
cessor C that you need to call, and its DSL object equivalent B. Why was the DSL object
provided? The DSL object provides richer description details than the runtime proces-
sor, so if your interceptor is, for example, graphically reporting the structure of a Camel
route as it’s being used, more detailed descriptions of each node may be helpful.

 It isn’t enforced by the interface, but interceptors are supposed to call the target
processor D when they have done their work. After the target processor is finished,
the interceptor can do some more work before returning to the next node in the
route. In this way, an interceptor allows you to do operations before and after each
processor in a route.

 Sometimes, you don’t want to attach an interceptor to a particular processor. In
this case, instead of always returning a wrapped processor, you could return the target
processor. This would leave the target processor out of the interceptor scheme.

 For example, you could ignore wireTap nodes from the interceptor scheme by
using information from the processor’s model class:

if ("wireTap".equals(definition.getShortName())) {
 return target;
} else {
 return new Processor() {
 ...
 };
}

Listing 11.6 A custom interceptor

The target
processor model

B

The target
processorC

Call into the
target processorD

 www.it-ebooks.info

http://www.it-ebooks.info/

380 CHAPTER 11 Developing Camel projects

This checks the name of the processor through its DSL object, and if it’s a wire tap, it
doesn’t wrap it with an interceptor.

 You’ve now seen how to develop custom Camel components and interceptors.
Let’s step outside the Java world and see how Camel can be used from other
languages.

11.5 Using alternative languages
Throughout this book, we’ve focused on Camel’s two main methods of specifying rout-
ing rules: the Java DSL and Spring XML configuration. We did this to focus on the con-
cepts themselves, rather than how they end up being implemented, but Camel does
provide advanced users with a number of options for creating routes in other JVM lan-
guages. For instance, you can create routes in the Groovy, Scala, and Ruby languages.

 The Scala DSL is probably the most mature of the three, having a custom DSL cre-
ated to take advantage of language features in Scala. The Groovy DSL is well-used too.
In fact, another open source project called the Open eHealth Integration Platform
(IPF) is a Groovy-based project built on top of Apache Camel.

 In this section, we’ll take a look at how you can create Camel applications using
Scala. We’ll first look at some of the constructs you can use to create a route in Scala,
and then we’ll see how to add these routes to a CamelContext.

11.5.1 The Scala DSL

As you may have assumed, when using the Scala DSL you’re coding in a real program-
ming language—Scala. In this way it’s more comparable to the Java DSL than Spring
XML configuration.

 Recall the following route from section 11.1.1:

from("ftp://rider@localhost:21000/order?password=secret")
 .to("jms:incomingOrders");

Because this is the Java DSL, it also must be enclosed within a RouteBuilder class as
follows:

class MyRouteBuilder extends RouteBuilder {
 public void configure() throws Exception {
 from("ftp://rider@localhost:21000/order?password=secret")
 .to("jms:incomingOrders");
 }
}

This should look pretty familiar to you now—it’s about the simplest Camel route you
can get: consuming messages from one endpoint and producing them into another
endpoint.

 Now let’s see what the Scala version of this route looks like:

class MyRouteBuilder extends RouteBuilder {
 "ftp://rider@localhost:21000/order?password=secret"
 ➥to "jms:incomingOrders"
}

 www.it-ebooks.info

http://www.it-ebooks.info/

381Using alternative languages

It starts off mostly the same as the Java DSL version, with a MyRouteBuilder class
extending from RouteBuilder. In this case, RouteBuilder is in the org.apache.camel.
scala.builder package.

You may notice that the Scala DSL route is a lot less verbose. One of the aims of the
Scala DSL was to eliminate text that didn’t add anything to the function of a route. In
the Java DSL, there’s a lot of text used to conform to the Java language. Scala gives you
a lot more freedom in creating your own operators and relaxes requirements for
parentheses, dots, and semicolons.

 In the previous one-line route, you have very few extraneous characters: there are
two endpoint URI strings and a to operator. The from method used in other Camel
DSLs isn’t needed here; simply specifying an endpoint URI is enough to start a route.
The to operator can also be replaced with --> which may be more aesthetically pleas-
ing to you, but it has exactly the same function as to. There’s also no need to specify a
configure method as there is in the Java DSL. Route statements are entered directly
into the class body.

 Note that in order to break this simple route into several lines of code, you would
need to introduce a code block, as follows:

class MyRouteBuilder extends RouteBuilder {
 "ftp://rider@localhost:21000/order?password=secret" ==> {
 to("jms:incomingOrders")
 }
}

The ==> operator is used to start the code block, and the braces indicate the start and
end of the block. These code blocks can be nested arbitrarily. In this way, Camel will
know how to end a route’s construction and add it into the CamelContext. In the
Scala DSL, a route ends after either a code line ends in the simple case, or when the
code block ends if you’re using code blocks.

Learn more about Scala
This isn’t a book about Scala, so many assumptions are made in this section about
your knowledge of Scala. Because Scala is quite different from Java, it’s recommend-
ed that you learn about the language fundamentals before trying to use the Scala DSL
in Camel. Otherwise, you may get frustrated by language features that are very differ-
ent from Java.

The main online resource for Scala is http://www.scala-lang.org, and if you want in-
depth information about Scala, we recommend the book coauthored by the language’s
creator, Programming in Scala by Martin Odersky, Lex Spoon, and Bill Venners.

Another must-have for Scala DSL development is a plugin for your IDE so you can
avail yourself of code completion. The Scala IDE for Eclipse is available at http://
www.scala-ide.org.

 www.it-ebooks.info

http://www.scala-lang.org
http://www.scala-ide.org
http://www.scala-ide.org
http://www.it-ebooks.info/

382 CHAPTER 11 Developing Camel projects

11.5.2 Adding Scala routes to the CamelContext

Scala routes are added to the CamelContext in much the same way as Java DSL routes
are. We discussed the different approaches to this in chapter 2. The reason you can use
the same approach is that Scala ultimately compiles down to Java bytecode, so when the
CamelContext is searching for a RoutesBuilder in a package you specified, it doesn’t
care whether it originated from Java or Scala. For example, to load a Scala-based route
into a Spring CamelContext, you would just define the CamelContext like this:

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <package>camelinaction</package>
</camelContext>

This will pick up all Scala routes in the camelinaction package—exactly the same as
for Java routes. An example of this is provided in the chapter11/scala-router directory
of the book’s source. To run this example, execute the following Maven command:

mvn camel:run

There may be times when you want to mix Java and Scala within a single project. For
instance, you may already have a working Java-based system using Camel, and you
want to add a new route using the Scala DSL. What do you do in this case?

11.5.3 Mixing Java and Scala

As we’ve said before, both Java and Scala compile down to Java bytecode, so it should
be easy to mix the two. It mostly involves setting up your Maven project to compile
both types of sources and put the resultant bytecode class files in the same location.

 Suppose you have a project that has Java and Scala source files as follows:

scala-router-javacontext
|-- pom.xml
`-- src
 `-- main
 |-- java
 | `-- camelinaction
 | `-- Main.java
 `-- scala
 `-- camelinaction
 `-- MyRouteBuilder.scala

The Main class creates a new CamelContext and adds the Scala RouteBuilder
MyRouteBuilder to the context as follows:

The Scala DSL and EIPs
The Scala DSL doesn’t support all the EIPs that are available in the Java and Spring
DSLs, but it does support most of them. EIPs that don’t have a Scala DSL equivalent
can be accessed from the Java DSL. You can find examples of what the EIPs look like
in Scala at the Apache Camel website: http://camel.apache.org/scala-dsl-eip.html.

 www.it-ebooks.info

http://camel.apache.org/scala-dsl-eip.html
http://www.it-ebooks.info/

383Using alternative languages

public class Main {
 public static void main(String args[]) throws Exception {
 CamelContext context = new DefaultCamelContext();
 context.addRoutes(new MyRouteBuilder());
 ...

Both Main and MyRouteBuilder are in the same package, so this should all work
nicely, except that it doesn’t. If you try to run the Main class now, you’ll get a compila-
tion error saying MyRouteBuilder can’t be found. It can’t be found because it hasn’t
been compiled yet!

 By default, Maven will compile all Java sources in src/main/java, but it has no such
settings in place for Scala. You can get around this by configuring the maven-scala-
plugin as shown here.

<plugin>
 <groupId>org.scala-tools</groupId>
 <artifactId>maven-scala-plugin</artifactId>
 <version>2.9.1</version>
 <executions>
 <execution>
 <id>scala-compile-first</id>
 <phase>process-resources</phase>
 <goals>
 <goal>add-source</goal>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
</plugin>
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <executions>
 <execution>
 <phase>compile</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
</plugin>

You can configure the maven-scala-plugin to compile the Scala source in the process-
resources phase of your Maven build B. The process-resources phase happens
just before the compile phase C, which is where the Java source is compiled. You
didn’t specify where your Scala source was, so the maven-scala-plugin used the default
location of src/main/scala. Now all class files are saved into the target/classes folder
and so will be on the same classpath when you run your application.

Listing 11.7 Configuring compilation of both Java and Scala sources

Compiles Scala
sourceB

Compiles Java
sourceC

 www.it-ebooks.info

http://www.it-ebooks.info/

384 CHAPTER 11 Developing Camel projects

 The source for this example is in chapter11/scala-router-javacontext of the book’s
source. To run the example, use the following Maven command:

mvn compile exec:java

You should now know some of the concepts needed to create routes in the Scala DSL.
The next step would be to try out your own Scala route by either copying the example
from this book, or by using the camel-archetype-scala archetype to create your own
Scala DSL project. This archetype was mentioned in table 11.1, earlier in the chapter.

11.6 Summary and best practices
Knowing how to create Camel projects is very important, and you may have wondered
why we chose to discuss this so late in the book. We felt it was best to focus on the core
concepts first and worry about project setup details later. Also, you should now have a
better idea of what cool Camel applications you can create, having read about the fea-
tures first. At this point, though, you should be well-equipped to start your own Camel
application and make it do useful work.

 Before we move on, there are a few key ideas that you should take away from this
chapter:

■ The easiest way to create Camel applications is with Maven archetypes. Nothing is worse
than having to type out a bunch of boilerplate code for new projects. The
Maven archetypes that are provided by Camel will get you started much faster.

■ The easiest way to manage Camel library dependencies is with Maven. Camel is just a
Java framework, so you can use whatever build system you like to develop your
Camel projects. Using Maven will eliminate many of the hassles of tracking
down JAR files from remote repos, letting you focus more on your business code
than the library dependencies.

■ It’s easy to load up a Maven-based Camel project in Eclipse. Whether you use the
maven-eclipse-plugin or m2eclipse, importing Camel projects is easy.

■ If you find no component in Camel for your use case, create your own. Camel allows you
to write and load up your own custom components easily. There’s even a Maven
archetype for starting a custom component project.

■ Use interceptors to inject processing around nodes in a route. It’s true, Camel intercep-
tors are an advanced topic. They give you the additional power to control or
monitor what’s happening inside a route.

■ You don’t have to write routes in Java or Spring if you don’t want to. Camel also pro-
vides DSLs in Scala and Groovy.

Next on the agenda is how to monitor and manage your Camel application. Then
we’ll look at how to deploy to a production environment.

 www.it-ebooks.info

http://www.it-ebooks.info/

385

Management
 and monitoring

Applications in production are often critical for businesses. That’s especially true
for applications that sit at an intermediate tier and integrate all the business appli-
cations and partners—Camel is often in this role.

 To help ensure high availability, your organization must monitor its production
applications. By doing so, you can gain important insight into the applications and
foresee trends that otherwise could cause business processes to suffer. In addition,
monitoring also helps with related issues, such as operations reporting, service level
agreement (SLA) enforcement, and audit trails.

 It’s also vital for the operations staff to be able to fully manage the applications.
For example, if an incident occurs, staff may need to stop parts of the application

This chapter covers
■ Monitoring Camel instances
■ Tracking application activities
■ Using notifications
■ Managing Camel applications
■ Managing custom components

 www.it-ebooks.info

http://www.it-ebooks.info/

386 CHAPTER 12 Management and monitoring

from running while the incident investigations occur. You’ll also need management
capabilities to carry out scheduled maintenance or upgrades of your applications.

 Management and monitoring are often two sides of the same coin. For example,
management tooling includes monitoring capabilities in a single coherent dashboard,
allowing a full overview for the operations staff.

 In this chapter, we’ll review different strategies for monitoring your Camel applica-
tions. We’ll first cover the most common approach, which is to check on the health of
those applications. Then we’ll look at the options for tracking activity and managing
those Camel applications.

12.1 Monitoring Camel
It’s standard practice to monitor systems with periodic health checks.

 For people, checking one’s health involves measuring parameters at regular inter-
vals, such as pulse, temperature, and blood pressure. By checking over a period of
time, you not only know the current values but also trends, such as whether the tem-
perature is rising. All together, these data give insight into the health of the person.

 For a software system, you can gather system-level data such as CPU load, memory
usage, and disk usage. You can also collect application-level data, such as message
load, response time, and many other parameters. This data tells you about the health
of the system.

 Checks on the health of Camel applications can occur at three levels:

■ Network level—This is the most basic level, where you check that the network
connectivity is working.

■ JVM level—At this level, you check the JVM that hosts the Camel application. The
JVM exposes a standard set of data using the JMX technology.

■ Application level—Here you check the Camel application using JMX or other
techniques.

To perform these checks, you need different tools and technologies. The Simple Net-
work Management Protocol (SNMP) enables both JVM and system-level checks. Java
Management Extensions (JMX) is another technology that offers similar capabilities
to SNMP. You might use a mix of both: SNMP is older and more mature and is often
used in large system-management tools such as IBM Tivoli, HP OpenView, and Nagios.
JMX, on the other hand, is a pure Java standard and is used by Fuse HQ and Hyperic.

 In the following sections, we’ll go over the three levels and look at some
approaches you can use for performing automatic and periodic health checks on your
Camel applications.

12.1.1 Checking health at the network level
The most basic health check you can do is to check whether a system is alive. You may
be familiar with the ping command, which you use to send a ping request to a remote
host. Camel doesn’t provide a ping service out of the box, but creating such a service
is easy. The ping service only reveals whether Camel is running or not, but that will do
for a basic check.

 www.it-ebooks.info

http://www.it-ebooks.info/

387Monitoring Camel

Suppose you have been asked to create such a ping service for Rider Auto Parts. The
service is to be integrated with the existing management tools. You choose to expose
the ping service over HTTP, which is a universal protocol that the management tool
easily can leverage. The scenario is illustrated in figure 12.1.

 Implementing the service in Camel is easy using the Jetty component. All you have
to do is expose a route that returns the response, as follows:

from("jetty:http//0.0.0.0:8080/ping").transform(constant("PONG\n"));

When the service is running, you can invoke an HTTP GET, which should return the
PONG response.

 You can try this on your own with the book’s source code. In the chapter12/health
directory, invoke this Maven goal:

mvn compile exec:java -PPingService

Then invoke the HTTP GET using either a web browser or the curl command:

curl http://0.0.0.0:8080/ping
PONG

The ping service can be enhanced to leverage the JVM and Camel APIs to gather addi-
tional data about the state of the internals of your application.

 Another use for the ping service is when using a load balancer in front of multiple
instances of Camel applications. This is often done to address high availability, as
shown in figure 12.2. The load balancer will call the ping service to assess whether the
particular Camel instance is ready for regular service calls.

Ping service

Camel

Monitoring tool HTTP
Figure 12.1 A monitoring
tool monitors Camel with a
ping service by sending
periodic HTTP GET requests.

Ping
service

Other services

Camel

Ping
service

Other services

Camel

Load balancer

Health check

Service calls

Figure 12.2 The load balancer uses health
checks to ensure connectivity before it lets
the service calls pass through.

 www.it-ebooks.info

http://www.it-ebooks.info/

388 CHAPTER 12 Management and monitoring

Network-level checks offer a quick and coarse assessment of the system’s state of
health. Let’s move on to the JVM level, where you monitor Camel using JMX.

12.1.2 Checking health at the JVM level

The Simple Network Management Protocol (SNMP) is a standard for monitoring net-
work-attached devices. It’s traditionally used to monitor the health of servers at the OS
level by checking parameters such as CPU load, disk space, memory usage, and net-
work traffic, but it can also be used to check parameters at the application level, such
as the JVM.

 Java has a built-in SNMP agent that exposes general information, such as memory
and thread usage, and that issues notifications on low memory conditions. This allows
you to use existing SNMP-aware tooling to monitor the JVM where Camel is running.

 There is also a wide range of commercial and open source monitoring tools that use
SNMP. Some are simpler and have a shell interface, and others have a powerful GUI. You
may work in an organization that already uses a few selected monitoring tools, so make
sure these tools can be used to monitor your Camel applications as well.

 The SNMP agent in the JVM is limited to only exposing data at the JVM level; it can’t
be used to gather information about the Java applications that are running. JMX, in
contrast, is capable of monitoring and managing both the JVM and the applications
running on it.

 In the next section, we’ll look at how you can use JMX to monitor Camel at the JVM
and application levels.

12.1.3 Checking health at the application level

Camel provides JMX monitoring and management out of the box in the form of an
agent that leverages the JMX technology. This is illustrated in figure 12.3.

MBean
server

Camel

JVM

MBean
server

Camel

JVM

JConsole

JMX over RMI

JMX
agent

JMX
agent

Figure 12.3 JConsole connects remotely to an
MBean server inside the JVM, which opens up a
world of in-depth information and management
possibilities for Camel instances.

 www.it-ebooks.info

http://www.it-ebooks.info/

389Using JMX with Camel

The JMX agent exposes remotely (over Remote Method Invocation) a wealth of stan-
dard details about the JVM, and some Camel information as well. The former is stan-
dard in the JDK, and the latter is provided by Camel. The most prominent feature the
Camel JMX agent offers is the ability to remotely control the lifecycle of any service in
Camel. For example, you can stop routes and later bring those routes into action
again. You can even shut down Camel itself.

 So how do you use JMX with Camel? Camel comes preconfigured with JMX
enabled at the developer level, by which we mean that Camel allows you to connect to
the JVM from the same localhost where the JVM is running. If you need to manage
Camel from a remote host, you’ll need to explicitly enable this in Camel.

 We think this is important to cover thoroughly, so we’ve devoted the next section
to this topic.

12.2 Using JMX with Camel
To use JMX with Camel, you need the following four Spring JAR files on the classpath:

■ spring-core.jar
■ spring-beans.jar
■ spring-context.jar
■ spring-aop.jar

These JARs are needed because Camel uses Spring JMX to expose its managed beans
to the JMX server. Using Spring JMX is much easier than using the low-level clumsy
JMX API. With Spring JMX, you can add a few JMX annotations in the Camel codebase
to expose the information you want to manage from JMX.

 When Camel starts, it logs at INFO level whether JMX is enabled or not:

2010-01-09 11:15:23,520 [viceMain.main()] INFO DefaultCamelContext
- JMX enabled. Using DefaultManagedLifecycleStrategy.

If those four Spring JARs are missing, Camel will report it as follows:

2010-01-09 11:44:07,960 [viceMain.main()] WARN DefaultCamelContext
- Could not find needed classes for JMX lifecycle strategy. Needed
class is in spring-context.jar using Spring 2.5 or newer
(spring-jmx.jar using Spring 2.0.x). NoClassDefFoundError:
org/springframework/jmx/export/metadata/JmxAttributeSource
2010-01-09 11:44:07,960 [viceMain.main()] WARN DefaultCamelContext
- Cannot use JMX. Fallback to using DefaultManagementStrategy.

With Maven, it’s easy to ensure that the JARs are included in the classpath—you just
add a dependency for the camel-spring component:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-spring</artifactId>
 <version>2.5.0</version>
</dependency>

 www.it-ebooks.info

http://www.it-ebooks.info/

390 CHAPTER 12 Management and monitoring

If you don’t want to use camel-spring, you can add the aforementioned four JAR files
individually.

 Now let’s look at how to use a simple management tool with Camel.

12.2.1 Using JConsole to manage Camel

Java provides a JMX tool named JConsole. You’ll use it to connect to a Camel instance
and see what information is available.

 First, you need to start a Camel instance. You can do this from the chapter12/
health directory using this Maven command:

mvn compile exec:java -PPingService

Then, from another shell, you can start JConsole by invoking jconsole.
 When JConsole starts, it displays a window with two radio buttons. The Local radio

button is used to connect to existing JVMs running on the same host. The Remote
radio button is used for remote management, which we’ll cover shortly. The Local
should already list a process, and you can click the Connect button to connect JCon-
sole to the Camel instance. Figure 12.4 shows the Camel MBeans (Management
Beans) that are visible from JConsole.

Figure 12.4 Camel registers numerous MBeans that expose internal details, such as usage
statistics and management operations.

 www.it-ebooks.info

http://www.it-ebooks.info/

391Using JMX with Camel

Camel registers many MBeans that expose statistics and operations for management.
Those MBeans are divided into nine categories, which are listed in table 12.1. Most
MBeans expose a set of standard information and operations, concerning things such
as lifecycle. We encourage you to spend a moment browsing the MBeans in JConsole
to see what information they provide.

When you need to monitor and manage a Camel instance from a remote computer,
you must enable remote management in Camel.

12.2.2 Using JConsole to remotely manage Camel
To be able to remotely manage Camel, you need to instruct Camel to register a JMX
connector. That can be done in the following three ways:

■ Using JVM properties
■ Configuring the ManagementAgent from Java
■ Configuring the JMX agent from Spring XML

We’ll go over each of these three methods in the following sections.

USING JVM PROPERTIES

By specifying the following JVM property on JVM startup, you can tell Camel to create
a JMX connector for remote management:

-Dorg.apache.camel.jmx.createRmiConnector=true

Table 12.1 Categories of exposed Camel MBeans

Category Description

Components Lists the components in use.

Consumers Lists all the input consumers for the Camel routes. Some consumers have additional
information and operations, such as the JMS, Timer, and File/FTP consumers.

Context Identifies the CamelContext itself. This is the MBean you need if you want to shut
down Camel.

Endpoints Lists the endpoints in use.

Errorhandlers Lists the error handlers in use. You can manage error handling at runtime, such as by
changing the number of redelivery attempts or the delay between redeliveries.

Routes Lists all the routes in use. Here you can obtain route statistics, such as the number of
messages completed, failed, and so on.

Services Lists miscellaneous services in use.

Threadpools Lists all the thread pools in use. Here you can obtain statistics about the number of
threads currently active and the maximum number of threads that have been active. You
can also adjust the core and maximum pool size of the thread pool.

Tracer Allows you to manage the Tracer service. The Tracer is a Camel-specific service that’s
used for tracing how messages are routed at runtime. We’ll cover the use of the Tracer
in detail in section 12.3.4.

 www.it-ebooks.info

http://www.it-ebooks.info/

392 CHAPTER 12 Management and monitoring

If you do this, Camel will log, at INFO level on startup, the JMX service URL that’s
needed to connect. It will look something like this:

2010-01-09 13:28:32,216 [main] INFO DefaultManagementAgent
- JMX Connector thread started and listening at:
service:jmx:rmi:///jndi/rmi://davsclaus.local:1099/jmxrmi/camel

To connect to a remote JMX agent, you can use the Remote radio button from JCon-
sole and enter the service URL listed in the log. By default, port 1099 is used, but this
can be configured using the org.apache.camel.jmx.rmiConnector.registryPort
JVM property.

CONFIGURING THE MANAGEMENTAGENT FROM JAVA

The org.apache.camel.management.DefaultManagementAgent class is provided by
Camel as the default JMX agent. You can configure it to allow remote connections as
shown here:

public class PingServiceMain {
 public static void main(String[] args) throws Exception {
 CamelContext context = new DefaultCamelContext();

 DefaultManagementAgent agent = new DefaultManagementAgent(context);
 agent.setCreateConnector(true);
 context.getManagementStrategy().setManagementAgent(agent);

 context.addRoutes(new PingService());
 context.start();
 }
}

All you need to do is create an instance of DefaultManagementAgent, configure it to
create a connector, and tell Camel to use it. The agent can also configure the registry
port by using the setRegistryPort method.

 But there is a simpler way: you can configure the settings directly using the Man-
agementAgent, as follows:

public class PingServiceMain {
 public static void main(String[] args) throws Exception {
 CamelContext context = new DefaultCamelContext();

 context.getManagementStrategy().getManagementAgent()
 .setCreateConnector(true);

 context.addRoutes(new PingService());
 context.start();
 }
}

CONFIGURING A JMX AGENT FROM SPRING XML

If you use Spring XML with Camel, configuring a JMX connector is even easier. All you
have to do is add <jmxAgent> in the <camelContext>, as shown here:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <jmxAgent id="agent" createConnector="true"/>
 ...
</camelContext>

 www.it-ebooks.info

http://www.it-ebooks.info/

393Tracking application activity

The <jmxAgent> also offers a registryPort attribute that you can use to set a specific
port number if the default port 1099 isn’t suitable.

 You may have noticed that this example doesn’t provide any credentials when con-
necting to a JMX agent. This may not be appropriate in production environments, so
you can enable authentication with JMX. The JMX documentation explains how to use
security with JMX: http://download.oracle.com/javase/6/docs/technotes/guides/
management/agent.html.

 Now that you’ve seen how to check the health of your applications, it’s time to
learn how to keep an eye on what your applications are doing.

12.3 Tracking application activity
Beyond monitoring an application’s health, you need to ensure it operates as
expected. For example, if an application starts malfunctioning or has stopped entirely,
it may harm business. There may also be business or security requirements to track
particular services for compliance and auditing.

 A Camel application used to integrate numerous systems may often be difficult to
track because of its complexity. It may have inputs using a wide range of transports, and
schedules that trigger more inputs as well. Routes may be dynamic if you’re using con-
tent-based routing to direct messages to different destinations. And there are errors
occurring at all levels related to validation, security, and transport. Confronted with
such complexity, how can you keep track of the behavior of your Camel applications?

 You do this by tracking the traces that various activities leave behind. By configuring
Camel to leave traces, you can get a fairly good insight into what’s going on, both in real
time and after the fact. Activity can be tracked using logs, whose verbosity can be con-
figured to your needs. Camel also offers a notification system that you can leverage.

 Let’s look at how you can use log files and notifications to track activities.

12.3.1 Using log files

Monitoring tools can be tailored to look for patterns, such as error messages in logs,
and they can use pattern matching to react appropriately, such as by raising an alert.
Log files have been around for decades, so any monitoring tool should have good sup-
port for efficient log file scanning. Even if this solution sounds basic, it’s a solution
used extensively in today’s IT world.

 Log files are read not only by monitoring tools but also by people, such as opera-
tions, support, or engineering staff. That puts a burden on both Camel and your
applications to produce enough evidence so that both humans and machines can
diagnose the issues reported.

 Camel offers four options for producing logs to track activities:

■ Using core logs—Camel logs various types of information in its core logs. Major
events and errors are reported by default.

■ Using custom logging—You can leverage Camel’s logging infrastructure to output
your own log entries. You can do this from different places, such as from the

 www.it-ebooks.info

http://download.oracle.com/javase/6/docs/technotes/guides/management/agent.html
http://download.oracle.com/javase/6/docs/technotes/guides/management/agent.html
http://www.it-ebooks.info/

394 CHAPTER 12 Management and monitoring

route using the log EIP or log component. You can also use regular logging
from Java code to output logs from your custom beans.

■ Using Tracer—Tracer is used for tracing how and when a message is routed in
Camel. Camel logs, at INFO level, each and every step a message takes. Tracer
offers a wealth of configuration options and features.

■ Using notifications—Camel emits notifications that you can use to track activities
in real time.

Let’s look at these options in more detail.

12.3.2 Using core logs

Camel emits a lot of information at DEBUG logging level and an incredible amount at
TRACE logging level. These levels are only appropriate for development, where the
core logs provide great details for the developers.

 In production, you’ll want to use INFO logging level, which generates a limited
amount of data. At this level, you won’t find information about activity for individual
messages—for that you need to use notifications or the Tracer, which we’ll cover in
section 12.3.4.

 The core logs in production usage usually only provide limited details for tracking
activity. Important lifecycle events such as the application being started or stopped are
logged, as are any errors that occur during routing.

12.3.3 Using custom logging

Custom logging is useful if you’re required to keep an audit log. With custom logging,
you’re in full control of what gets logged.

 In EIP terms, it’s the Wire Tap pattern that describes this problem. By tapping into
an existing route, you can tap messages to an audit channel. This audit channel,
which is often an internal queue (SEDA or VM transport), is then consumed by a dedi-
cated audit service, which takes care of logging the messages.

USING WIRE TAP FOR CUSTOM LOGGING

Let’s look at an example. At Rider Auto Parts, you’re required to log any incoming
orders. Figure 12.5 shows the situation where orders flowing in from CSV files are wire-
tapped to an audit service before moving on for further processing.

Wire tap

Audit
channel

SEDA
consumer

Audit
service

CSV to Order queue XML
Order
files

Camel

Figure 12.5 Using
a wire tap to tap
incoming files to an
audit service before
the file is translated
to XML and sent to
an order queue for
further processing

 www.it-ebooks.info

http://www.it-ebooks.info/

395Tracking application activity

Implementing the routes outlined in figure 12.5 in Camel is fairly straightforward:

public void configure() throws Exception {
 from("file://rider/orders")
 .wireTap("seda:audit")
 .bean(OrderCsvToXmlBean.class)
 .to("jms:queue:orders");

 from("seda:audit")
 .bean(AuditService.class, "auditFile");
}

The first route is routing incoming order files. These are wire-tapped to an internal
SEDA queue ("seda:audit") for further processing. The messages are then trans-
formed from CSV to XML using the OrderCsvToXmlBean bean before being sent to a
JMS queue.

 The second route is used for auditing. It consumes the tapped messages and pro-
cesses them with an AuditService bean, which follows:

public class AuditService {
 private Log LOG = LogFactory.getLog(AuditService.class);

 public void auditFile(String body) {
 String[] parts = body.split(",");
 String id = parts[0];
 String customerId = parts[1];
 String msg = "Customer " + customerId + " send order id " + id;
 LOG.info(msg);
 }
}

This implementation of the AuditService bean has been kept simple by logging the
audit messages using the Apache Commons Logging log kit. The actual logging is
done in the auditFile method.

 The source code for the book contains this example in the chapter12/logging
directory, which you can try using the following Maven goal:

mvn test -Dtest=AuditTest

USING THE CAMEL LOG COMPONENT

Camel provides a Log component that’s capable of logging the Camel Message using a
standard format at certain interesting points. To leverage the Log component, you
simply route a message to it, as follows:

public void configure() throws Exception {
 from("file://rider/orders")
 .to("log:input)
 .bean(OrderCsvToXmlBean.class)
 .to("log:asXml)
 .to("jms:queue:orders");
}

In this route, you use the Log component in two places. The first is to log the incom-
ing file, and the second is after the transformation.

 www.it-ebooks.info

http://www.it-ebooks.info/

396 CHAPTER 12 Management and monitoring

 You can try this example using the following Maven goal from the chapter12/
logging directory:

mvn test -Dtest=LogComponentTest

If you run the example, it will log the following:

2010-01-10 14:00:23,389 [: FileComponent] INFO incoming
- Exchange[BodyType:org.apache.camel.component.file.GenericFile,
Body:123,4444,20100110,222,1]
2010-01-10 14:00:23,399 [: FileComponent] INFO asXml
- Exchange[BodyType:String,
Body:<order><id>123/id><customerId>4444/customerId><date>20100110
</date><item><id>222</id><amount>1</amount></itemn></order>]

By default, the Log component will log the message body and its type at INFO logging
level. Notice that in the first log line, the type is GenericFile, which represents a
java.io.File in Camel. In the second log line, the type has been changed to String,
because the message was transformed to a String using the OrderCsvToXmlBean bean.

 You can customize what the Log component should log by using the many options
it supports. Consult the Camel Log documentation for the options (http://
camel.apache.org/log.html). For example, to make the messages less verbose, you can
disable showing the body type and limit the length of the message body being logged
by using the following configuration:

log:incoming?showBodyType=false&maxChars=40

That results in the following output:

2010-01-10 14:06:10,187 [: FileComponent] INFO incoming
- Exchange[Body:123,4444,20100110,222,1]
2010-01-10 14:06:10,197 [: FileComponent] INFO asXml
- Exchange[Body:<order><id>123/id><customerId>444...]

TIP The Log component has a showAll option to log everything from the
Exchange.

The Log component is used to log information from the Exchange, but what if you
want to log a message in a custom way? What you need is something like System.
out.println, so you can input whatever String message you like into the log. That’s
where the Log EIP comes in.

USING THE LOG EIP

The Log EIP is built into the Camel DSL. It allows you to log a human-readable mes-
sage from anywhere in a route, as if you were using System.out.println. It’s primar-
ily meant for developers, so they can quickly output a message to the log console. But
that doesn’t mean you can’t use it for other purposes as well.

 Suppose you want to log the filename you received as input. This is easy with the
Log EIP—all you have to do is pass in the message as a String:

public void configure() throws Exception {
 from("file://riders/orders")
 .log("We got incoming file ${file:name} containing: ${body}")
 .bean(OrderCsvToXmlBean.class)

 www.it-ebooks.info

http://camel.apache.org/log.html
http://camel.apache.org/log.html
http://www.it-ebooks.info/

397Tracking application activity

 .to("jms:queue:orders");
}

The String is based on Camel’s Simple expression language, which supports the use
of placeholders that are evaluated at runtime. In this example, the filename is repre-
sented by ${file:name} and the message body by ${body}. If you want to know more
about the Simple expression language, refer to appendix A.

 You can run this example using the following Maven goal from the chapter12/
logging directory:

mvn test -Dtest=LogEIPTest

If you run this example, it will log the following:

2010-01-10 15:11:18,001 [: FileComponent] INFO route1
- We got incoming file someorder.csv containing: 123,4444,20100110

The Log EIP will, by default, log at INFO level using the route ID as the logger name. In
this example, the route was not explicitly named, so Camel assigned it the name route1.

 Using the Log EIP from Spring XML is also easy, as shown here:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="file://target/rider/orders"/>
 <log message="Incoming file ${file:name} containing: ${body}"/>
 <bean beanType="camelinaction.OrderCsvToXmlBean"/>
 <to uri="jms:queue:orders"/>
 </route>
</camelContext>

The Spring example is also provided in the source code for the book, which you can
try using the following Maven goal:

mvn test -Dtest=LogEIPSpringTest

The Log EIP also offers options to configure the logging level and log name, in case
you want to customize those as well, as shown below in Spring XML:

<log message="Incoming file ${file:name} containing: ${body}"
 logName="Incoming" loggingLevel="DEBUG"/>

In the Java DSL, the logging level and log name are the first two parameters. The third
parameter is the log message:

.log(LoggingLevel.DEBUG, "Incoming",
 "Incoming file ${file:name} containing: ${body}")

Anyone who has had to browse millions of log lines to investigate an incident knows it
can be hard to correlate messages.

USING CORRELATION IDS

When logging messages in a system, the messages being processed can easily get inter-
leaved, which means the log lines will be interleaved as well. What you need is a way to
correlate those log messages so you can tell which log lines are from which messages.

 You do this by assigning a unique ID to each created message. In Camel, this ID is
the ExchangeId, which you can grab from the Exchange using the exchange.get-
ExchangeId() method.

 www.it-ebooks.info

http://www.it-ebooks.info/

398 CHAPTER 12 Management and monitoring

TIP You can tell the Log component to log the ExchangeId by using the fol-
lowing option: showExchangeId=true. When using the Log EIP, you can use
${id} from the Simple expression language to grab the ID.

To help understand how and when messages are being routed, Camel offers Tracer,
which logs message activity as it occurs.

12.3.4 Using Tracer

Tracer’s role is to trace how and when messages are routed in Camel. It does this by
intercepting each message being passed from one node to another during routing.
Figure 12.6 illustrates this principle.

You may remember being told that Camel has a Channel sitting between each node in
a route—at points B, C, and D in figure 12.6. The Channel has multiple purposes,
such as error handling, security, and interception. Because the Tracer is implemented
as an interceptor, it falls under the control of the Channel, which at runtime will
invoke it.

 To use the Tracer, you need to enable it, which is easily done in either the Java DSL
or Spring XML. In the Java DSL, you enable it by calling context.setTracing(true)
from within the RouteBuilder class:

public void configure() throws Exception {
 context.setTracing(true);
 ...
 }

In Spring XML, you enable the Tracer from <camelContext> as follows:

<camelContext id="camel" trace="true"
 xmlns="http://camel.apache.org/schema/spring">

When running with Tracer enabled, Camel will record trace logs at INFO level, which
at first may seem a bit verbose. To reduce the verbosity, we have configured the Tracer
to not show properties and headers. Here is an example of Tracer output:

2010-01-10 16:40:58,229 [: FileComponent] INFO Tracer
- ca18a05b-a7a6-401b-8f83-e97ba35df87e >>> (route1)
from(file://target/rider/orders) --> wireTap(seda://audit) <<<
Pattern:InOnly, BodyType:org.apache.camel.component.file.GenericFile,
Body:123,4444,20100110,222,1

Wiretap
Order
queue

CSV to
XML

Order
files

B C D

Figure 12.6 Tracer sits between each node in the route (at B, C, and D) and traces the
message flow.

 www.it-ebooks.info

http://www.it-ebooks.info/

399Tracking application activity

2010-01-10 16:40:58,241 [: FileComponent] INFO Tracer
- ca18a05b-a7a6-401b-8f83-e97ba35df87e >>> (route1) wireTap
(seda://audit) --> camelinaction.OrderCsvToXmlBean@129103 <<<
Pattern:InOnly, BodyType:org.apache.camel.component.file.GenericFile,
Body:123,4444,20100110,222,1
2010-01-10 16:40:58,241 [1: seda://audit] INFO Tracer
- b4d4c842-3884-41aa-a216-d230a6661a9e >>> (route2)
from(seda://audit) --> camelinaction.AuditService@5db23e <<<
Pattern:InOnly, BodyType:org.apache.camel.component.file.GenericFile,
Body:123,4444,20100110,222,1
2010-01-10 16:40:58,251 [: FileComponent] INFO Tracer
- ca18a05b-a7a6-401b-8f83-e97ba35df87e >>> (route1)
camelinaction.OrderCsvToXmlBean@129103 --> seda://queue:orders <<<
Pattern:InOnly, BodyType:String,
Body:<order><id>123/id><customerId>4444/customerId><date>20100110
</date><item><id>222</id><amount>1</amount></item></order>

The interesting thing to note from the trace logs is that the log starts with the exchange
ID, which you can use to correlate messages. In this example, there are two different
IDs in play: ca18a05b-a7a6-401b-8f83-e97ba35df87e and b4d4c842-3884-41aa-
a216-d230a6661a9e. You may wonder why we have two IDs when there is only one
incoming message. That’s because the wire tap creates a copy of the incoming message,
and the copied message will use a new exchange ID because it’s being routed as a sep-
arate process.

 Next, the Tracer outputs which route the message is currently at, followed by the
from --> to nodes. This is probably the key information when using Tracer, because
you can see each individual step the message takes in Camel.

 Then the Tracer logs the message exchange pattern, which is either InOnly or
InOut. Finally, it logs the information from the Message, just as the Log component
would do.

TIP You can use the Delay interceptor to slow processing down to a pace we
humans can follow. For example, you could delay and tail the log file, watch-
ing what happens in the log file while the message is being routed, to get a
better understanding of what’s going on. You can learn more about the Delay
interceptor in the Camel documentation: http://camel.apache.org/delay-
interceptor.html.

CUSTOMIZING THE TRACER

We just said that we had customized the Tracer to be less verbose. This can be done by
defining a bean in the Registry with the bean ID traceFormatter. In Spring XML this
is easy—all you do is this:

<bean id="traceFormatter"
 class="org.apache.camel.processor.interceptor.DefaultTraceFormatter">
 <property name="showProperties" value="false"/>
 <property name="showHeaders" value="false"/>
</bean>

The formatter has many other options that you can read about in its online documen-
tation (http://camel.apache.org/tracer). One of the options is maxChars, which can

 www.it-ebooks.info

http://camel.apache.org/delay-interceptor.html
http://camel.apache.org/delay-interceptor.html
http://camel.apache.org/tracer
http://www.it-ebooks.info/

400 CHAPTER 12 Management and monitoring

limit the message body being logged. For example, setting it to a value of 200 will limit
the Tracer to only output at most 200 characters.

 If you have many routes, the Tracer will output a lot of logs. Fortunately, you can
customize the Tracer to only trace certain routes. You can even do this at runtime
using JMX, but we’ll get to that a bit later.

ENABLING OR DISABLING TRACER FOR SPECIFIC ROUTES

Remember that you can enable the Tracer from the <camelContext> tag? You can do
the same with the <route> tag.

 Suppose you only wanted to trace the first route—you could enable the Tracer on
that particular route, as shown here:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route trace="true">
 <from uri="file://rider/orders"/>
 <wireTap uri="seda:audit"/>
 <bean beanType="camelinaction.OrderCsvToXmlBean"/>
 <to uri="jms:queue:orders"/>
 </route>

 <route>
 <from uri="seda:audit"/>
 <bean beanType="camelinaction.AuditService"/>
 </route>
</camelContext>

Doing this from the Java DSL is a bit different. You need to do it using the fluent
builder syntax by using either tracing() or noTracing(), as follows:

public void configure() throws Exception {
 from("file://target/rider/orders")
 .tracing()
 .wireTap("seda:audit")
 .bean(OrderCsvToXmlBean.class)
 .to("jms:queue:orders");

 from("seda:audit")
 .bean(AuditService.class, "auditFile");
}

If a route isn’t explicitly configured with a Tracer, it will fall back and leverage the con-
figuration from the CamelContext. This allows you to quickly turn tracing on and off
from the CamelContext but still have some special routes with their own settings.

 The Tracer can also be managed using JMX. This allows you to enable tracing for a
while to see what happens and identify issues.

MANAGING TRACER USING JMX

The Tracer can be managed from the JMX console in two places. You can enable or
disable tracing at either the context or at routes. For example, to enable tracing glob-
ally, you could change the tracing attribute to true at the CamelContext MBean. You
could do the same on a per route basis using the Routes MBeans.

 You can configure what the Tracer logs from the Tracer MBean, as shown in fig-
ure 12.7.

 www.it-ebooks.info

http://www.it-ebooks.info/

401Tracking application activity

We’ve prepared an example for you to try in the source code for the book. First, run
this Maven goal in the chapter12/tracer directory:

mvn compile exec:java -PManageTracer

This will start an application that will run for a while.
 Then start jconsole and connect to the application. Click on the MBeans tab and

expand the org.apache.camel node in the tree. Figure 12.8 shows where you’re going.
 Click on the value for the Tracing attribute, which should be editable. Change the

value from false to true, and press Enter to confirm. You should be able to see the
changes in the console logged by the application.

 Spend some time playing with this. For example, change some of the other options
on the Tracer.

 Monitoring applications via the core logs, custom logging, and Tracer is like look-
ing into Camel’s internal journal after the fact. If the log files get very big, it may feel
like you’re looking for a needle in a haystack. Sometimes you might prefer to have
Camel call you when particular events occur. This is where the notification mecha-
nism comes into play.

Figure 12.7 Managing the Tracer from JMX allows you to customize the trace logging and change many
attributes at runtime.

 www.it-ebooks.info

http://www.it-ebooks.info/

402 CHAPTER 12 Management and monitoring

12.3.5 Using notifications

For fine-grained tracking of activity, Camel’s management module offers notifiers for
handling internal notifications. These notifications are generated when specific
events occur inside Camel, such as when an instance starts or stops, when an excep-
tion has been caught, or when a message is created or completed. The notifiers sub-
scribe to these events as listeners, and they react when an event is received.

 Camel uses a pluggable architecture, allowing you to plug in and use your own
notifier, which we’ll cover later in this section. Camel provides the following notifiers
out of the box:

■ LoggingEventNotifier—A notifier for logging a text representation of the
event using the Apache Commons Logging framework. This means you can use
log4j, which has a broad range of appenders that can dispatch log messages to
remote servers using UDP, TCP, JMS, SNMP, email, and so on.

■ PublishEventNotifier—A notifier for dispatching the event to any kind of
Camel endpoint. This allows you to leverage Camel transports to broadcast the
message any way you want.

■ JmxNotificationEventNotifier—A notifier for broadcasting the events as
JMX notifications. For example, management and monitoring tooling can be
used to subscribe to the notifications.

You’ll learn in the following sections how to set up and use an event notifier and how
to build and use a custom notifier.

Figure 12.8 To enable tracing, select the CamelContext under the Context node and change the
Tracing attribute from false to true.

 www.it-ebooks.info

http://www.it-ebooks.info/

403Tracking application activity

WARNING Because routing each exchange produces at least two notifica-
tions, you can be overloaded with thousands of notifications. That’s why you
should always filter out unwanted notifications. The PublishEventNotifier
will leverage Camel to route the event message, which will potentially induce
a second load on your system. That’s why the notifier is configured by default
to not generate new events during processing of events.

CONFIGURING AN EVENT NOTIFIER

Camel doesn’t use event notifiers by default, so to use a notifier you must configure it.
This is done by setting the notifier instance you wish to use on the ManagementStrat-
egy. When using the Java DSL, this is done as shown here:

LoggingEventNotifier notifier = new LoggingEventNotifier();
notifier.setLogName("rider.EventLog");
notifier.setIgnoreCamelContextEvents(true);
notifier.setIgnoreRouteEvents(true);
notifier.setIgnoreServiceEvents(true);
context.getManagementStrategy().setEventNotifier(notifier);

First you create an instance of LoggingEventNotifier, because you’re going to log
the events using log4j. Then you set the log name you wish to use. In this case,
you’re only interested in some of the events, so you ignore the ones you aren’t inter-
ested in.

 The configuration when using Spring XML is a bit different, because Camel will
pick up the notifier automatically when it scans the registry for beans of type Event-
Notifier on startup. This means you just have to declare a Spring bean, like this:

<bean id="eventLogger"
 class="org.apache.camel.management.LoggingEventNotifier">
 <property name="logName" value="rider.EventLog"/>
 <property name="ignoreCamelContextEvents" value="true"/>
 <property name="ignoreRouteEvents" value="true"/>
 <property name="ignoreServiceEvents" value="true"/>
</bean>

You can also write your custom EventNotifier instead of using the built-in notifiers.

USING A CUSTOM EVENT NOTIFIER

Rider Auto Parts wants to integrate an existing Camel application with the company’s
centralized error log database. They already have a Java library that’s capable of
publishing to the database, and this makes the task much easier. Figure 12.9 illustrates
the situation.

 They decide to implement a custom event notifier named RiderEventNotifier,
which uses their own Java code, allowing ultimate flexibility. The following listing
shows the important snippets of how to implement this.

 In listing 12.1, you extend the EventNotifierSupport class, which is an abstract
class meant to be extended by custom notifiers. If you don’t want to extend this class,
you can implement the EventNotifier interface instead. The RiderFailurePub-
lisher class is the existing Java library for publishing failure events to the database.

 www.it-ebooks.info

http://www.it-ebooks.info/

404 CHAPTER 12 Management and monitoring

public class RiderEventNotifier extends EventNotifierSupport {

 private RiderFailurePublisher publisher;

 public void notify(EventObject eventObject) throws Exception {
 if (eventObject instanceof ExchangeFailedEvent)
 notifyFailure((ExchangeFailedEvent) eventObject);
 }
 }

 protected void notifyFailure(ExchangeFailedEvent event) {
 String id = event.getExchange().getExchangeId();
 Exception cause = event.getExchange().getException();
 Date now = new Date();

 publisher.publish(appId, id, now,
 cause.getMessage());
 }

 public boolean isEnabled(EventObject eventObject) {
 return true;
 }

 protected void doStart() throws Exception {}

 protected void doStop() throws Exception {}
}

The notify method is invoked by Camel with the event being passed in as a
java.util.EventObject instance. You use an instanceof test to filter for the events
you’re interested in, which are failure events B. Then information is extracted from
the event, such as the unique exchange ID and the exception message to be pub-
lished. This information is then published using the existing Java library C.

TIP If you have any resources that must be initialized, Camel offers doStart
and doStop methods for this kind of work, as shown in listing 12.1.

The source code for the book contains this example in the chapter12/notifier direc-
tory, which you can try using the following Maven goal:

mvn test -Dtest=RiderEventNotifierTest

Listing 12.1 A custom event notifier publishes failure events to a central log database

Error log
database

Rider

Camel routes

Camel

Monitoring tool

Publish failures

Monitors

Events

EventNotifier

Figure 12.9 Failure events must be published into the centralized error log database using
the custom RiderEventNotifier.

Filters
failure
events

B

Publishes
failure events

C

 www.it-ebooks.info

http://www.it-ebooks.info/

405Managing Camel applications

We’ve now reviewed four ways to monitor Camel applications. You learned to use
Camel’s standard logging capabilities and to roll a custom solution when needed. In
the next section, we’ll take a further look at how to manage both Camel and your cus-
tom Camel components.

12.4 Managing Camel applications
We already touched on how to manage Camel in section 12.2, where we covered how
to use JMX with Camel. In this section, we’ll take a deeper dive into management-
related use cases and show how you can management-enable your custom Camel com-
ponents and services.

 We’ll start by looking at how you can manage the lifecycles of your Camel applications.

12.4.1 Managing Camel application lifecycles

It’s essential to be able to manage the lifecycles of your Camel applications. You
should be able to stop and start Camel in a reliable manner, and you should be able to
pause or stop a Camel route temporarily, to avoid taking in new messages while an
incident is being mitigated. Camel offers you full lifecycle management on all levels.

 Suppose you want to stop an existing Camel route. To do this, you connect to the
application with JMX as you learned in section 12.2. Figure 12.10 shows JConsole with
the route in question selected.

 As you can see in figure 12.10, route1 has been selected from the MBeans tree. You
can view its attributes, which reveal various stats such as the number of exchanges
completed and failed, its performance, and so on. The State attribute displays infor-
mation about the lifecycle—whether it’s started or stopped.

Figure 12.10 Selecting the route to manage in JConsole

 www.it-ebooks.info

http://www.it-ebooks.info/

406 CHAPTER 12 Management and monitoring

To stop the route, select the Operations entry and click the stop operation. Then
return to the Attributes entry and click the Refresh button to update the attributes.
You should see the State attribute’s value change to Stopped.

MANAGING CONSUMERS

Starting and stopping routes is a common thing to do, but what if you want to adjust
how the routes behave at runtime? Camel allows you to manage the consumers, and
you can adjust them at runtime.

 Imagine you have a route that uses a file consumer to pick up new files, and you
want to change the polling interval for the file consumer. Figure 12.11 shows how you
can do this by selecting the file consumer under consumers in the MBean tree. You
can then change the Delay attribute by clicking on it and editing it. The changes to
the attributes aren’t enforced immediately. You have to restart the consumer, which is
done by invoking the stop and then the start operation.

 You may have built some Camel components of your own that you would like to
manage. This can also be done.

12.4.2 Managing custom Camel components
Suppose Rider Auto Parts has developed a Camel ERP component to integrate with
their ERP system, and the operations staff has requested that the component be man-
aged. The component has a verbosity switch that should be exposed for management.
Running with verbosity enabled allows the operations staff to retrieve additional infor-
mation from the logs, which is needed when some sort of issue has occurred.

 Listing 12.2 shows how you can implement this on the ERPEndpoint class, which is
part of the ERP component. This code listing has been abbreviated to show only the
relevant parts of the listing—the full example is in the source code for the book in the
chapter12/custom directory.

Figure 12.11 Adjusting a file consumer at runtime by changing the Delay attribute

 www.it-ebooks.info

http://www.it-ebooks.info/

407Managing Camel applications

import org.apache.camel.spi.ManagementAware;
import org.springframework.jmx.export.annotation.ManagedAttribute;
import org.springframework.jmx.export.annotation.ManagedResource;

@ManagedResource(description = "Managed ERPEndpoint")
public class ERPEndpoint extends DefaultEndpoint
 implements ManagementAware<ERPEndpoint> {

 private boolean verbose;

 public ERPEndpoint(String endpointUri, Component component) {
 super(endpointUri, component);
 }

 @ManagedAttribute
 public boolean isVerbose() {
 return verbose;
 }

 @ManagedAttribute
 public void setVerbose(boolean verbose) {
 this.verbose = verbose;
 }

 public Object getManagedObject(ERPEndpoint object) {
 return this;
 }
}

If you’ve ever tried using the JMX API to expose the management capabilities of your
custom beans, you’ll know it’s a painful API to leverage. It’s better to go for the easy
solution and leverage Spring JMX. You’ll notice, in the source code from listing 12.2,
that it uses the Spring @ManagedResource annotation B to expose this class as an
MBean. In the same way, you can expose the verbose property as a managed attribute
by using the @ManagedAttribute C annotation on the getter and setter methods.

 What remains is to tell Camel to enlist this MBean for management, which is done
by implementing the ManagementAware interface. This interface brings in the get-
ManagedObject method D, where you simply return this.

 You can run the following Maven goal from chapter12/custom directory to try out
this example:

mvn compile exec:java -Pcustom

When you do, the console will output a log line every 5 seconds, as the route below
illustrates:

from("timer:foo?period=5000")
 .setBody().simple("Hello ERP calling at ${date:now:HH:mm:ss}")
 .to("erp:foo")
 .to("log:reply");

What you want to do now is turn on the verbose switch from your custom ERP compo-
nent. Figure 12.12 shows how this is done from JConsole.

Listing 12.2 Management-enabling a custom endpoint

Exposes class
as MBeanB

Exposes attributes
for management

C

Tells Camel
to use this
MBean

D

 www.it-ebooks.info

http://www.it-ebooks.info/

408 CHAPTER 12 Management and monitoring

As you can see in figure 12.12, your custom component is listed under endpoints as
erp://foo, which was the URI used in the route. The figure also shows the Verbose attri-
bute. If you change this value to true, the console should immediately reflect this
change. The first two of the following lines are from before the verbose switch was
enabled. When the switch is enabled, it starts to output Calling ERP..., as shown below:

2010-01-30 15:09:49,118 [foo] INFO reply
- Exchange[BodyType:String, Body:Simulated response from ERP]
2010-01-30 15:09:54,118 [foo] INFO reply
- Exchange[BodyType:String, Body:Simulated response from ERP]
Calling ERP with: Hello ERP calling at 15:09:59
2010-01-30 15:09:59,118 [foo] INFO reply
- Exchange[BodyType:String, Body:Simulated response from ERP]
Calling ERP with: Hello ERP calling at 15:10:04
2010-01-30 15:10:04,118 [foo] INFO reply
- Exchange[BodyType:String, Body:Simulated response from ERP]

What you have just learned about management-enabling a custom component is in fact
the same principle Camel uses for its components. A Camel component consists of sev-
eral classes, such as Component, Endpoint, Producer, and Consumer, and you can man-
agement-enable any of those. For example, the schedule-based components, such as
the Timer, allow you to manage the consumers to adjust how often they should trigger.

 Congratulations! You have now learned all there is to managing Camel applica-
tions and enlisting your custom components for management.

Figure 12.12 Enabling the Verbose attribute at runtime using JConsole

 www.it-ebooks.info

http://www.it-ebooks.info/

409Summary and best practices

12.5 Summary and best practices
A sound strategy for monitoring your applications is necessary when you take them
into production. Your organization may already have strategies that must be followed
for running and monitoring applications.

 In this chapter, we looked at how you can monitor your Camel applications using
health-level checks. You learned that existing monitoring tools could be used via
SNMP or JMX protocols. Using JMX allows you to manage Camel at the application
level, which is essential for lifecycle management, and performing functions such as
stopping a route.

 We also looked at what Camel has to offer in terms of logging. You learned about
the Camel logs and how you can use custom logging. We also covered the Camel noti-
fication system, which is pluggable, allowing you to hook in your own notification
adapter and send notifications to a third party.

 Here are a few simple guidelines:

■ Involve the operations team. Monitoring and management isn’t an afterthought.
You should involve the operations team early in the project’s lifecycle. Your
organization likely already has procedures for managing applications, which
must be followed.

■ Use health checks. For example, develop a happy page that does an internal health
check and reports back on the status. A happy page can then easily be accessed
from a web browser and monitoring tools.

■ Provide informative error messages. When something goes wrong, you want the
operations staff receiving the alert to be able to understand what the error is all
about. If you throw exceptions from business logic, include descriptive informa-
tion about what’s wrong.

■ Use the Tracer. If messages aren’t being routed as expected, you can enable the
Tracer to see how they’re actually being routed. But beware; the Tracer can be
very verbose and your logs can quickly fill up with lines if your application pro-
cesses a lot of messages.

■ Read log files from testing. Have developers read the log files to see which excep-
tions have been logged. This can help them preemptively fix issues that other-
wise could slip into production.

Management and monitoring aren’t the sole tasks the operations staff plays with
regards to your Camel applications. The staff is also very much involved in the deploy-
ment process, taking your applications into production. The next chapter covers this
topic, walking through the various deployment strategies.

 www.it-ebooks.info

http://www.it-ebooks.info/

410

Running and
 deploying Camel

In the previous chapter, you learned all about monitoring and managing Camel.
We’ll now shift focus to another topic that’s important to master: running and
deploying Camel applications.

 We’ll start with the topic of running Camel—you’ll need to fully understand how
to start, run, and shut down Camel reliably and safely, which is imperative in a pro-
duction environment. We’ll also review various options you can use to tweak how
Camel and routes are started. We’ll continue on this path, looking at how you can
dynamically start and stop routes at runtime. Your applications won’t run forever, so
we’ll spend some time focusing on how to shut down Camel in a safe manner.

 The other part of the chapter covers various strategies for deploying Camel.
We’ll take a look at four common runtime environments supported by Camel.

This chapter covers
■ Starting Camel
■ Starting and stopping routes at runtime
■ Shutting down Camel
■ Deploying Camel

 www.it-ebooks.info

http://www.it-ebooks.info/

411Starting Camel

As we discuss these topics, we’ll work through an example involving Rider Auto Parts.
You’ve been asked to help move a recently developed application safely into produc-
tion. The application receives inventory updates from suppliers, provided via a web
service or files. Figure 13.1 shows a high-level diagram of the application.

13.1 Starting Camel
In chapter 1, you learned how to download, install, and run Camel. That works well in
development, but the game plan changes when you take an application into production.

 Starting up a Camel application in production is harder than you might think,
because the order in which the routes are started may have to be arranged in a certain
way to ensure a reliable startup. It’s critical that the operations staff can safely manage
the application in their production environment.

 Let’s look now at how Camel starts.

13.1.1 How Camel starts

Camel doesn’t start magically by itself. Often it’s the server (container) that Camel is
running inside that invokes the start method on CamelContext, starting up Camel.
This is also what you saw in chapter 1, where you used Camel inside a standalone Java
application. A standalone Java application isn’t the only deployment choice—you can
also run Camel inside a container such as Spring or OSGi.

 Regardless of which container you use, the same principle applies. The container
must prepare and create an instance of CamelContext up front, before Camel can be
started, as illustrated in figure 13.2.

Web service

File CSV to
object

Update
inventory

Update
route

Split lines

Figure 13.1 A Rider Auto Parts application accepting incoming inventory updates from either files
or a web service

Spring
(camel-spring)

OSGi
(camel-
spring)

Standalone
(camel-core)

CamelContext
(camel-core)

CreatesCreatesCreates

OSGi
(camel-

blueprint)

Creates

Figure 13.2 Using Camel with containers
often requires the container in question to
prepare and create CamelContext up
front before it can be started.

 www.it-ebooks.info

http://www.it-ebooks.info/

412 CHAPTER 13 Running and deploying Camel

Because Spring is a common container, we’ll outline how Spring and Camel work
together to prepare a CamelContext.

PREPARING CAMELCONTEXT IN A SPRING CONTAINER

Spring allows third-party frameworks to integrate seamlessly with Spring. To do this,
the third-party frameworks must provide a org.springframework.beans.factory.
xml.NamespaceHandler, which is the extension point for using custom namespaces in
Spring XML files. Camel provides the CamelNamespaceHandler.

 When using Camel in the Spring XML file, you would define the <camelContext>
tag as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">

The http://camel.apache.org/schema/spring namespace is the Camel custom
namespace. To let Spring know about this custom namespace, it must be identified
in the META-INF/spring.handlers, where you map the namespace to the class
implementation:

http\://camel.apache.org/schema/spring=
org.apache.camel.spring.handler.CamelNamespaceHandler

The CamelNamespaceHandler is then
responsible for parsing the XML and dele-
gating to other factories for further pro-
cessing. One of these factories is the Camel-
ContextFactoryBean, which is responsible
for creating the CamelContext that essen-
tially is your Camel application.

 When Spring is finished initializing, it
signals to third-party frameworks that they
can start by broadcasting the Context-
RefreshedEvent event.

STARTING CAMELCONTEXT

At this point, CamelContext is ready to be
started. What happens next is the same
regardless of which container or deploy-
ment option you’re using with Camel. Fig-
ure 13.3 shows a flow diagram of the
startup process.

CamelContext is started by invoking its
start method. The first step in figure 13.3
determines whether or not autostartup is
enabled for Camel. If it’s disabled, the
entire startup process is skipped. By
default, Camel is set to autostart, which
involves the following four steps.

Camel
AutoStart?

2

3

4

1

No

Yes

Start internal
services

Compute the starting
order of routes

Prepare routes
before staring

Start routes

Figure 13.3 Flow diagram showing how
Camel starts by starting internal services,
computing the starting order of routes, and
preparing and starting the routes.

 www.it-ebooks.info

http://www.it-ebooks.info/

413Starting Camel

1 Start internal services—Prepares and starts internal services used by Camel, such
as the type-converter mechanism.

2 Compute starting order—Computes the order in which the routes should be
started. By default, Camel will start up all the routes in the order they are
defined in the Spring XML files or the RouteBuilder classes. We’ll cover how to
configure the order of routes in section 13.1.3.

3 Prepare routes—Prepares the routes before they’re started.
4 Start routes—Starts the routes by starting the consumers, which essentially opens

the gates to Camel and lets the messages start to flow in.

After step 4, Camel writes a message to the log indicating that it has been started and
that the startup process is complete.

 In some cases, you may need to influence how Camel is started, and we’ll look at
that now.

13.1.2 Camel startup options

Camel offers various options when it comes to starting Camel. For example, you may
have a maintenance route that should not be autostarted on startup. You may also
want to enable tracing on startup to let Camel log traces of messages being routed.
Table 13.1 lists all the options that influence startup.

 The options from table 13.1 can be divided into two kinds. The first four options
are related to startup and shutdown, and the remainder are miscellaneous options.
We’ll look at how to use the miscellaneous options first, and then we’ll turn our atten-
tion to the startup and shutdown options.

Table 13.1 Camel startup options

Option Description

AutoStartup This option is used to indicate whether or not the route should be started
automatically when Camel starts. This option is enabled by default.

StartupOrder This option dictates the order in which the routes should be started when
Camel starts. We’ll cover this in section 13.1.3.

ShutdownRoute This option is used to configure whether or not the route in question
should stop immediately or defer while Camel is shutting down. We’ll
cover shutdown in section 13.3.

ShutdownRunningTask This option is used to control whether Camel should continue to complete
pending running tasks at shutdown or stop immediately after the current
task is complete. We’ll cover shutdown in section 13.3.

Tracing This option is used to trace how an exchange is being routed within that
particular route. This option is disabled by default.

Delayer This option is used to set a delay in milliseconds that slows down the pro-
cessing of a message. You can use this during debugging to reduce how
quickly Camel routes messages, which may help you track what happens
when you watch the logs. This option is disabled by default.

 www.it-ebooks.info

http://www.it-ebooks.info/

414 CHAPTER 13 Running and deploying Camel

CONFIGURING STREAMCACHING

The miscellaneous options are often used during development to turn on additional
logging, such as the Tracing option, which we covered in the last chapter. Or you may
need to turn on stream caching if you use Camel with other stream-centric systems.
For example, to enable stream caching, you can do the following with the Java DSL:

public class MyRoute extends RouteBuilder {
 public void configure() throws Exception {
 context.setStreamCaching(true);

 from("jbi:service:http://rider.com/AutoPartService")
 .to("xslt:html-parts.xsl")
 .to("jbi:service:http://rider.com/HtmlService");
 }
}

The same example using Spring XML would look like this:

<camelContext streamCache="true"
 xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="jbi:service:http://rider.com/AutoPartService"/>
 <to uri="xslt:html-parts.xsl"/>
 <to uri="jbi:service:http://rider.com/HtmlService"/>
 </route>
</camelContext>

All the options from table 13.1 can be scoped at either context or route level. The pre-
ceding stream cache example was scoped at context level. You could also configure it
on a particular route:

public class MyRoute extends RouteBuilder {
 public void configure() throws Exception {
 from("jbi:service:http://rider.com/AutoPartService")
 .streamCaching()
 .to("xslt:html-parts.xsl")
 .to("jbi:service:http://rider.com/HtmlService");
 }
}

HandleFault This option is used to turn fault messages into exceptions. This is not a
typical thing to do in a pure Camel application, but when deployed into a
JBI container like Apache ServiceMix, you’ll need to set this option to let
the Camel error handler react to faults. This option is disabled by default.
We’ll cover this in more detail shortly.

StreamCaching This option is used to cache streams that otherwise couldn’t be
accessed multiple times. You may want to use this when you use redeliv-
ery during error handling, which requires being able to read the stream
multiple times. This option is disabled by default. We’ll cover this in more
detail shortly.

Table 13.1 Camel startup options (continued)

Option Description

 www.it-ebooks.info

http://www.it-ebooks.info/

415Starting Camel

You can configure route-scoped stream caching in Spring XML as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route streamCache="true">
 <from uri="jbi:service:http://rider.com/AutoPartService"/>
 <to uri="xslt:html-parts.xsl"/>
 <to uri="jbi:service:http://rider.com/HtmlService"/>
 </route>
</camelContext>

NOTE Java DSL uses the syntax noXXX to disable an option, such as noStream-
Caching or noTracing.

There is one last detail to know about the context and route scopes. The context
scope is used as a fallback if a route doesn’t have a specific configuration. The idea is
that you can configure the default setting on the context scope and then override
when needed at the route scope. For example, you could enable tracing on the con-
text scope and then disable it on the routes you don’t want traced.

CONFIGURING HANDLEFAULT

In the preceding example, you route messages using the JBI component. The Handle-
Fault option is used to control whether or not Camel error handling should react to
faults.

 Suppose sending to the jbi:service:http://rider.com/HtmlService endpoint
fails with a fault. Without HandleFault enabled, the fault would be propagated back
to the consumer. By enabling HandleFault, you can let the Camel error handler react
when faults occur.

 The following code shows how you can let the DeadLetterChannel error handler
save failed messages to files in the error directory:

public class MyRoute extends RouteBuilder {
 public void configure() throws Exception {
 errorHandler(deadLetterChannel("file:errors"));

 from("jbi:service:http://rider.com/AutoPartService")
 .streamCaching().handleFault()
 .to("xslt:html-parts.xsl")
 .to("jbi:service:http://rider.com/HtmlService");
 }
}

The equivalent example in Spring XML is as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <errorHandler id="EH" type="DeadLetterChannel"
 deadLetterUri="file:errors"/>

 <route streamCache="true" errorHandlerRef="EH" handleFault="true">
 <from uri="jbi:service:http://rider.com/AutoPartService"/>
 <to uri="xslt:html-parts.xsl"/>
 <to uri="jbi:service:http://rider.com/HtmlService"/>
 </route>
</camelContext>

 www.it-ebooks.info

http://www.it-ebooks.info/

416 CHAPTER 13 Running and deploying Camel

We’ll now look at how to control the ordering of routes.

13.1.3 Ordering routes

The order in which routes are started and stopped becomes more and more impor-
tant the more interdependent the routes are. For example, you may have reusable
routes that must be started before being leveraged by other routes. Also, routes that
immediately consume messages that are bound for other routes may have to be
started later to ensure that the other routes are ready in time.

 To control the startup order of routes, Camel provides two options: AutoStartup
and StartupOrder. The former dictates whether the routes should be started or not.
The latter is a number that dictates the order in which the routes should be started.

USING STARTUPORDER TO CONTROL ORDERING OF ROUTES

Let’s return to our Rider Auto Parts example, outlined at the beginning of the chap-
ter. Figure 13.4 shows the high-level diagram again, this time numbering the three
routes in use, B, C, and D.

B The file-based route will poll incoming files and split each line in the file. The
lines are then converted to an internal camelinaction.inventory.UpdateInvento-
ryInput object, which is sent to the D route.

C The web service route is much simpler because incoming messages are auto-
matically converted to the UpdateInventoryInput object. The web service endpoint is
configured to do this.

D This route is a common route that’s reused by the first two routes.
 You now have a dependency among the three routes. Routes B and C depend

upon route D, and that’s why you need to use StartupOrder to ensure that the routes
are started in correct order.

 The following listing shows the Camel routes with the StartupOrder options in
boldface.

Web service

File CSV to
object

Update
inventory

Update
route

Split lines

B
D

C

Figure 13.4 Camel application with two input routes B and C which depend on a common route D

 www.it-ebooks.info

http://www.it-ebooks.info/

417Starting Camel

public class InventoryRoute extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("cxf:bean:inventoryEndpoint")
 .routeId("webservice").startupOrder(3)
 .to("direct:update")
 .transform().method("inventoryService", "replyOk");

 from("file://target/inventory/updates")
 .routeId("file").startupOrder(2)
 .split(body().tokenize("\n"))
 .convertBodyTo(UpdateInventoryInput.class)
 .to("direct:update")
 .end();

 from("direct:update")
 .routeId("update").startupOrder(1)
 .to("bean:inventoryService?method=updateInventory");
 }
}

Listing 13.1 shows how easy it is in the Java DSL to configure the order of the routes
using StartupOrder. Listing 13.2 shows the same example using Spring XML.

NOTE In listing 13.1, routeId is used to assign each route a meaningful
name, which will then show up in the management console or in the logs. If
you don’t assign an ID, Camel will auto-assign an ID using the scheme route1,
route2, and so forth.

<camelContext xmlns="http://camel.apache.org/schema/spring">

 <route id="webservice" startupOrder="3">
 <from uri="cxf:bean:inventoryEndpoint"/>
 <to uri="direct:update"/>
 <transform>
 <method bean="inventoryService" method="replyOk"/>
 </transform>
 </route>

 <route id="file" startupOrder="2">
 <from uri="file://target/inventory/updates"/>
 <split>
 <tokenize token="\n"/>
 <convertBodyTo
 type="camelinaction.inventory.UpdateInventoryInput"/>
 <to uri="direct:update"/>
 </split>
 </route>

 <route id="update" startupOrder="1">
 <from uri="direct:update"/>

Listing 13.1 Starting routes in a specific order

Listing 13.2 Spring XML version of listing 13.1

 www.it-ebooks.info

http://www.it-ebooks.info/

418 CHAPTER 13 Running and deploying Camel

 <to uri="bean:inventoryService?method=updateInventory"/>
 </route>

</camelContext>

You should notice that the numbers 1, 2 and 3 are used to dictate the order of the
routes. Let’s take a moment to see how this works in Camel.

HOW STARTUPORDER WORKS

The StartupOrder option in Camel works much like the load-on-startup option for
Java servlets. As with servlets, you can specify a positive number to indicate the order
in which the routes should be started.

 The numbers don’t have to be consecutive. For example, you could have used the
numbers 5, 20, and 87 instead of 1, 2, and 3. All that matters is that the numbers must
be unique.

 You can also omit assigning a StartupOrder to some of the routes. In that case,
Camel will assign these routes a unique number starting with 1,000 upwards. This
means that the numbers from 1 to 999 are free for Camel users, and the numbers
from 1,000 upward are reserved by Camel.

TIP The routes are stopped in the reverse order in which they were started.

In practice, you may not need to use StartupOrder often. It’s only important when
you have route dependencies, as in the previous example.

 The source code for the book contains this example in the chapter13/startup
directory. You can try it out using the following Maven goals:

mvn test -Dtest=InventoryJavaDSLTest
mvn test -Dtest=InventorySpringXMLTest

You’ve now learned to control the order in which routes are started. Let’s move on
and take a look at how you can omit starting certain routes and start them on demand
later, at runtime.

13.1.4 Disabling autostartup
Table 13.1 listed the AutoStartup option, which is used to specify whether or not a
given route should be automatically started when Camel starts. Sometimes you may
not want to start a route automatically—you may want to start it on demand at run-
time to support business cases involving human intervention.

 At Rider Auto Parts, there has been a demand to implement a manual process for
updating the inventory based on files. As usual, you’ve been asked to implement this
in the existing application depicted in figure 13.4.

 You come up with the following solution: add a new route to the existing routes in
listing 13.1. The new route listens for files being dropped in the manual directory, and
uses these files to update the inventory.

from("file://target/inventory/manual")
 .routeId("manual")
 .log("Doing manual update with file ${file:name}")

 www.it-ebooks.info

http://www.it-ebooks.info/

419Starting and stopping routes at runtime

 .split(body().tokenize("\n"))
 .convertBodyTo(UpdateInventoryInput.class)
 .to("direct:update")
 .end();

As you can see, the route is merely a copy of the file-based route in listing 13.1. Unfor-
tunately, your boss isn’t satisfied with the solution. The route is always active, so if
someone accidentally drops a file into the manual folder, it would be picked up.

 To solve this problem, you use the AutoStartup option to disable the route from
being activated on startup:

from("file://target/inventory/manual")
 .routeId("manual").noAutoStartup()
 .log("Doing manual update with file ${file:name}")
 .split(body().tokenize("\n"))
 .convertBodyTo(UpdateInventoryInput.class)
 .to("direct:update")
 .end();

You can start the route when a manual file is meant to be picked up. This can be done
by using a management console, such as JConsole, to manually start the route, waiting
until the file has been processed, and manually stopping the route again.

TIP There is a subtle difference between using Boolean-based options in the
Java DSL and Spring XML. For example, AutoStartup is implemented as auto-
Startup="false" in Spring XML and as noAutoStartup() in the Java DSL.

You’ve now learned how to configure Camel with various options that influence how it
starts up. In the next section, we’ll look at various ways of programmatically control-
ling the lifecycle of routes at runtime.

13.2 Starting and stopping routes at runtime
In chapter 12, you learned how to use management tooling, designed for operations
staff, to start and stop routes at runtime. Being able to programmatically control
routes at runtime is also desirable. For example, you might want business logic to
automatically turn routes on or off at runtime. In this section, we’ll look at how to
do this.

 You can start and stop routes at runtime in several ways, including these:

■ Using CamelContext—By invoking the startRoute and stopRoute methods.
■ Using RoutePolicy—By applying a policy to routes that Camel enforces auto-

matically at runtime.
■ Using JMX—By obtaining the ManagedRoute MBean for the particular routes and

invoking its start or stop methods. If you have remote management enabled,
you can control the routes from another machine.

The use of JMX was covered in the previous chapter, so we’ll discuss using CamelContext
and RoutePolicy in this chapter.

 www.it-ebooks.info

http://www.it-ebooks.info/

420 CHAPTER 13 Running and deploying Camel

13.2.1 Using CamelContext to start and stop routes at runtime

The CamelContext provides methods to easily start and stop routes.
 To illustrates this, we’ll continue with the Rider Auto Parts example from sec-

tion 13.1.4. About a month into production with the new route, one of the opera-
tions staff forgot to manually stop the route after use, as he was supposed to. Not
stopping the route leads to a potential risk because files accidentally dropped into
the manual directory will be picked up by the route.

 You are again summoned to remedy this problem, and you quickly improve the
route with the two changes shown in bold in the following listing.

from("file://target/inventory/manual?maxMessagesPerPoll=1")
 .routeId("manual").noAutoStartup()
 .log("Doing manual update with file ${file:name}")
 .split(body().tokenize("\n"))
 .convertBodyTo(UpdateInventoryInput.class)
 .to("direct:update")
 .end()
 .process(new Processor() {
 public void process(Exchange exchange) throws Exception {
 exchange.getContext().getInflightRepository().remove(exchange);
 exchange.getContext().stopRoute("manual");
 }
 });

The first change uses the maxMessagesPerPoll option to tell the file consumer to only
pick up one file at a time. The second change stops the route after that one file has
been processed. This is done with the help of the inlined Processor, which can access
the CamelContext and tell it to stop the route by name. (CamelContext also provides a
startRoute method for starting a route.) Before you stop the route, you must unregis-
ter the current exchange from the in-flight registry, which otherwise would prevent
Camel from stopping the route, because it detects there is an exchange in progress.

 The source code for the book contains this example, which you can try from the
chapter13/startup directory using the following Maven goal:

mvn test -Dtest=ManualRouteWithStopTest

Even though the fix to stop the route was simple, using the inlined processor at the
end of the route isn’t an optimal solution. It would be better to keep the business
logic separated from the stopping logic. This can be done with a feature called
OnCompletion.

USING ONCOMPLETION

OnCompletion is a feature that allows you to do additional routing after the original
route is done. The classic example would be to send an email alert if a route fails, but
it has a broad range of uses.

Listing 13.3 After a file has been processed, the route is stopped

 www.it-ebooks.info

http://www.it-ebooks.info/

421Starting and stopping routes at runtime

 Instead of using the inlined processor to stop the route, you can use OnCompletion
in the RouteBuilder to process the StopRouteProcessor class containing the logic to
stop the route. This is shown in bold in the following code:

public void configure() throws Exception {
 onCompletion().process(new StopRouteProcessor("manual"));

 from("file://target/inventory/manual?maxMessagesPerPoll=1")
 .routeId("manual").noAutoStartup()
 .log("Doing manual update with file ${file:name}")
 .split(body().tokenize("\n"))
 .convertBodyTo(UpdateInventoryInput.class)
 .to("direct:update");
}

The implementation of the StopRouteProcessor is simple, as shown here:

public class StopRouteProcessor implements Processor {
 private final String name;

 public StopRouteProcessor(String name) {
 this.name = name;
 }

 public void process(Exchange exchange) throws Exception {
 exchange.getContext().getInflightRepository().remove(exchange);
 exchange.getContext().stopRoute(name);
 }
}

This improves the readability of the route, as it’s shorter and doesn’t mix high-level
routing logic with low-level implementation logic. By using OnCompletion, the stop-
ping logic has been separated from the original route.

 Scopes can be used to define OnCompletions at different levels. Camel supports
two scopes: context scope (high level) and route scope (low level). In the preceding
example, you used context scope. If you wanted to use route scope, you’d have to
define it within the route as follows:

from("file://target/inventory/manual?maxMessagesPerPoll=1")
 .onCompletion().process(new StopRouteProcessor("manual")).end()
 .routeId("manual").noAutoStartup()
 .log("Doing manual update with file ${file:name}")
 .split(body().tokenize("\n"))
 .convertBodyTo(UpdateInventoryInput.class)
 .to("direct:update")
 .end;

Notice the use of .end() to indicate where the OnCompletion route ends. You have to
do this when using route scope so Camel knows which pieces belong to the additional
route and which to the original route. This is the same principle as when you use
OnException at route scope.

 www.it-ebooks.info

http://www.it-ebooks.info/

422 CHAPTER 13 Running and deploying Camel

TIP OnCompletion also supports filtering using the OnWhen predicate so that
you can trigger the additional route only if the predicate is true. In addition,
OnCompletion can be configured to only trigger when the route completes
successfully or when it fails by using the OnCompleteOnly or OnFailureOnly
options. For example, you can use OnFailureOnly to build a route that sends
an alert email to support personnel when a route fails.

The source code for the book contains this example in the chapter13/startup direc-
tory. You can try it using the following Maven goal:

mvn test -Dtest=ManualRouteWithOnCompletionTest

We’ve now covered how to stop a route at runtime using the CamelContext API. We’ll
now look at another feature called RoutePolicy, which can also be used to control the
lifecycle of routes at runtime.

13.2.2 Using RoutePolicy to start and stop routes at runtime

A RoutePolicy is a policy that can control routes at runtime. For example, a Route-
Policy can control whether or not a route should be active. But you aren’t limited to
such scenarios—you can implement any kind of logic you wish.

 The org.apache.camel.spi.RoutePolicy is an interface that defines two callback
methods Camel will automatically invoke at runtime:

void onExchangeBegin(Route route, Exchange exchange);
void onExchangeDone(Route route, Exchange exchange);

The idea is that you implement this inter-
face, and Camel will invoke the callbacks
when a route has just begun and when it’s
done. You’re free to implement whatever
logic you want in these callbacks. For con-
venience, Camel provides the org.apache.
camel.impl.RoutePolicySupport class,
which you can use as a base class to extend
when implementing your custom policies.

 Let’s build a simple example using
RoutePolicy to demonstrate how to flip
between two routes, so only one route is
active at any time. Figure 13.5 shows this
principle.

 As you can see in this figure, the
RoutePolicy is being used to control the
two routes, starting and stopping them
so only one is active at a time. The fol-
lowing listing shows how this can be
implemented.

Started

Stopped

Route 1

Stopped

Started

Route 2

RoutePolicy

Changes Changes

Figure 13.5 RoutePolicy changes the active
state between the two routes so only one route
is active at any time.

 www.it-ebooks.info

http://www.it-ebooks.info/

423Starting and stopping routes at runtime

public class FlipRoutePolicy extends RoutePolicySupport {
 private final String name1;
 private final String name2;

 public FlipRoutePolicy(String name1, String name2) {
 this.name1 = name1;
 this.name2 = name2;
 }

 @Override
 public void onExchangeDone(Route route, Exchange exchange) {
 String stop = route.getId().equals(name1) ? name1 : name2;
 String start = route.getId().equals(name1) ? name2 : name1;

 CamelContext context = exchange.getContext();
 try {
 exchange.getContext().getInflightRepository().remove(exchange);
 context.stopRoute(stop);
 context.startRoute(start);
 } catch (Exception e) {
 getExceptionHandler().handleException(e);
 }
 }
}

In the constructor, you identify the names of the two routes to flip B. As you extend
the RoutePolicySupport class, you only override the onExchangeDone method, as the
flipping logic should be invoked when the route is done. You then compute which of
the two routes to stop and start with the help of the route parameter, which denotes
the current active route. Having computed that, you then use CamelContext to flip
the routes C. If an exception is thrown, you let the ExceptionHandler take care of it,
which by default will log the exception.

 To use FlipRoutePolicy, you must assign it to the two routes. In the Java DSL, this
is done using the RoutePolicy method, as shown in the following RouteBuilder:

public void configure() throws Exception {
 RoutePolicy policy = new FlipRoutePolicy("foo", "bar");

 from("timer://foo")
 .routeId("foo").routePolicy(policy)
 .setBody().constant("Foo message")
 .to("log:foo").to("mock:foo");

 from("timer://bar")
 .routeId("bar").routePolicy(policy).noAutoStartup()
 .setBody().constant("Bar message")
 .to("log:bar").to("mock:bar");
}

If you’re using Spring XML, you can use RoutePolicy as shown here:

<bean id="flipPolicy" class="camelinaction.FlipRoutePolicy">
 <constructor-arg index="0" value="foo"/>
 <constructor-arg index="1" value="bar"/>
</bean>

Listing 13.4 A RoutePolicy that flips two routes being active at runtime

Identifies
routes to flip

B

C Flips the two routes

 www.it-ebooks.info

http://www.it-ebooks.info/

424 CHAPTER 13 Running and deploying Camel

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route id="foo" routePolicyRef="flipPolicy">
 <from uri="timer://foo"/>
 <setBody><constant>Foo message</constant></setBody>
 <to uri="log:foo"/>
 <to uri="mock:foo"/>
 </route>

 <route id="bar" routePolicyRef="flipPolicy" autoStartup="false">
 <from uri="timer://bar"/>
 <setBody><constant>Bar message</constant></setBody>
 <to uri="log:bar"/>
 <to uri="mock:bar"/>
 </route>
</camelContext>

As you can see, you use the routePolicyRef attribute on the <route> tag to reference
the flipPolicy bean defined in the top of the XML file.

 The source code for the book contains this example in the chapter13/routepolicy
directory. You can try it using the following Maven goals:

mvn test -Dtest=FlipRoutePolicyJavaDSLTest
mvn test -Dtest=FlipRoutePolicySpringXMLTest

When running either of the examples, you should see the two routes being logged
interchangeably (foo and bar).

INFO foo - Exchange[BodyType:String, Body:Foo message]
INFO bar - Exchange[BodyType:String, Body:Bar message]
INFO foo - Exchange[BodyType:String, Body:Foo message]
INFO bar - Exchange[BodyType:String, Body:Bar message]
INFO foo - Exchange[BodyType:String, Body:Foo message]
INFO bar - Exchange[BodyType:String, Body:Bar message]

We’ve now covered both starting and controlling routes at runtime. It’s time to learn
about shutting down Camel, which is more complex than it sounds.

13.3 Shutting down Camel
The new inventory application at Rider Auto Parts is scheduled to be in production at
the end of the month. You’re on the team to ensure its success and help run the final
tests before it’s handed over to production. These tests also cover reliably shutting
down the application.

 Shutting down the Camel application is complex because there may be numerous
in-flight messages being processed. Shutting down while messages are in flight may
harm your business because those messages could potentially be lost. So the goal of
shutting down a Camel application reliably is to shut it down when its quiet—when
there are no in-flight messages. All you have to do is find this quiet moment.

 This is hard to do because while you wait for the current messages to complete, the
application may take in new messages. You have to stop taking in new messages while
the current messages are given time to complete. This process is known as graceful
shutdown, which means shutting down in a reliable and controlled manner.

 www.it-ebooks.info

http://www.it-ebooks.info/

425Shutting down Camel

13.3.1 Graceful shutdown

When CamelContext is being stopped, which happens when its stop() method is
invoked, it uses a strategy to shut down. This strategy is defined in the Shutdown-
Strategy interface. The default implementation of this ShutdownStrategy interface
uses the graceful shutdown technique.

 For example, when you stop the Rider Auto Parts example, you’ll see these log lines:

DefaultCamelContext - Apache Camel 2.5.0 is shutting down
DefaultShutdownStrategy - Starting to graceful shutdown routes
 (timeout 300 seconds)
DefaultShutdownStrategy - Route: update shutdown complete.
DefaultShutdownStrategy - Route: file suspended and shutdown deferred.
DefaultShutdownStrategy - Route: webservice shutdown complete.
DefaultShutdownStrategy - Route: file shutdown complete.
DefaultShutdownStrategy - Graceful shutdown of routes completed in
 0 seconds
DefaultInflightRepository - Shutting down with no inflight exchanges.
DefaultCamelContext - Uptime: 7.422 seconds
DefaultCamelContext - Apache Camel 2.5.0 is shutdown

This tells you a few things. You can see the graceful shutdown is using a 300-second
timeout. This is the maximum time Camel allows for shutting down gracefully before
it starts to shut down more aggressively by forcing routes to stop immediately. The
default value is 300 seconds, which you can configure on the CamelContext. For
example, to use 20 seconds as the default timeout value, you can do as follows:

camelContext.getShutdownStrategy().setTimeout(20);

Doing this in Spring XML requires a bit more work, because you have to define a
Spring bean to set the timeout value:

<bean id="shutdown" class="org.apache.camel.impl.DefaultShutdownStrategy">
 <property name="timeout" value="20"/>
</bean>

Notice that the timeout value is in seconds.
 Then Camel logs the progress of the routes as they shut down, one by one, accord-

ing to the order in which they were started. Notice that the file route is suspended
and deferred, and then later is shut down.

 This is a little glimpse of the complex logic the graceful shutdown process uses to
shut down Camel in a reliable manner. We’ll cover what suspension and defer mean in a
moment.

 At the end, Camel logs the completion of the graceful shutdown, which in this case
was really fast and completed in less than one second. Camel also logs whether there
were any in-flight messages just before it stops completely.

 If Camel did not complete the graceful shutdown, it would log at WARN level how
many in-flight messages were still in progress:

WARN - DefaultInflightRepository - Shutting down while there are still
 5 inflight exchanges.

 www.it-ebooks.info

http://www.it-ebooks.info/

426 CHAPTER 13 Running and deploying Camel

SHUTTING DOWN THE RIDER AUTO PARTS APPLICATION

At Rider Auto Parts, you’re in the final testing of the application before it’s handed
over to production. One of the tests is based on processing a big inventory file, and
you wanted to test what happens if you shut down Camel while it was working on the
big file. You expected Camel would continue processing the big file and only shut
down when the file was completed. But the log shows something else.

 At first, you see the usual logging about the shutdown in progress:

DefaultShutdownStrategy - Starting to graceful shutdown routes
 (timeout 300 seconds)
DefaultShutdownStrategy - Route: update shutdown complete.
DefaultShutdownStrategy - Route: file suspended and shutdown deferred.
DefaultShutdownStrategy - Route: webservice shutdown complete.

Then there is a log line indicating that Camel has noticed the one in-flight exchange,
which is the big file. This is expected behavior:

DefaultShutdownStrategy - Waiting as there are still 1 inflight and
 pending exchanges to complete before we can shutdown

Then the application logs the progress of the inventory update, which should happen
for each line in the big file:

Inventory 58004 updated

Next come a lot of WARN logs about there being no consumers to process the Exchange:

WARN - DirectProducer - No consumers available on endpoint:
Endpoint[direct://update] to process: Exchange[Message:
camelinaction.inventory.UpdateInventoryInput@e9d110]
WARN - DirectProducer - No consumers available on endpoint:
Endpoint[direct://update] to process: Exchange[Message:
camelinaction.inventory.UpdateInventoryInput@5735c4]

Finally, you see the last log lines, which report the end of the shutdown.

DefaultShutdownStrategy - Route: file shutdown complete.
DefaultShutdownStrategy - Graceful shutdown of routes completed in
 13 seconds
DefaultInflightRepository - Shutting down with no inflight exchanges.
DefaultCamelContext - Uptime: 18.742 seconds
DefaultCamelContext - Apache Camel 2.5.0 is shutdown

So what went wrong? The clues have been shown in the logs. First, you noticed the
WARN logs, which indicated that the direct:update consumer had been stopped. This
consumer is from the first route, which has startup order 1:

from("direct:update")
 .routeId("update").startupOrder(1)
 .to("bean:inventoryService?method=updateInventory");

You then noticed that Camel stops this route as the first route during the shutdown
process:

DefaultShutdownStrategy - Route: update shutdown complete.

 www.it-ebooks.info

http://www.it-ebooks.info/

427Shutting down Camel

This is a shared route that the other routes depend upon, as illustrated in figure 13.4.
That’s why it needed to be started before the other routes. Now the problem is that
this route is also stopped before the other routes. You’ve got a catch-22 situation.

 The good news is that it’s possible to remedy this in Camel. What you need to do is
somehow tell Camel to defer shutting down this shared route. This is done using the
ShutdownRoute option, which was listed in table 13.1. All you have to do is add the
option in the route as shown in bold here:

from("direct:update")
 .routeId("update").startupOrder(1)
 .shutdownRoute(ShutdownRoute.Defer)
 .to("bean:inventoryService?method=updateInventory");

The same route in Spring XML is as follows:

<route id="update" startupOrder="1" shutdownRoute="Defer">
 <from uri="direct:update"/>
 <to uri="bean:inventoryService?method=updateInventory"/>
</route>

Now when you run the test, the application shuts down in a reliable manner. The log
shows that Camel detects that the big file is still in progress and patiently waits:

DefaultShutdownStrategy - Waiting as there are still 1 inflight
 and pending exchanges to complete before we can shutdown
Inventory 58026 updated
Inventory 58027 updated
DefaultShutdownStrategy - Waiting as there are still 1 inflight
 and pending exchanges to complete before we can shutdown
Inventory 58028 updated
Inventory 58029 updated
Inventory 58030 updated
DefaultShutdownStrategy - Waiting as there are still 1 inflight
 and pending exchanges to complete before we can shutdown

The application is now ready to be handed over to operations for deployment.

NOTE Apache Camel 2.5 has been improved to handle the example we’ve
just covered. Camel now always defers direct endpoints, which means you no
longer have to configure this manually. The example illustrates the principle
of how to shut down a Camel application in a reliable manner.

The source code for the book contains this example in the chapter13/shutdown
directory. You can try it by using the following Maven goals:

mvn test -Dtest=GracefulShutdownBigFileTest
mvn test -Dtest=GracefulShutdownBigFileXmlTest

As you’ve just learned, Camel end users are responsible for configuring routes cor-
rectly to support reliable shutdown. Some may say this is a trade-off, but we, the Camel
team, think of it as flexibility and don’t believe computer logic can substitute for
human logic in ensuring a reliable shutdown. We think it’s best to give Camel users
the power to configure their routes to support their use cases.

 www.it-ebooks.info

http://www.it-ebooks.info/

428 CHAPTER 13 Running and deploying Camel

JVM

JDK

Camel
JARs

Other
JARs

CamelContext

Your Java application

Figure 13.6 Camel embedded
in a standalone Java application

ABOUT STOPPING AND SHUTTING DOWN

Camel will leverage the graceful shutdown mechanism when it stops or shuts down
routes. That means the example in listing 13.3 will stop the route in a graceful man-
ner. As a result, you can reliably stop routes at runtime, without the risk of losing in-
flight messages.

 The difference between using the stopRoute and shutdownRoute methods is that
the latter will also unregister the route from management (JMX). Use stopRoute
when you want to be able to start the route again. Only use shutdownRoute if the route
should be permanently removed.

 That’s all there is to shutting down Camel. It’s now time to review some of the
deployment strategies that are possible.

13.4 Deploying Camel
Camel is described as a lightweight and embeddable integration framework. This
means that it supports more deployment strategies and flexibility than traditional
ESBs and application servers. Camel can be used in a wide range of runtime environ-
ments, from standalone Java applications, to web containers, to the cloud.

 In this section, we’ll look at four different deployment strategies that are possible
with Camel and present their strengths and weaknesses.

■ Embedding Camel in a Java application
■ Running Camel in a web environment on Apache Tomcat
■ Running Camel inside JBoss Application Server
■ Running Camel in an OSGi container such as Apache Karaf

These four deployment strategies are the common ways of deploying Camel.

13.4.1 Embedded in a Java application

It’s appealing to embed Camel in a Java application if
you need to communicate with the outside world. By
bringing Camel into your application, you can benefit
from all the transports, routes, EIPs, and so on, that
Camel offers. Figure 13.6 shows Camel embedded in a
standard Java application.

 In the embedded mode, you must add to the classpath
all the necessary Camel and third-party JARs needed by
the underlying transports. Because Camel is built with
Maven, you can use Maven for your own project and ben-
efit from its dependency-management system. We dis-
cussed building Camel projects with Maven in chapter 11.

 Bootstrapping Camel for your code is easy. In fact,
you did that in your first ride on the Camel in chap-
ter 1. All you need to do is create a CamelContext and
start it, as shown in the following listing.

 www.it-ebooks.info

http://www.it-ebooks.info/

429Deploying Camel

public class FileCopierWithCamel {

 public static void main(String args...) throws Exception {
 CamelContext context = new DefaultCamelContext();
 context.addRoutes(new RouteBuilder() {
 public void configure() {
 from("file:data/inbox").to("file:data/outbox");
 }
 });
 context.start();

 Thread.sleep(10000);

 context.stop();
 }
}

It’s important to keep a reference to CamelContext for the lifetime of your applica-
tion, because you’ll need to perform a shutdown of Camel. As you may have noticed
in listing 13.5, the code execution continues after starting the CamelContext. To avoid
shutting down your application immediately, the listing includes code to sleep for 10
seconds. In your application, you’ll need to use a different means to let your applica-
tion continue and only shut down when requested to do so.

 Let’s look at the Rider Auto Parts application illustrated in figure 13.1, and embed
it in a Java application.

EMBEDDING THE RIDER AUTO PARTS EXAMPLE IN A JAVA APPLICATION

The Rider Auto Parts Camel application can be run as a standalone Java application.
Because the application is using Spring XML files to set up Camel, you just need to
start Spring to start the application.

 Starting Spring from a main class can be done as follows:

public class InventoryMain {
 public static void main(String[] args) throws Exception {
 String filename = "META-INF/spring/camel-context.xml";
 AbstractXmlApplicationContext spring =
 new ClassPathXmlApplicationContext(filename);
 spring.start();

 Thread.sleep(10000);

 spring.stop();
 spring.destroy();
 }
}

To start Spring, you create an ApplicationContext, which in the preceding example
means loading the Spring XML file from the classpath. This code also reveals the prob-
lem of having the main method wait until you terminate the application. The preced-
ing code uses Thread.sleep to wait 10 seconds before terminating the application.

 To remedy this, Camel provides a Main class that you can leverage instead of writ-
ing your own class. You can change the previous InventoryMain class to leverage this
Main class as follows:

Listing 13.5 Bootstrapping Camel in your Java application

 www.it-ebooks.info

http://www.it-ebooks.info/

430 CHAPTER 13 Running and deploying Camel

import org.apache.camel.spring.Main;

public class InventoryMain {
 public static void main(String[] args) throws Exception {
 Main main = new Main();
 main.setApplicationContextUri("META-INF/spring/camel-context.xml");
 main.enableHangupSupport();
 main.start();
 }
}

This approach also solves the issue of handling the lifecycle of the application. By
enabling hang-up support, you tell Camel to shut down gracefully when the JVM is being
terminated, such as when the Ctrl-C key combination is pressed. You can obviously also
stop the Camel application by invoking the stop method on the main instance.

 The source code for the book contains this example in the chapter13/standalone
directory. You can try it out using the following Maven goal:

mvn compile exec:java

TIP You may not need to write your own main class. For example, the
org.apache.camel.spring.Main class can be used directly. It has parameters
to dictate which Spring XML file it should load. By default, it loads all XML
files from the classpath in the META-INF/spring location, so by dropping your
Spring XML file in there, you don’t even have to pass any arguments to the
Main class. You can start it directly.

Table 13.2 summarizes the pros and cons of embedding Camel in a standalone Java
application.

You now know how to make your standalone application leverage Camel. Let’s look at
what you can do for your web applications.

13.4.2 Embedded in a web application

Embedding Camel in a web application brings the same benefits as were mentioned
in section 13.4.1. Camel provides all you need to connect to your favorite web con-
tainer. If you work in an organization, you may have existing infrastructure to be used
for deploying your Camel applications. Deploying Camel in such a well-known
environment gives you immediate support for installing, managing, and monitoring
your applications.

Table 13.2 Pros and cons of embedding Camel in a standalone Java application

Pros Cons

■ Gives flexibility to deploy just what’s needed
■ Allows you to embed Camel in any standard

Java application
■ Works well with thick client applications, such

as a Swing or Eclipse rich client GUI

■ Requires deploying all needed JARs
■ Requires manually managing Camel’s lifecycle

(starting and stopping) on your own

 www.it-ebooks.info

http://www.it-ebooks.info/

431Deploying Camel

 When Camel is embedded in a web applica-
tion, as shown in figure 13.7, you need to make
sure all JARs are packaged in the WAR file. If you
use Maven, this will be done automatically.

 The Camel instance embedded in your web
application is bootstrapped by Spring. By leverag-
ing Spring, which is such a ubiquitous framework,
you let end users use well-known approaches for
deployment. This also conveniently ties Camel’s
lifecycle with Spring’s lifecycle management and
ensures that the Camel instance is properly started
and stopped in the web container.

 The following code demonstrates that you only
need a standard Spring context listener in the
web.xml file to bootstrap Spring and thereby
Camel.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>
</web-app>

This context listener also takes care of shutting down Camel properly when the web
application is stopped. Spring will, by default, load the Spring XML file from the WEB-
INF folder using the name applicationContext.xml. In this file, you can embed Camel,
as shown in listing 13.6.

Specifying the location of your Spring XML file
If you want to use another name for your Spring XML file, you’ll need to add a context
parameter which specifies the filename as follows:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/camel-context.xml</param-value>
</context-param>

JDK

Servlet API

Camel
JARs

Other
JARs

CamelContext

Your web application

JVM

Web container

Figure 13.7 Camel embedded
in a web application

 www.it-ebooks.info

http://www.it-ebooks.info/

432 CHAPTER 13 Running and deploying Camel

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:camel="http://camel.apache.org/schema/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">

 <import resource="camel-cxf.xml"/>

 <bean id="inventoryService" class="camelinaction.InventoryService"/>
 <bean id="inventoryRoute" class="camelinaction.InventoryRoute"/>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <routeBuilder ref="inventoryRoute"/>
 </camelContext>
</beans>

Listing 13.6 is a regular Spring XML file in which you can use the <import> tag to
import other XML files. For example, this is done by having CXF defined in the camel-
cxf.xml file B. Camel, itself, is embedded using the <camelContext> tag.

 The source code for the book contains this example in the chapter13/war direc-
tory. You can try it out by using the following Maven goal:

mvn jetty:run

If you run this Maven goal, a Jetty plugin is used to quickly boot up a Jetty web con-
tainer running the web application. To use the Jetty plugin in your projects, you must
remember to add it to your pom.xml file in the <build><plugins> section:

<plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>
 <version>7.1.6.v20100715</version>
</plugin>

If you run this goal, you should notice in the console that Jetty has been started:

2010-05-28 [main] INFO DefaultCamelContext
- Apache Camel 2.5.0 (CamelContext: camelContext) started
2010-05-28 [main] INFO ContextLoader
- Root WebApplicationContext: initialization completed in 3198 ms
2010-05-28 INFO::Started SelectChannelConnector@0.0.0.0:8080
[INFO] Started Jetty Server

Let’s look at how you can run Camel as a web application in Apache Tomcat.

DEPLOYING TO APACHE TOMCAT

To package the application as a WAR file, you can run the mvn package command,
which creates the WAR file in the target directory. Yes, it’s that easy with Maven.

 You want to leverage the hot deployment of Apache Tomcat, so you must first start
it. Here’s how you can start it on a Unix-based system, such as our Mac OS X laptop,
using the bin/startup.sh script:

Listing 13.6 The Spring applicationContext.xml file with Camel embedded

Imports
CXF from
another
XML file

B

 www.it-ebooks.info

http://www.it-ebooks.info/

433Deploying Camel

davsclaus:~/apache-tomcat-6.0.26$ bin/startup.sh
Using CATALINA_BASE: /Users/davsclaus/apache-tomcat-6.0.26
Using CATALINA_HOME: /Users/davsclaus/apache-tomcat-6.0.26
Using CATALINA_TMPDIR: /Users/davsclaus/apache-tomcat-6.0.26/temp
Using JRE_HOME: /System/Library/Frameworks/JavaVM.framework/Versions/

1.5/Home
Using CLASSPATH: /Users/davsclaus/apache-tomcat-6.0.26
/bin/bootstrap.jar

This will start Tomcat in the background, so you need to tail the log file to see what
happens:

davsclaus:~/apache-tomcat-6.0.26$ tail -f logs/catalina.out
May 28, 2010 5:37:53 PM org.apache.catalina.startup.HostConfig
deployDirectory
INFO: Deploying web application directory ROOT
May 28, 2010 5:37:53 PM org.apache.coyote.http11.Http11Protocol start
INFO: Starting Coyote HTTP/1.1 on http-8080
May 28, 2010 5:37:53 PM org.apache.jk.common.ChannelSocket init
INFO: JK: ajp13 listening on /0.0.0.0:8009
May 28, 2010 5:37:53 PM org.apache.jk.server.JkMain start
INFO: Jk running ID=0 time=0/17 config=null
May 28, 2010 5:37:53 PM org.apache.catalina.startup.Catalina start
INFO: Server startup in 4351 ms

To deploy the application, you need to copy the WAR file to the Apache Tomcat
webapps directory:

cp target/riderautoparts-war-1.0.war ~/apache-tomcat-6.0.26/webapps/

Then Apache Tomcat should show the application being started in the log file. You
should see the familiar logging of Camel being started:

2010-05-28 [gine[Catalina]]] INFO DefaultCamelContext - Started 3 routes
2010-05-28 [gine[Catalina]]] INFO DefaultCamelContext
- Apache Camel 2.5.0 (CamelContext: camelContext) started
2010-05-28 [gine[Catalina]]] INFO ContextLoader
- Root WebApplicationContext: initialization completed in 2812 ms

Now you need to test that the deployed application runs as expected. This can
be done by sending a web service request using SoapUI, as shown in figure 13.8.
Doing this requires you to know the URL to the WSDL the web service runs at, which is
http://localhost:9000/inventory?wsdl.

Figure 13.8 Using SoapUI testing the web service from the deployed application in Apache Tomcat

 www.it-ebooks.info

http://www.it-ebooks.info/

434 CHAPTER 13 Running and deploying Camel

The web service returns “OK” as its reply, and you can also see from the log file that
the application works as expected, outputting the inventory being updated:

Inventory 4444 updated

There’s another great benefit of this deployment model, which is that you can tap the
servlet container directly for HTTP endpoints. In a standalone Java deployment sce-
nario, you have to rely on the Jetty transport, but in the web deployment scenario, the
container already has its socket management, thread pools, tuning, and monitoring
facilities. Camel can leverage this if you use the servlet transport for your inbound
HTTP endpoints.

 In the previously deployed application, you let Apache CXF rely on the Jetty trans-
port. Let’s change this to leverage the existing servlet transports provided by Apache
Tomcat.

USING APACHE TOMCAT FOR HTTP INBOUND ENDPOINTS

When using Camel in an existing servlet container, such as Apache Tomcat, you may
have to adjust Camel components in your application to tap into the servlet container.
In the Rider Auto Parts application, it’s the CXF component you must adjust.

 First, you have to add CXFServlet to the web.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>

 <servlet>
 <servlet-name>CXFServlet</servlet-name>
 <servlet-class>
 org.apache.cxf.transport.servlet.CXFServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>CXFServlet</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>
</web-app>

Maven users need to adjust the pom.xml file to depend upon the HTTP transport
instead of Jetty, as follows:

Listing 13.7 The web.xml file with CXFServlet to tap into Apache Tomcat

 www.it-ebooks.info

http://www.it-ebooks.info/

435Deploying Camel

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http</artifactId>
 <version>2.2.11</version>
</dependency>

Next, you must adjust the camel-cxf.xml file, as shown in the following listing.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cxf="http://camel.apache.org/schema/cxf"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/cxf
 http://camel.apache.org/schema/cxf/camel-cxf.xsd">

 <import resource="classpath:META-INF/cxf/cxf.xml"/>
 <import resource="classpath:META-INF/cxf/cxf-extension-soap.xml"/>
 <import resource=
 "classpath:META-INF/cxf/cxf-servlet.xml"/>

 <cxf:cxfEndpoint id="inventoryEndpoint"
 address="/inventory"
 serviceClass="camelinaction.inventory.InventoryEndpoint"/>
</beans>

To use Apache CXF in a servlet container, you have to import the cxf-servlet.xml
resource B. This exposes the web service via the servlet container, which means the
endpoint address has to be adjusted to a relative context path C.

 In the previous example, the web service was available at http://localhost:9000/
inventory?wsdl. By using Apache Tomcat, the web service is now exposed at this
address:

Notice that the TCP port is 8080, which is the default Apache Tomcat setting.
 The source code for the book contains this example in the chapter13/war-servlet

directory. You can package the application using mvn package and then copy the rid-
erautoparts-war-servlet-1.0.war file to the webapps directory of Apache Tomcat to hot-
deploy the application. Then the web service should be available at this address:
http://localhost:8080/riderautoparts-war-servlet-1.0/services/inventory?wsdl.

Listing 13.8 Setting up the Camel CXF component to tap into Apache Tomcat

Required
 import when
using servlet

B

Web service
endpoint address

C

http://localhost:8080/context/services/inventory?wsdl

Web application context

CXF servlet mapping

Web service address path

 www.it-ebooks.info

http://www.it-ebooks.info/

436 CHAPTER 13 Running and deploying Camel

NOTE Camel also provides a lightweight alternative to using CXF in the servlet
container. The Servlet component that we discussed in section 7.4.2 of chap-
ter 7 allows you to consume HTTP requests coming into the Servlet container
in much the same way as you saw here with CXF. You can find more information
on the Apache Camel website at http://camel.apache.org/servlet.html.

Table 13.3 lists the pros and cons of the web application deployment model of Camel.

Embedding Camel in a web application is a popular, proven, and powerful way to
deploy Camel. Another choice for running Camel applications is using an application
server such as JBoss Application Server.

13.4.3 Embedded in JBoss Application Server
A common way of deploying Camel applications in JBoss Application Server (JBoss AS)
is using the web deployment model we discussed in the previous section. But JBoss AS
has a pesky classloading mechanism, so you need to leverage a special Camel JBoss
component to remedy this. This component isn’t provided out of the box at the
Apache Camel distribution, because of license implications with JBoss AS’s LGPL
license. This component is hosted at Camel Extra (http://code.google.com/p/
camel-extra/), which is a project site for additional Camel components that can’t be
shipped from Apache.

 In the true open source spirit, you can download the source code and build the
component yourself, but the source code for the book also contains this component
in the example located in the chapter13/war-jboss directory.

 This example is based on the previous example with two minor additions. First, the
camel-jboss-2.5.0.jar is added to the src/main/webapp/WEB-INF/lib directory, which
ensures that this JAR is included when you package the application using mvn package.

 The second change is to leverage the JBoss-specific classloader, which is done by
adding the following bean definition in the applicationContext.xml file:

<bean id="jbossResolver"
 class="org.apache.camel.jboss.JBossPackageScanClassResolver"/>

That’s all there is to it.
 To deploy the application to JBoss, you start it and copy the WAR file into the server/

default/deploy directory. For example, on our laptop, JBoss AS 5.1 is started as follows:

davsclaus:~/jboss$ bin/run.sh

Table 13.3 Pros and cons of embedding Camel in a web application

Pros Cons

■ Taps into the servlet container
■ Lets the container manage the Camel lifecycle
■ Benefits the management and monitoring capabili-

ties of the servlet container
■ Provides familiar runtime platform for operations

■ Can create annoying classloading
issues on some web containers

 www.it-ebooks.info

http://camel.apache.org/servlet.html
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://www.it-ebooks.info/

437Camel and OSGi

After a while, JBoss AS is ready, and this is logged to the console:

15:16:43,882 INFO [ServerImpl] JBoss (Microcontainer) [5.1.0.GA (build:
SVNTag=JBoss_5_1_0_GA date=200905221053)] Started in 27s:452ms

Then the WAR file is copied:

cp target/riderautoparts-war-jboss-1.0.war
 ~/jboss/server/default/deploy

You can then keep an eye on the JBoss console as it outputs the progress of the deploy-
ment. For example, Camel reports that it has picked up the JBoss classloader, as shown
here:

15:18:42,636 INFO [STDOUT] 2010-05-30 15:18:42,636 [main] INFO
CamelContextFactoryBean - Using custom PackageScanClassResolver:
org.apache.camel.jboss.JBossPackageScanClassResolver@75d8af

JBoss AS uses an embedded Apache Tomcat as the servlet container, which means the
web service of the application is available in a familiar location:

http://localhost:8080/riderautoparts-war-jboss-1.0/services/inventory?wsdl

Table 13.4 lists the pros and cons of deploying Camel in JBoss Application Server.

Deploying Camel as a web application in JBoss AS is a fairly easy solution. All you have
to remember is to use the special Camel JBoss component to let the classloading work.

 The last strategy we’ll cover is in a totally different ballpark: using OSGi. OSGi is a
fairly new deployment model in the Java enterprise space and brings promises of mod-
ularity to the extreme.

13.5 Camel and OSGi
OSGi is a layered module system for the Java platform that offers a complete dynamic
component model. It’s a truly dynamic environment where components can come
and go without requiring a reboot (hot deployment). Apache Camel is OSGi-ready, in
the sense that all the Camel JAR files are OSGi-compliant and are deployable in OSGi
containers.

 This section will show you how to prepare and deploy the Rider Auto Parts applica-
tion in the Apache Karaf OSGi runtime. Karaf provides functionality on top of the

Table 13.4 Pros and cons of embedding Camel in JBoss AS

Pros Cons

■ Taps into the JBoss AS container
■ Allows your application to leverage the facilities pro-

vided by the Java EE application server
■ Lets the JBoss AS container manage Camel’s lifecycle
■ Benefits the management and monitoring capabilities

of the application server
■ Provides a familiar runtime platform for operations

■ Requires a special Camel JBoss
component to remedy classload-
ing issues on JBoss

 www.it-ebooks.info

http://www.it-ebooks.info/

438 CHAPTER 13 Running and deploying Camel

OSGi container, such as hot deployment, provisioning, local and remote shells, and
many other goodies. You can choose between Apache Felix or Eclipse Equinox for the
actual OSGi container. The example presented here is included with the source code
for the book in the chapter13/osgi directory.

NOTE In this book, we won’t go deep into the details of OSGi, which is a com-
plex topic. The basics are covered on Wikipedia (http://en.wikipedia.org/
wiki/OSGi), and if you’re interested in more information, we highly recom-
mend OSGi in Action, by Richard S. Hall, Karl Pauls, Stuart McCulloch, and
David Savage (Manning). For more information on the Apache Karaf OSGi
runtime, see the Karaf website: http://karaf.apache.org.

The first thing you need to do with the Rider Auto Parts application is make it OSGi-
compliant. This involves setting up Maven to help prepare the packaged JAR file so it
includes OSGi metadata in the MANIFEST.MF entry.

13.5.1 Setting up Maven to generate an OSGi bundle

In the pom.xml file, you have to set the packaging element to bundle, which means
the JAR file will be packaged as an OSGi bundle:

<packaging>bundle</packaging>

To generate the MANIFEST.MF entry in the JAR file, you can use the Apache Felix
Maven Bundle plugin, which is added to the pom.xml file under the <build> section:

<build>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.1.0</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-Name>${project.artifactId}</Bundle-Name>
 <Bundle-SymbolicName>riderautoparts-osgi</Bundle-SymbolicName>
 <Export-Package>
 camelinaction,
 camelinaction.inventory
 </Export-Package>
 <Import-Package>*</Import-Package>
 <DynamicImport-Package>*</DynamicImport-Package>
 <Implementation-Title>Rider Auto Parts OSGi</Implementation-Title>
 <Implementation-Version>${project.version}</Implementation-Version>
 </instructions>
 </configuration>
 </plugin>
</build>

The interesting part of the maven-bundle-plugin is its ability to set the packages to be
imported and exported. The plugin is set to export two packages: camelinaction and
camelinaction.inventory. The camelinaction package contains the InventoryRoute

 www.it-ebooks.info

http://en.wikipedia.org/wiki/OSGi
http://en.wikipedia.org/wiki/OSGi
http://karaf.apache.org
http://www.it-ebooks.info/

439Camel and OSGi

Camel route, and it needs to be accessible by Camel so it can load the routes when the
application is started. The camelinaction.inventory package contains the generated
source files needed by Apache CXF when it exposes the web service.

 In terms of imports, the preceding code defines it as dynamic by using an asterisk,
which means the OSGi container will figure it out. When needed, you can specify the
imports by package name.

 The source code for the book contains this example in the chapter13/osgi direc-
tory. If you run the mvn package goal, you can see the MANIFEST.MF entry being gener-
ated in the target/classes/META-INF directory.

 You have now set up Maven to build the JAR file as an OSGi bundle, which can be
deployed to the container. The next step is to download and install Apache Karaf.

13.5.2 Installing and running Apache Karaf

For this example, you can download and install the latest version of Apache Karaf
from http://karaf.apache.org. (At the time of writing, this was Apache Karaf 2.1.2.)
Installing is just a matter of unzipping the zip file.

To run Apache Karaf, start it from the command line using one of these two commands:

bin/karaf (Unix)
bin/karaf.bat (Windows)

This should start up Karaf and display a logo when it’s ready. This will run in a shell
mode, which means you can enter commands to manage the container.

 Now you need to install Camel and Apache CXF before you install the Rider Auto
Parts application. Karaf makes installing easier by using features, which are like super
bundles that contain a set of bundles installed as a group. Installing features requires
you to add the Camel feature descriptions to Karaf, which you do by typing the follow-
ing command in the shell:

features:addUrl mvn:org.apache.camel.karaf/apache-camel/2.5.0/xml/features

Apache Karaf 2.1 issue when using Apache CXF
Apache Karaf version 2.1 has an issue that requires you to adjust its configuration
in order to use Apache CXF. You need to download a file and save it in the etc direc-
tory with the name custom.properties.

From a Unix shell, you can do this as follows:

curl http://svn.apache.org/repos/asf/servicemix/smx4/features/trunk/
➥assembly/src/main/filtered-resources/etc/jre.properties > etc/
➥custom.properties

This command will download and save the file as etc/custom.properties. The Apache
Karaf team will fix this problem in the 2.2 release.

 www.it-ebooks.info

http://karaf.apache.org
http://www.it-ebooks.info/

440 CHAPTER 13 Running and deploying Camel

You can then type features:list to see all the features that are available to be
installed. Among these should be several Camel-related features.

 The example application requires the http, camel, and camel-cxf features. Type
these commands in the shell:

features:install http
features:install camel
features:install camel-cxf

And then wait a bit.

TIP You can type osgi:list to see which bundles have already been installed
and their status. The shell has autocompletion, so you can press Tab to see the
possible choices. For example, type osgi and then press Tab to see the choices.

You’re now ready to deploy the Rider Auto Parts application.

13.5.3 Deploying the example

Karaf can install OSGi bundles from various sources, such as the filesystem or the local
Maven repository.

 To install using Maven, you first need to install the application in the local Maven
repository, which can easily be done by running mvn install from the chapter13/
osgi directory. After the JAR file has been copied to the local Maven repository, you
can deploy it to Apache Karaf using the following command from the shell:

osgi:install mvn:com.camelinaction/riderautoparts-osgi/1.0

Upon installing any JAR to Karaf (a JAR file is known as a bundle in OSGi terms), Karaf
will output on the console the bundle ID it has assigned to the installed bundle, as shown:

Bundle ID: 98

You can then type osgi:list to see the application being installed:

[98] [Installed] [] [] [60] riderautoparts-osgi (1.0.0)

Notice that the application isn’t started. You can start it by entering osgi:start 98,
which changes the application’s status when you do an osgi:list again:

[98] [Installed] [] [Started] [60] riderautoparts-osgi (1.0.0)

The application is now running in the OSGi container.

TIP You can install and start the bundle in a single command using the -s
option on the osgi:install command, like this: osgi:install -s
mvn:com.camelinaction/riderautoparts-osgi/1.0.

So how can you test that it works? You can start by checking the log with the log:display
command. Among other things, it should indicate that Apache Camel has been started:

15:46:32,396 | INFO | ExtenderThread-6 | DefaultCamelContext |
e.camel.impl.DefaultCamelContext 1025 | Apache Camel 2.5.0 (CamelContext:
myCamelContext) started

 www.it-ebooks.info

http://www.it-ebooks.info/

441Summary and best practices

You can then use SoapUI to send a test request. The WSDL file is available at http://
localhost:9000/inventory?wsdl.

 When you’re done testing the application, you may want to stop the OSGi con-
tainer, which you can do by executing the osgi:shutdown command from the shell.

TIP You can tail the Apache Karaf log file using tail -f log/karaf.log.
Note that this isn’t done from within the Karaf shell but from the regular
shell on your operating system.

You’ve now seen how to deploy the example into an OSGi container, which marks the
end of our practical coverage of OSGi in this book.

 Table 13.5 lists the pros and cons of deploying Camel in an OSGi container.

You’ve now seen the most popular deployment strategies for Camel and other products.
 We’ve only scratched the surface of OSGi in this chapter. If you go down that path,

you’ll need to pick up some other books, because OSGi is a big concept to grasp and
master. The path of the web application is the beaten track, and there are plenty of
materials and people who can help you if you come up against any problems.

13.6 Summary and best practices
In this chapter, we explored the internal details of how Camel starts up. You learned
which options you can control and whether routes should be autostarted. You also
learned how to dictate the order in which routes should be started.

 More important, you learned how to shut down a running application in a reliable
way without compromising the business. You learned about Camel’s graceful shut-
down procedures and what you can do to reorder your routes to ensure a better shut-
down process.

 You also learned how to stop and shut down routes at runtime. You can do this pro-
grammatically, which allows you to fully control when routes are operating and when
they are not.

 In the second part of this chapter, we explored the art of deploying Camel applica-
tions as standalone Java applications, as web applications, and by running Camel in an
OSGi container. Remember that the deployment strategies covered in this book aren’t
all of your options. For example, Camel can also be deployed in the cloud, or they can
be started using Java Web Start.

Table 13.5 Pros and cons of using OSGi as a deployment strategy

Pros Cons

■ Leverages OSGi for modularity
■ Provides classloader isolation and hot

deployment
■ Commitment in the open source community

and from big vendors endorsing OSGi

■ Involves a learning curve for OSGi
■ Unsupported third-party frameworks; many

frameworks have yet to become OSGi compliant
■ Requires extra effort to decide what package

imports and exports to use for your module

 www.it-ebooks.info

http://www.it-ebooks.info/

442 CHAPTER 13 Running and deploying Camel

 Here are some pointers to help you out with running and deployment:

■ Ensure reliable shutdown. Take the time to configure and test that your applica-
tion can be shut down in a reliable manner. You application is bound to be shut
down at some point, whether for planned maintenance, upgrades, or unfore-
seen problems. In those situations, you want the application to shut down in a
controlled manner without negatively affecting your business.

■ Use an existing runtime environment. Camel is agile, flexible, and can be embed-
ded in whatever production setup you may want to use. Don’t introduce a new
production environment just for the sake of using Camel. Use what’s already
working for you, and test early on in the project that your application can be
deployed and run in the environment.

In the next (and final) chapter, we’ll revisit Camel’s routing capabilities, but we’ll
focus on the power of using annotations on beans. We’ll also see how you can hide the
Camel API from clients but still let clients interact with Camel by hiding the middle-
ware layer.

 www.it-ebooks.info

http://www.it-ebooks.info/

443

Bean routing
 and remoting

In this chapter, we’ll show you a couple of extra features in Camel that allow you to
hide Camel APIs from users and developers. Hiding these APIs is sometimes neces-
sary when you want to limit dependence on Camel. These techniques also provide
approaches to solving integration problems that complement approaches we’ve
discussed throughout this book.

 First, you’ll learn to use Camel’s annotation-based routing, which allows regular
Java beans to be used for routing. This allows you to access all of Camel’s compo-
nents and not write a single line of DSL code. You sacrifice many of the routing abil-
ities that are provided in Camel’s DSLs, but this isn’t a problem for simple use cases.

 When using the routing annotations, you still have to code against Camel APIs,
just not the Camel DSL. We’ll take this a step further in the last part of the chapter
and discuss the art of hiding middleware. By hiding middleware, you allow users of
your Camel application to only see the business interfaces; the complexity of
remote transports and Camel APIs are hidden behind a clean client API.

This chapter covers
■ Routing using annotations on beans
■ Using remoting and hiding middleware

 www.it-ebooks.info

http://www.it-ebooks.info/

444 CHAPTER 14 Bean routing and remoting

 Let’s get started by looking at how to route messages using Camel’s messaging
annotations.

14.1 Using beans for routing
Throughout this book, you’ve seen how Camel’s unique and powerful DSLs can be
used to easily create complex integration applications. But in order to take advantage
of this power, you need to learn a Camel DSL and its intricacies. Using a DSL also
means that your application—at least the integration and routing portion—is tied to
Camel. An alternative approach is to create simple integration applications. By using
annotations, you can produce and consume (send and receive) messages to and from
Camel endpoints by using a regular Java bean.

 In this way, you don’t need to learn much about Camel at all. You can write your
application as you normally would in plain Java, and when you want to connect it to an
external service, you can use an annotation from Camel. It sounds pretty simple
because it is.

 This approach of using Camel is only recommended for simple integration scenar-
ios or when you can’t invest the time to learn the Camel DSLs. We’ll discuss when to
use this approach in more detail in section 14.1.4.

 First, let’s see where this approach would be useful, and then we’ll dive into the
details of the messaging annotations.

14.1.1 Inventory update at Rider Auto Parts
Back in chapter 10, we looked at how Rider Auto Parts keeps an inventory of all the
parts its suppliers currently have in stock. It was kept up to date by the suppliers peri-
odically sending updates to Rider Auto Parts. Storing this information locally within
Rider Auto Parts means the business can operate without being dependent on expen-
sive online integrations with all the suppliers.

 Suppose that you want this automated update to happen over JMS, because it has
built-in reliable messaging, among other things. The updates will come in from multi-
ple suppliers and enter through a single queue named partnerInventoryUpdate. Mes-
sages on this queue are then used to update the inventoryDB database. Figure 14.1
illustrates this flow.

partnerInventoryUpdate
Business partner 1

Rider Auto Parts

inventoryDB

Business partner n

...

Figure 14.1 Business partners send inventory updates to the partnerInventoryUpdate
queue. These updates are then used to update the internal inventory database.

 www.it-ebooks.info

http://www.it-ebooks.info/

445Using beans for routing

Let’s also suppose you have a Java class already available that can write this inventory
update into a database. Here’s the class.

import javax.sql.DataSource;
import org.springframework.jdbc.core.JdbcTemplate;

public class InventoryUpdater {

 private JdbcTemplate jdbc;

 public InventoryUpdater(DataSource ds) {
 jdbc = new JdbcTemplate(ds);
 }

 public void updateInventory(Inventory inventory) {
 jdbc.execute(toSql(inventory));
 }

 private String toSql(Inventory inventory) {
 Object[] args = new Object[] {
 inventory.getSupplierId(), inventory.getPartId(),
 inventory.getName(), inventory.getAmount()};
 return String.format("insert into partner_inventory " +
 "(supplier_id, part_id, name, amount) values " +
 "('%s', '%s', '%s', '%s')", args);
 }
}

This class has an updateInventory method that accepts a single parameter, an Inven-
tory object, which contains details about the partner and the inventory that’s being
updated. This data is then fed into the inventory database.

 We’ll look at how the business partner sends to Rider Auto Parts in section 14.2,
but for now we’ll look at how this inventory service will be implemented on the Rider
Auto Parts side.

14.1.2 Receiving messages with @Consume

Inventory messages are arriving at the JMS partnerInventoryUpdate queue, so you
need to figure out how to consume them and feed them into the database. You also
want to reuse the InventoryUpdater class shown in listing 14.1 as much as possible.

 If you know how to create a route in one of Camel’s DSLs, a solution may seem pretty
obvious. You could set up a JMS consumer, as discussed in chapter 7, and then call the
InventoryUpdater class using the bean component, as shown in chapter 4. Omitting
the JMS component and bean setup, the route builder would look something like this:

public class InventoryUpdaterRoute extends RouteBuilder {
 @Override
 public void configure() throws Exception {
 from("jms:partnerInventoryUpdate")
 .to("bean:inventoryHelperInstance");
 }
}

Listing 14.1 A Java class that can update the inventory database

Updates database
with Spring JDBC

 www.it-ebooks.info

http://www.it-ebooks.info/

446 CHAPTER 14 Bean routing and remoting

To seasoned Camel users this will be simple to understand. But how can we do this
without using Camel’s DSLs?

 The answer is, “through the @Consume annotation.” By using the @Consume annota-
tion in the InventoryUpdater bean, you can hook the partnerInventoryUpdate
queue directly to the updateInventory method. Here’s how this is done.

import javax.sql.DataSource;

import org.apache.camel.Consume;
import org.springframework.jdbc.core.JdbcTemplate;

public class InventoryUpdater {

 ...
 @Consume(uri = "jms:partnerInventoryUpdate")
 public void updateInventory(Inventory inventory) {
 jdbc.execute(toSql(inventory));
 }
...
}

Adding this simple annotation tells Camel to consume messages from the partner-
InventoryUpdate queue and invoke the updateInventory method with the contents.
The @Consume annotation accepts any Camel endpoint URI, so you can easily hook up
a method to anything that Camel supports!

 To see this example in action, go to the chapter14/pojo-messaging directory in the
book’s source and run this Maven command:

mvn clean test

The test case will send a message to the partnerInventoryUpdate queue and check
that the update makes it into the database.

 You may be wondering how you get from a JMS message to an Inventory object.
Just because you aren’t using a RouteBuilder doesn’t mean that automatic type con-
version won’t take place. In this case, Camel’s type converters automatically convert
the body of the JMS message to an Inventory object, which is the parameter of the
invoked method. You may recall from chapter 4 that, by default, Camel assumes that if
there is a single parameter in a method being called on a bean, the body of the mes-
sage needs to be converted to match that type. You can also use any of the parameter-
binding annotations mentioned in section 4.5.3 to define more precisely what data to
map from the incoming message.

LOADING ANNOTATED CLASSES INTO CAMEL

Getting access to all of Camel’s components through a simple annotation may seem
like a bit of magic. As you may have guessed, there’s a little more setup required to use
these annotations.

 The first thing you’ll need to set up are the required dependencies: camel-core and
camel-spring. You’ll also need to use a SpringCamelContext as the base application—

Listing 14.2 InventoryUpdater class connected to JMS queue by @Consume

Connects method
to JMS queue

 www.it-ebooks.info

http://www.it-ebooks.info/

447Using beans for routing

a plain DefaultCamelContext from camel-core won’t do. That’s because when you cre-
ate a SpringCamelContext in your Spring XML file, like so,

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring" />

it also registers a CamelBeanPostProcessor with the Spring application context. The
CamelBeanPostProcessor is a Spring BeanPostProcessor that checks each new bean
registered in the Spring application context for the @Consume and @Produce annota-
tions. If it finds these annotations, it connects the bean to the specified Camel end-
points for you.

NOTE We’ll be discussing the @Produce annotation, which is used to send
messages to a Camel endpoint, in section 14.1.3.

So all you have to do to use these annotations is create a SpringCamelContext and
then create your bean within the Spring XML file, as follows:

<bean class="camelinaction.InventoryUpdater"/>

REFERENCING A SHARED ENDPOINT

If you have multiple beans consuming from the same endpoint URI, you may find it
useful to define the endpoint once and reference it from each bean. This way, if the
URI changes, you only have to change it in one place.

 For example, you can set up a Camel endpoint in the context so it can be accessed
from any bean:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <endpoint id="inventoryQueue" uri="jms:partnerInventoryUpdate"/>
</camelContext>

Now you can reference the inventoryQueue endpoint within the @Consume annota-
tion as follows:

@Consume(ref = "inventoryQueue")
public void updateInventory(Inventory inventory) {
 jdbc.execute(toSql(inventory));
}

This will have the same end result as if you were specifying the endpoint URI in the anno-
tation. The only difference is that Camel won’t have to resolve the endpoint instance (or
create a new instance on the fly) because it’s referencing an available instance.

SPECIFYING WHAT CAMELCONTEXT TO USE

If you have two CamelContext elements defined within one Spring XML file, you’ll
need to take extra care in making sure the @Consume annotation specifies which
CamelContext it should apply to. Why is this? When you create a SpringCamelCon-
text, a BeanPostProcessor is used to inspect each newly created bean and create con-
sumers on the fly for the specified Camel endpoint. The problem with this is that
you’ll get a new consumer for each CamelContext defined! This may not be what you
want to happen.

 www.it-ebooks.info

http://www.it-ebooks.info/

448 CHAPTER 14 Bean routing and remoting

 To get around this, you can specify the CamelContext id in the annotation defini-
tion. Suppose you have two CamelContext elements defined as follows:

<camelContext id="camel-1" xmlns="http://camel.apache.org/schema/spring" />
<camelContext id="camel-2" xmlns="http://camel.apache.org/schema/spring" />

When you use the @Consume annotation in your bean, you can specify the context by
using the context attribute. For example, to reference the context with ID equal to
camel-1, you could do the following:

@Consume(uri = "jms:partnerInventoryUpdate", context = "camel-1")
public void updateInventory(Inventory inventory) {
 jdbc.execute(toSql(inventory));
}

You now know all the details necessary for consuming messages from Camel end-
points using the @Consume annotation. We mentioned before that you can similarly
use annotations for producing messages to Camel endpoints. We’ll look at the
@Produce annotation that does this next.

14.1.3 Sending messages with @Produce

You now have a new requirement for the InventoryUpdater bean. When you receive
an inventory update from a partner, in addition to updating the database, you must
send the update to the JMS partnerAudit queue for processing. Rider Auto Parts has
added a new system that keeps track of how often partners send updates, whether
updates had errors, and so on. Figure 14.2 illustrates this process.

 This addition would be dead simple if you were using a Camel DSL route already,
but you need to add this to your existing InventoryUpdater bean. You can do this by
using the @Produce annotation.

 Like the @Consume annotation described in the previous section, the @Produce
annotation allows you to access any Camel endpoint without using one of Camel’s
DSLs. The difference is that the @Produce annotation doesn’t attach to a method
within a class; it attaches to a field or property setter within a class. This field can be
either a ProducerTemplate or an interface you use in your business logic. In the case
of a ProducerTemplate, Camel will simply inject a new ProducerTemplate that points
to the URI you specify. If a plain interface is supplied, Camel has to do some extra
work by injecting a proxy object. We’ll look at both approaches next.

partnerInventoryUpdate

inventoryDB

Inventory
updater

bean
partnerAudit Figure 14.2 When an inventory

update comes in, it’s used to update
the inventory database and it’s also
sent to the partnerAudit queue
for auditing.

 www.it-ebooks.info

http://www.it-ebooks.info/

449Using beans for routing

INJECTING A PRODUCERTEMPLATE

The ProducerTemplate class is a natural way of sending messages to Camel endpoints.
You’ve seen it used in previous chapters, so its use should be familiar. A complete dis-
cussion of the ProducerTemplate is given in appendix C.

 You can use the @Produce annotation to set up a ProducerTemplate for a particu-
lar endpoint URI.

import javax.sql.DataSource;

import org.apache.camel.Consume;
import org.apache.camel.Produce;
import org.apache.camel.ProducerTemplate;
import org.springframework.jdbc.core.JdbcTemplate;

public class InventoryUpdaterAnnotatedWithProduce {

 @Produce(uri = "jms:partnerAudit")
 ProducerTemplate partnerAudit;

 private JdbcTemplate jdbc;

 public InventoryUpdaterAnnotatedWithProduce(DataSource ds) {
 jdbc = new JdbcTemplate(ds);
 }

 @Consume(uri = "jms:partnerInventoryUpdate")
 public void updateInventory(Inventory inventory) {
 jdbc.execute(toSql(inventory));
 partnerAudit.sendBody(inventory);
 }

 ...
}

The @Produce annotation B takes the endpoint URI jms:partnerAudit and creates a
new ProducerTemplate for that URI. At any other point in the bean’s use, you can
then send messages to that endpoint using the ProducerTemplate that was created C.

 You can also specify an endpoint reference or CamelContext to use for the @Produce
annotation, as was described in the previous section for the @Consume annotation.

INJECTING A PROXY PRODUCER

It’s also possible to send messages without using the ProducerTemplate at all. Camel
allows you to specify an interface as the frontend for the endpoint specified. This
approach allows you to eliminate the dependence on more Camel APIs, like the
ProducerTemplate.

TIP If you don’t care about depending on Camel APIs, we recommend using
the ProducerTemplate described in the previous section because it has less
overhead than the solution we’ll be describing next.

So how can you use a plain interface as the frontend for an endpoint? The short
answer is that Camel creates an instance of the interface—a smart proxy object. This

Listing 14.3 Using the @Produce annotation to set up a ProducerTemplate

Sets up
ProducerTemplate
for URI

B

Sends message using
ProducerTemplate

C

 www.it-ebooks.info

http://www.it-ebooks.info/

450 CHAPTER 14 Bean routing and remoting

proxy object converts method calls into objects to be passed to the Camel endpoint.
The whole process is described in more detail in section 14.2.2.

 Suppose you define an interface for your backend audit processing systems as
follows:

public interface PartnerAudit {
 public void audit(Inventory inventory);
}

The single audit method is intended to mean that the Inventory object passed in
should be audited. The interface can then replace the ProducerTemplate, as shown
here.

import javax.sql.DataSource;

import org.apache.camel.Consume;
import org.apache.camel.Produce;
import org.springframework.jdbc.core.JdbcTemplate;

public class InventoryUpdaterAnnotatedWithProduceInterface {

 @Produce(uri = "jms:partnerAudit")
 PartnerAudit partnerAudit;

 private JdbcTemplate jdbc;

 public InventoryUpdaterAnnotatedWithProduce(DataSource ds) {
 jdbc = new JdbcTemplate(ds);
 }

 @Consume(uri = "jms:partnerInventoryUpdate")
 public void updateInventory(Inventory inventory) {
 jdbc.execute(toSql(inventory));
 partnerAudit.audit(inventory);
 }

 ...
}

The bean looks much like before, except that now there’s no use of Producer-
Template. Instead, you use the PartnerAudit interface as the binding point for the
@Produce annotation B. This annotation will now tell Camel that a smart proxy object
must be created that extends from PartnerAudit and passes on a message to the
partnerAudit JMS queue. Then, when you call the audit method on the interface C,
Camel sends a message to the endpoint specified in the @Produce annotation.

14.1.4 When to use beans for routing

You may be wondering when you should use the messaging annotations rather than
one of Camel’s DSLs. There’s no clear-cut answer to the question, but we can give you
some guidelines to make your decision easier.

Listing 14.4 Using the @Produce annotation to set up a producer on an interface

Injects smart
proxy

B

Sends message
using interface

C

 www.it-ebooks.info

http://www.it-ebooks.info/

451Hiding middleware

 In general, we recommend that you use one of Camel’s DSLs if at all possible.
They have built-in functionality for setting up common integration scenarios and will
most likely make your life a lot easier. But they involve the added burden of learn-
ing more concepts.

 You may want to use the messaging annotations in the following situations:

■ You have a simple message flow where there is a single well-defined input or
output URI. If you require a more dynamic bean when using annotations, see
the @RecipientList annotation discussed in section 2.5.4.

■ You would rather not learn about Camel’s DSLs.
■ You have a use case so simple that you have no need for EIPs.
■ You just want to access Camel’s library of components.

We want to stress that for complex integration scenarios, you should use one of
Camel’s DSLs. Trying to design a complex integration with the messaging annotations
could lead to a messy solution—they were not designed for complex routings.

 You’ve seen how you can reduce your dependence on Camel’s DSLs with these
annotations. Let’s now take a look at how you can take that a step further and com-
pletely hide Camel from users of your application.

14.2 Hiding middleware
Middleware is defined as the software layer that lies between an operating system and
an application. Middleware is used for interoperability among applications that are
running in a coherent distributed system. Examples include Enterprise Application
Integration (EAI), enterprise service buses (ESBs), and message queuing software
(such as Apache ActiveMQ).

 Camel is also used for integrating and providing interoperability among applica-
tions that may run in a coherent distributed system. You could potentially view Camel
as middleware software, but that isn’t entirely accurate, because Camel leverages third-
party software where appropriate. For example, you can have Camel sitting on top of
Apache ActiveMQ, and together they’re middleware software.

 An important aspect of writing software these days is trying to write business logic
that focuses on the domain concepts as much as possible. You want your business logic
to deal with the business domain rather than with the myriad of technology stacks out
there, such as SOAP, REST, JMS, FTP, and XMPP.

 One way to avoid this situation is to decouple as much middleware from your busi-
ness logic as possible—to hide the middleware. By keeping your business logic hidden
from the middleware, your application will be much more flexible and easy to change.
This also makes the lives of clients who access the business logic easier, because they
only have to deal with the business domain.

 To demonstrate this, we’ll cover a use case from Rider Auto Parts. You and your
team have developed a starter kit, which is a piece of software new business partners
can use to more easily integrate with Rider Auto Parts.

 www.it-ebooks.info

http://www.it-ebooks.info/

452 CHAPTER 14 Bean routing and remoting

The situation without the starter kit is two businesses needing to integrate their busi-
ness logic. Because the business logic is distributed, the logic of one partner needs to
communicate over the network in order to interact with the other partner’s logic.
That means the business logic needs to know about and use the transport. You want to
hide the complexity of transports, which you can depict by labeling it as middleware,
as shown in figure 14.3.

 The starter kit is middleware software based on Camel and a selected third-party
technology for the transport. The transport must support networking to transfer data
from one machine to another. Such a transport could, for example, be HTTP- or mes-
saging-based. The transport technology that best fits the situation should be chosen.
For this example, the transport technology is messaging using Apache ActiveMQ.

 The business partner deploys the starter kit in their infrastructure and uses it to
communicate with Rider Auto Parts, as shown in figure 14.4.

 In this example, the starter kit takes care of all the complexity involved in sending
messages over the network using Apache ActiveMQ. All the business partner should
focus on is a single client interface that defines the API they need to use.

 In this section, you’ll learn how to develop such a starter kit. We’ll start by defining
the client API and creating a simple test that runs in a single JVM. Then you’ll learn how

Business partner Rider Auto Parts

Transport
Business

logic
Business

Transport logic

Network

Middleware

Figure 14.3 Each part of the business logic leverages middleware when communicating with the
other parts.

Gateway ActiveMQ

Rider Auto Parts
starter kit

Business partner

Business
logic

Rider Auto Parts

ActiveMQ

Business
logic

Middleware

Figure 14.4 The starter kit is used by business partners to hide the middleware and easily
communicate with Rider Auto Parts.

 www.it-ebooks.info

http://www.it-ebooks.info/

453Hiding middleware

to change the middleware to switch transports without requiring any changes in the cli-
ent. In section 14.2.2, we’ll let the communication happen remotely between two JVMs
using JMS as the transport, which is what you might use in a real-life situation.

14.2.1 Introducing the starter kit

The starter kit is a Camel application that defines a single interface for business part-
ners to use when integrating their businesses with Rider Auto Parts. To keep the use
case simple, the interface will provide the following two methods:

public interface RiderService {
 void updateInventory(Inventory inventory);
 List<ShippingDetail> shipInventory(String supplierId, String partId);
}

The first method is used by clients to send updated inventory information to Rider
Auto Parts. This allows Rider Auto Parts to maintain current information about its
suppliers’ inventory situation, with all data being stored in a datastore within Rider
Auto Parts. The second method is used by suppliers to find out which of the many
Rider Auto Parts retail stores inventory should be shipped to.

THE DOMAIN

In this example, the information on the domain objects is kept simple and limited, as
the following code snippets show (we’ve omitted the getters and setters):

public class Inventory implements Serializable {
 private String supplierId;
 private String partId;
 private String name;
 private String amount;
 ...
}

Here’s the ShippingDetail domain object:

public class ShippingDetail implements Serializable {
 private String address;
 private String zip;
 private String country;
 private String amount;
 ...
}

Using the RiderService interface, it should be easy for business partners to send
inventory information to Rider Auto Parts, as the following code example shows:

private void updateInventory(RiderService rider) {
 Inventory inventory = new Inventory("1234", "4444");
 inventory.setName("Bumper");
 inventory.setAmount("57");

 rider.updateInventory(inventory);
}

 www.it-ebooks.info

http://www.it-ebooks.info/

454 CHAPTER 14 Bean routing and remoting

This example demonstrates the concept of decoupling business logic from the mid-
dleware. The example is pure business logic, focusing on assembling inventory infor-
mation and sending it to Rider Auto Parts using the RiderService API. The example
has no middleware logic; there’s no logic present to indicate how the data is actually
sent. In this case, Camel is the middleware, and the example doesn’t use any Camel
APIs at all. You’ve fully decoupled your business logic from the integration logic.

 With the domain in place, let’s turn our attention to setting up Camel. First you’ll
want to create a test that runs on a single JVM.

SETTING UP CAMEL

In Camel, you need to set up two things to implement your first test. You need a
mocked RiderService that can act as Rider Auto Parts and return dummy data. This
is easy to do—all it involves is implementing the RiderService interface.

public class RiderAutoPartsMock implements RiderService {
 private static Log LOG = LogFactory.getLog(RiderAutoPartsMock.class);

 public void updateInventory(Inventory inventory) {
 LOG.info("Updating inventory " + inventory);
 }

 public List<ShippingDetail> shipInventory(String supplierId,
 String partId) {
 LOG.info("Shipping to Rider Road 66 and Ocean View 123");

 ShippingDetail detail = new ShippingDetail();
 detail.setAddress("Rider Road 66");
 detail.setCountry("USA");
 detail.setZip("90210");
 detail.setAmount("89");

 ShippingDetail detail2 = new ShippingDetail();
 detail2.setAddress("Ocean View 123");
 detail2.setCountry("USA");
 detail2.setZip("89103");
 detail2.setAmount("45");

 List<ShippingDetail> answer = new ArrayList<ShippingDetail>();
 answer.add(detail);
 answer.add(detail2);
 return answer;
 }
}

You then need to create a Spring XML file.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:camel="http://camel.apache.org/schema/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans

Listing 14.5 Simulating Rider Auto Parts

Listing 14.6 Spring XML setting up Camel

 www.it-ebooks.info

http://www.it-ebooks.info/

455Hiding middleware

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">

 <bean id="riderMocked"
 class="camelinaction.RiderAutoPartsMock"/>

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <proxy id="rider"
 serviceInterface="camelinaction.RiderService"
 serviceUrl="direct:rider"/>

 <route>
 <from uri="direct:rider"/>
 <to uri="bean:riderMocked"/>
 </route>
 </camelContext>
</beans>

First you have to define a Spring bean, riderMocked B (the class from listing 14.5),
which is used to simulate the Rider Auto Parts business.

 The next part is the interesting part—it’s the mechanism that decouples the busi-
ness logic from the middleware. This is done by proxying C the RiderService inter-
face and having its method invocations proxied by sending a message to the given
endpoint. We’ll cover this in much more detail in section 14.2.2.

 What remains is to define a route D that sends the messages to Rider Auto Parts.
In this example, you route the message to the mocked bean that simulates Rider Auto
Parts.

 The source code for the book contains this example in the chapter14/starterkit
directory. You can run this example by using the following Maven goal:

mvn test -Dtest=StarterKitMockedTest

When you run the example, you should see the following lines, among others, on the
console:

[main] INFO - Sending inventory
[main] INFO - Updating inventory 1234, 4444, Bumper, 57
[main] INFO - Shipping to Rider Road 66 and Ocean View 123
[main] INFO - Received shipping details

If you check the source code for the camelinaction.StarterKitMockedTest class,
you should notice that it’s not using any Camel code to execute the business logic.

 In the introduction to this section, we said that Camel can hide the middleware,
allowing you to decouple your business logic from the transport. You’ll now see this in
action as you change the transport from direct to the SEDA component without
requiring any changes in the business logic.

CHANGING THE TRANSPORT TO SEDA

Changing the transport to SEDA is easily done in the Spring XML file, as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <proxy id="rider"
 serviceInterface="camelinaction.RiderService"

Simulates Rider
Auto PartsB

Proxies
Camel route
as interfaceC

D Specifies route
to be invoked

 www.it-ebooks.info

http://www.it-ebooks.info/

456 CHAPTER 14 Bean routing and remoting

 serviceUrl="seda:rider"/>

 <route>
 <from uri="seda:rider"/>
 <to uri="bean:riderMocked"/>
 </route>
</camelContext>

You can run this example using the following Maven goal:

mvn test -Dtest=StarterKitMockedSedaTest

When you run the example, you should see the following lines on the console:

[main] INFO - Sending inventory
[seda://rider] INFO - Updating inventory 1234, 4444, Bumper, 57
[seda://rider] INFO - Shipping to Rider Road 66 and Ocean View 123
[main] INFO - Received shipping details

The difference between this example and the previous one is that by using SEDA you
let another thread process the route (indicated by the [seda://rider] in the console
output).

 Listing 14.6 uses a Camel proxy to hide the middleware, by using the <proxy/> tag.
We’ll now look at how this works.

14.2.2 Using Spring remoting and Camel proxies
Using a Camel proxy is similar to using Spring remoting, which is a feature in the Spring
Framework that offers remoting support for various technologies, making it easier to
remote-enable services. Spring has a limited set of technologies that can be used. Camel
takes this a big step forward by remote-enabling all of the Camel components.

 To understand how a Camel proxy works, let’s start by adding a log in the route
from listing 14.6 that will output information about the actual messages sent by the
Camel proxy:

<route>
 <from uri="direct:rider"/>
 <to uri="log:rider"/>
 <to uri="bean:riderMocked"/>
</route>

The console outputs the following:

[main] INFO rider - Exchange[ExchangePattern:InOut,
BodyType:org.apache.camel.component.bean.BeanInvocation,
Body:BeanInvocation public abstract void
 camelinaction.RiderService.updateInventory(camelinaction.Inventory)
 with [1234, 4444, Bumper, 57]]]

As you can see from the output, Camel uses a BeanInvocation type in the message body.
The purpose of the BeanInvocation is to hold information about a bean invocation. It
indicates that the updateInventory method is to be invoked with these parameters.

 Because BeanInvocation is serializable, it’s possible to send it over a remote net-
work and have it invoked on the remote side. Let’s try this using JMS as the transport
and using two JVMs.

 www.it-ebooks.info

http://www.it-ebooks.info/

457Hiding middleware

USING JMS AS THE TRANSPORT

Next, we’ll look at a client and server each in separate JVMs, using JMS as the trans-
port. First we’ll discuss the server and how to start it. Then we’ll look at the client and
run it to see it in action.

 Here’s the Spring XML file you use to define the server.

<broker:broker persistent="false" brokerName="localhost">
 <broker:transportConnectors>
 <broker:transportConnector name="tcp" uri="tcp://localhost:61616"/>
 </broker:transportConnectors>
</broker:broker>

<bean id="riderMocked" class="camelinaction.RiderAutoPartsMock"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="activemq:queue:rider"/>
 <to uri="log:server"/>
 <to uri="bean:riderMocked"/>
 </route>
</camelContext>

On the server you embed an Apache ActiveMQ broker that uses TCP as the transport
on port 61616 B. As you have two JVMs, you need a remote protocol, which in this
case is TCP. In the route, you consume messages from the ActiveMQ rider queue C,
which is the destination where the client will send the messages. Because you use an
embedded ActiveMQ broker, you don’t need to define an ActiveMQ component
because Camel can leverage an intra-VM connection.

 You can start the server using the following Maven command in the chapter14/
starterkit directory:

mvn compile exec:java -PServer

The client is simple. All you need to do is define the proxy and configure the
ActiveMQ transport, as follows:

<bean id="activemq"
 class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <proxy id="rider"
 serviceInterface="camelinaction.RiderService"
 serviceUrl="activemq:queue:rider"/>
</camelContext>

You can run the client using the following Maven command in the chapter14/
starterkit directory:

mvn test -Dtest=StarterKitClientTest

Listing 14.7 Server with ActiveMQ broker

ActiveMQ
brokerB

Route with
serviceC

 www.it-ebooks.info

http://www.it-ebooks.info/

458 CHAPTER 14 Bean routing and remoting

When the client is run, you should see activity in both the client and server consoles.
The server should log the message received, which is similar to what you saw previ-
ously when JMS wasn’t used as the transport:

12:34:07 - Exchange[ExchangePattern:InOut,
➥BodyType:org.apache.camel.component.bean.BeanInvocation,
➥Body:BeanInvocation public abstract void
➥camelinaction.RiderService.updateInventory(camelinaction.Inventory)
 ➥with [1234, 4444, Bumper, 57]]]
12:34:07 - Updating inventory 1234, 4444, Bumper, 57

Now you’ve seen how to decouple your business logic from the middleware and
change the transport without any code changes to the business logic. With that, it’s
time to look under the hood at how this works.

HOW CAMEL PROXIES WORK

The code for creating Camel proxies is located in camel-core as the
org.apache.camel.component.bean.ProxyHelper class, and it has various methods
for proxying an interface with a Camel endpoint. In fact the <proxy/> tag you used in
Spring XML is a facade that leverages the ProxyHelper class.

 Figure 14.5 is a sequence diagram that depicts what happens at runtime when a cli-
ent invokes the shipInventory method on a proxied RiderService interface.

 In this figure, a client invokes the shipInventory method on RiderService. This
is proxied with the help of java.lang.reflect.Proxy, which invokes the CamelInvo-
cationHandler. This handler creates a BeanInvocation that contains information
about the method (and its parameters) invoked on the proxy. Then the BeanInvoca-
tion is sent to the endpoint using a Camel Producer, which waits for the response to

RiderService CamelInvocation
Handler

ProducerBeanInvocation

shipInventory

Invoke
Create

Send to endpoint

Reply

Converted reply

Reply

Wait
for

response

Figure 14.5 A sequence diagram showing how a Camel proxy works under the covers, sending
a BeanInvocation message to a remote endpoint and waiting for the reply, which eventually
is returned to the caller

 www.it-ebooks.info

http://www.it-ebooks.info/

459Hiding middleware

come back. The response is then adapted to the RiderService by converting it to the
same type as the return type on the method.

NOTE Camel proxies will, by default, always use request-response messaging
style (InOut) when a proxied method is invoked. This also applies to methods
that don’t return a value (whose return type is void). You can enforce a method
to use the fire-and-forget messaging style (InOnly) by adding the @InOnly anno-
tation to the method definition in the interface. But keep in mind that when
using @InOnly, the method call will be fully asynchronous, so you won’t know
if the receiver processed the message successfully. For example, exceptions
thrown by the receiver won’t be propagated back to the method call.

When using a Camel proxy, there’s a single rule that must be adhered to.

RULE WHEN USING A CAMEL PROXY

Camel proxies use a BeanInvocation as the message body sent to the endpoint. If the
endpoint is representing a remote destination, the message body must be serialized so
it can be sent over the wire. This is why the information stored in BeanInvocation
must be serializable. For Camel end users, that means the parameters you pass to the
proxied interface must be serializable.

 For example, if you look at the updateInventory method in the RiderService
interface, you can see that it uses an Inventory object as a parameter.

public interface RiderService {
 void updateInventory(Inventory inventory);
 List<ShippingDetail> shipInventory(String supplierId, String partId);
}

When you invoke the updateInventory method, as shown in the following test snip-
pet, the Inventory object must be serializable.

public void testStarterKitUpdateInventory() throws Exception {
 RiderService rider = context.getRegistry().lookup("rider",
 RiderService.class);

 Inventory inventory = new Inventory("1234", "4444");
 inventory.setName("Bumper");
 inventory.setAmount("57");

 rider.updateInventory(inventory);
}

This is done by implementing the java.io.Serializable interface on the Inventory
class:

public class Inventory implements Serializable {
 ...
}

The same rule applies to data being returned, so the shipInventory method must
also return serializable data, which is ensured by letting the ShippingDetail class
implement java.io.Serializable.

 www.it-ebooks.info

http://www.it-ebooks.info/

460 CHAPTER 14 Bean routing and remoting

USING A CAMEL PROXY FROM THE JAVA DSL

You can also create a proxy in Java code. For example, the following example from
Spring XML,

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <proxy id="rider"
 serviceInterface="camelinaction.RiderService"
 serviceUrl="activemq:queue:rider"/>
</camelContext>

can be rewritten in Java code using org.apache.camel.builder.ProxyBuilder as
follows:

RiderService rider = new ProxyBuilder(context).endpoint("seda:rider")
 .build(RiderService.class);

The source code for the book contains an example in the chapter14/starterkit direc-
tory. You can try it with the following Maven goal:

mvn test -Dtest=StarterKitJavaProxyBuilderTest

You’ve now learned how to decouple your business logic from the integration logic by
hiding the middleware with help from Camel proxies.

14.3 Summary and best practices
In this last chapter of Camel in Action, we’ve shown you ways of using Camel that min-
imize your dependence on Camel APIs and completely hide Camel from your appli-
cation’s users. These abilities are considered extra features of Camel, rather than
core pieces. They add functionality that experienced Camel users, which you now
are, can appreciate.

 There are a few things you should take away from this chapter:

■ The messaging annotations are great for simple use cases. When all you want to do is
hook up a bean to a transport supported by Camel, the messaging annota-
tions are an easy way to go. There is little learning overhead with these, com-
pared to using the Camel DSLs. We still recommend the Camel DSLs for more
complex scenarios.

■ Use hiding middleware principles when you don’t want to expose your transports. In
some cases, you may not want clients of your service to know what transport
you’re using to communicate with the backend. For instance, you may want to
change the transport in the future without changing the client’s code.

You’ve now made it through many Camel and general enterprise integration con-
cepts; you have the knowledge to tackle complex integration problems with Camel.

 As a final suggestion, try to keep in touch with the Camel community. It’s a busy and
exciting place, and we’d love to hear from you there. Hope you’ve enjoyed the ride!

 www.it-ebooks.info

http://www.it-ebooks.info/

461

appendix A
Simple,

 the expression language

Camel offers a powerful expression language, which back in the earlier days wasn’t
as powerful and was labeled Simple. It has evolved to become much more since
then, but don’t worry: it’s still simple to use.

 The Simple language is provided out of the box in the camel-core JAR file,
which means you don’t have to add any JARs on the classpath to use it.

A.1 Introducing Simple
In a nutshell, the Simple expression language evaluates an expression on the cur-
rent instance of Exchange that is under processing. The Simple language can be
used for both expressions and predicates, which makes it a perfect match to be
used in your Camel routes.

 For example, the Content-Based Router EIP can leverage the Simple language
to define predicates in the when clauses, as shown here:

from("activemq:queue:quotes")
 .choice()
 .when(simple("${body} contains 'Camel'")).to("activemq:camel")
 .when(simple("${header.amount} > 1000")).to("activemq:bigspender")
 .otherwise().to("activemq:queue:other");

The equivalent Spring XML example would be as follows:

<route>
 <from uri="activemq:queue:quotes"/>
 <choice>
 <when>
 <simple>${body} contains 'Camel'</simple>
 <to uri="activemq:camel"/>
 </when>

 www.it-ebooks.info

http://www.it-ebooks.info/

462 APPENDIX A Simple, the expression language

 <when>
 <simple>${header.amount} > 1000</simple>
 <to uri="activemq:bigspender"/>
 </when>
 <otherwise>
 <to uri="activemq:queue:other"/>
 </otherwise>
 </choice>
</route>

As you can see from the preceding examples, the Simple expression is understandable
and similar to other scripting languages. In these examples, Camel will evaluate the
expression as a Predicate, which means the result is a boolean, which is either true
or false. In the example, you use operators to determine whether the message body
contains the word Camel or whether the message header amount is larger than 1000.

 That gives you a taste of the Simple language. Let’s look at its syntax.

A.2 Syntax
The Simple language uses ${ } placeholders for dynamic expressions, such as those in
the previous examples. You can use multiple ${ } placeholders in the same expres-
sion, but nested placeholders aren’t supported.

 The following expression is not valid:

"${header.${header.bar}}"

The following is valid:

"Hello ${header.name} thanks for ordering ${body}"

An alternative syntax was introduced in Camel 2.5 to accommodate a clash with
Spring’s property placeholder feature. You can now also use $simple{ } placeholders
with Simple, such as shown in this example:

"Hello $simple{header.name} thanks for ordering $simple{body}"

These examples use variables such as body and header. The next section covers this.

A.3 Built-in variables
The Simple language provides a number of variables that bind to information in the
current Exchange. You’ve already seen the body and header. Table A.1 lists all the vari-
ables available.

Table A.1 Variables in the Simple language

Variable Type Description

body
in.body

Object Contains the input message body

out.body Object Contains the output message body

 www.it-ebooks.info

http://www.it-ebooks.info/

463Built-in functions

The variables can easily be used in a Simple expression, as you’ve already seen. Log-
ging the message body can be done using ${body} as shown in the following route
snippet:

from("activemq:queue:quotes")
 .log("We received ${body}")
 .to("activemq:queue:process");

The Simple language also has a set of built-in functions.

A.4 Built-in functions
The Simple language has four functions at your disposal, as listed in table A.2.

header.XXX
in.header.XXX
in.headers.XXX

Object Contains the input message header XXX

out.header.XXX
out.headers.XXX

Object Contains the output message header XXX

property.XXX Object Contains the Exchange property XXX

exchangeId String Contains the unique ID of the Exchange

sys.XXX
sysenv.XXX

String Contains the system environment XXX

exception Object Contains the exception on the Exchange, if any exists

exception.stacktrace String Contains the exception stacktrace on the Exchange,
if any exists; requires Camel 2.6 or better

exception.message String Contains the exception message on the Exchange, if
any exists

threadName String Contains the name of the current thread; can be used for
logging purposes

Table A.2 Functions provided in the Simple language

Function Type Description

bodyAs(type) type Converts the body to the given type. For example,
bodyAs(String) or
bodyAs(com.foo.MyType). Will return null
if the body could not be converted.

mandatoryBodyAs(type) type Converts the body to the given type. Will throw a
NoTypeConversionAvailableException
if the body could not be converted.

Table A.1 Variables in the Simple language (continued)

Variable Type Description

 www.it-ebooks.info

http://www.it-ebooks.info/

464 APPENDIX A Simple, the expression language

For example, to log a formatted date from the message header, you could do as follows:

<route>
 <from uri="activemq:queue:quote"/>
 <log message="Quote date ${date:header.myDate:yyyy-MM-dd HH:mm:ss}"/>
 <to uri="activemq:queue:process"/>
</route>

In this example, the input message is expected to contain a header with the key
myDate, which should be of type java.util.Date.

 Suppose you need to organize received messages into a directory structure con-
taining the current day’s date as a parent folder. The file producer has direct support
for specifying the target filename using the Simple language as shown in bold:

from("activemq:queue:quote")
 .to("file:backup/?fileName=${date:now:yyyy-MM-dd}/${exchangeId}.txt")
 .to("activemq:queue:process");

Now suppose the file must use a filename generated from a bean. You can use the
bean function to achieve this:

from("activemq:queue:quote")
 .to("file:backup/?fileName=${bean:uuidBean?method=generate}")
 .to("activemq:queue:process");

In this example, Camel will look up the bean with the ID uuidBean from the Registry
and invoke the generate method. The output of this method invocation is returned
and used as the filename.

headerAs(key, type) type Converts the header with the given key to the given
type. Will return null if the header could not be
converted.

bean:beanId[?method] Object Invokes a method on a bean. Camel will look up the
bean with the given ID from the Registry and
invoke the appropriate method. You can optionally
explicitly specify the name of the method to invoke.

date:command:pattern String Formats a date. The command must be either now
or header.XXX: now represents the current
timestamp, whereas header.XXX will use the
header with the key XXX.

The pattern is based on the
java.text.SimpleDataFormat format.

properties:[locations:]key String Resolves a property with the given key using the
Camel Properties component.

The Camel Properties component is covered in sec-
tion 6.1.6 of chapter 6.

Table A.2 Functions provided in the Simple language (continued)

Function Type Description

 www.it-ebooks.info

http://www.it-ebooks.info/

465Built-in file variables

 The Camel Properties component is used for property placeholders. For example,
you could store a property in a file containing a configuration for a big-spender
threshold.

big=5000

Then you could refer to the big properties key from the Simple language:

from("activemq:queue:quotes")
 .choice()
 .when(simple("${header.amount} > ${properties.big}")
 .to("activemq:bigspender")
 .otherwise()
 .to("activemq:queue:other");

The Simple language also has built-in variables when working with the Camel File and
FTP components.

A.5 Built-in file variables
Files consumed using the File or FTP components have file-related variables available
to the Simple language. Table A.3 lists those variables.

Among other things, the file variables can be used to log which file has been consumed:

<route>
 <from uri="file://inbox"/>
 <log message="Picked up ${file:name}"/>
 ...
</route>

Table A.3 File-related variables available when consuming files

Variable Type Description

file:name String Contains the filename (relative to the starting directory)

file:name.ext String Contains the file extension

file:name.noext String Contains the filename without extension (relative to the
starting directory)

file:onlyname String Contains the filename without any leading paths

file:onlyname.noext String Contains the filename without extension and leading paths

file:parent String Contains the file parent (the paths leading to the file)

file:path String Contains the file path (including leading paths)

file:absolute Boolean Whether or not the filename is an absolute or relative file path

file:absolute.path String Contains the absolute file path.

file:length
file:size

Long Contains the file length

file:modified Date Contains the modification date of the file as a
java.util.Date type

 www.it-ebooks.info

http://www.it-ebooks.info/

466 APPENDIX A Simple, the expression language

The File and FTP endpoints have options that accept Simple language expressions.
For example, the File consumer can be configured to move processed files into a
folder you specify. Suppose you must move files into a directory structure organized by
dates. This can be done by specifying the expression in the move option, as follows:

<from uri="file://inbox?move=backup/${date:now:yyyyMMdd}/${file:name}"/>

TIP The FTP endpoint supports the same move option as shown here.

Another example where the file variables come in handy is if you have to process files
differently based on the file extension. For example, suppose you have CSV and XML
files:

from("file://inbox")
 .choice()
 .when(simple("${file:ext} == 'txt'")).to("direct:txt")
 .when(simple("${file.ext} == 'xml'")).to("direct:xml")
 .otherwise().to("direct:unknown");

NOTE You can read more about the file variables at the Camel website: http:
//camel.apache.org/file-language.html.

In this appendix, we’ve used the Simple language for predicates. In fact, the previous
example determines whether the file is a text file or not. Doing this requires operators.

A.6 Built-in operators
The first example in this appendix implemented the Content-Based Router EIP with
the Simple expression language. It used predicates to determine where to route a
message, and these predicates use operators. Table A.4 lists all the operators sup-
ported in Simple.

Table A.4 Operators provided in the Simple language

Operator Description

== Tests whether the left side is equal to the right side

> Tests whether the left side is greater than the right side

>= Tests whether the left side is greater than or equal to the right side

< Tests whether the left side is less than the right side

<= Tests whether the left side is less than or equal to the right side

!= Tests whether the left side is not equal to the right side

contains Tests whether the left side contains the String value on the right side

not contains Tests whether the left side doesn’t contain the String value on the right side

in Tests whether the left side is in a set of values specified on the right side; the val-
ues must be separated by commas

 www.it-ebooks.info

http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://www.it-ebooks.info/

467Built-in operators

The operators require the following syntax:

${leftValue} <OP> rightValue

The value on the left side must be enclosed in a ${ } placeholder. The operator must
be separated with a single space on the left and right. The right value can either be a
fixed value or another dynamic value enclosed using ${ }.

 Let’s look at some examples.

simple("${in.header.foo} == Camel")

Here you test whether the foo header is equal to the String value "Camel". If you
want to test for "Camel rocks", you must enclose the String in quotes (because the
value contains a space):

simple("${in.header.foo} == 'Camel rocks'")

Camel will automatically type coerce, so you can compare apples to oranges. Camel
will regard both as fruit:

simple("${in.header.bar} < 200")

Suppose the bar header is a String with the value "100". Camel will convert this value
to the same type as the value on the right side, which is numeric. It will therefore com-
pute 100 < 200, which renders true.

 You can use the range operator to test whether a value is in a numeric range.

simple("${in.header.bar} range 100..199")

Both the from and to range values are inclusive. You must define the range exactly as
shown.

not in Tests whether the left side is not in a set of values specified on the right side; the
values must be separated by commas

range Tests whether the left side is within a range of values defined with the following syn-
tax: from..to

not range Tests whether the left side is not within a range of values defined with the following
syntax: from..to

regex Tests whether the left side matches a regular expression pattern defined as a
String value on the right side

not regex Tests whether the left side doesn’t match a regular expression pattern defined as a
String value on the right side

is Tests whether the left side type is an instance of the value on the right side

not is Tests whether the left side type is not an instance of the value on the right side

Table A.4 Operators provided in the Simple language (continued)

Operator Description

 www.it-ebooks.info

http://www.it-ebooks.info/

468 APPENDIX A Simple, the expression language

 A regular expression can be used to test a variety of things, such as whether a value
is a four-digit value:

simple("${in.header.bar} regex '\d{4}'")

You can also use the built-in functions with the operators. For example, to test
whether a given header has today’s date, you can leverage the date function:

simple("${in.header.myDate} == ${date:now:yyyyMMdd}")

TIP You can see more examples in the Camel Simple online documentation:
http://camel.apache.org/simple.html.

The Simple language also allows you to combine two expressions together.

A.6.1 Combining expressions

The Simple language can combine expressions using the and or or operators.
 The syntax for combining two expressions is as follows:

${leftValue} <OP> rightValue <and|or> ${leftValue} <OP> rightValue

Here’s an example using and to group two expressions:

simple("${in.header.bar} < 200 and ${body} contains 'Camel'")

From Camel 2.5 onwards you can combine any number of expressions. In previous
releases you could only combine exactly two expressions.

 The Simple language also supports an OGNL feature.

A.7 The OGNL feature
Both the Simple language and Bean component support an Object Graph Navigation
Language (OGNL) feature when specifying the method name to invoke. OGNL allows
you to specify a chain of methods in the expression.

 Suppose the message body contains a Customer object that has a getAddress()
method. To get the ZIP code of the address, you would simply type the following:

simple("${body.getAddress().getZip()}")

You can use a shorter notation, omitting the get prefix and the parentheses.

simple("${body.address.zip}")

In this example, the ZIP code will be returned. But if the getAddress method returns
null, the example would cause a NoSuchMethodException to be thrown by Camel. If
you want to avoid this, you can use the null-safe operator ?. as follows:

simple("${body?.address.zip}")

The methods in the OGNL expression can be any method name. For example, to
invoke a sayHello method, you would do this:

simple("${body.sayHello}")

 www.it-ebooks.info

http://camel.apache.org/simple.html
http://www.it-ebooks.info/

469Using Simple from custom Java code

Camel uses the bean parameter binding, which we covered in chapter 4. This means
that the method signature of sayHello can have parameters that are bound to the
current Exchange being routed:

public String sayHello(String body) {
 return "Hello " + body;
}

The OGNL feature has specialized support for accessing Map and List types. For exam-
ple, suppose the getAddress method has a getLines method that returns a List. You
could access the lines by their index values, as follows:

simple("${body.address.lines[0]}")
simple("${body.address.lines[1]}")
simple("${body.address.lines[2]}")

If you try to index an element that is out of bounds, an IndexOutOfBoundsException
exception is thrown. You can use the null-safe operator to suppress this exception:

simple("${body.address?.lines[2]}")

If you want to access the last element, you can use last as the index value, as shown
here:

simple("${body.address.lines[last]}")

The access support for Maps is similar, but you use a key instead of a numeric value as
the index. Suppose the message body contains a getType method that returns a Map
instance. You could access the gold entry as follows:

simple("${body.type[gold]}")

You could even invoke a method on the gold entry like this:

simple("${body.type[gold].sayHello}")

This concludes our tour of the various features supported by the Camel Simple lan-
guage. We’ll now take a quick look at how to use the Simple language from custom
Java code.

A.8 Using Simple from custom Java code
The Simple language is most often used directly in your Camel routes, in either the
Java DSL or a Spring XML file. But it’s also possible to use it from custom Java code.

 Here’s an example that uses the Simple language from a Camel Processor.

import org.apache.camel.Exchange;
import org.apache.camel.Processor;
import org.apache.camel.builder.SimpleBuilder;

public class MyProcessor implements Processor {

 public void process(Exchange exchange) throws Exception {
 SimpleBuilder simple = new SimpleBuilder(

Listing A.1 Using the Simple language from custom Java code

 www.it-ebooks.info

http://www.it-ebooks.info/

470 APPENDIX A Simple, the expression language

 "${body} contains 'Camel'");
 if (simple.matches(exchange) {
 System.out.println("This is a Camel message");
 } else {
 System.out.println("This is NOT a Camel message");
 }
 }
}

As you can see in listing A.1, all it takes is creating an instance of SimpleBuilder,
which is capable of evaluating either a predicate or an expression. In the listing, you
use the Simple language as a predicate.

 To use an expression to say “Hello,” you could do the following:

SimpleBuilder simple = new SimpleBuilder("Hello ${header.name}");
String s = simple.evaluate(exchange, String.class);
System.out.println(s);

Notice how you specify that you want the response back as a String by passing in
String.class to the evaluate method.

 Listing A.1 uses the Simple language from within a Camel Processor, but you’re
free to use it anywhere, such as from a custom bean. Just keep in mind that the
Exchange must be passed into the matches method on the SimpleBuilder.

A.9 Summary
This appendix covered the Simple language, which is an expression language pro-
vided with Camel.

 You saw how well it blends with Camel routes, which makes it easy to define predi-
cates in routes, such as those needed when using the Content-Based Router.

 We also looked at how easy it was with the Simple language to access information
from the Exchange message by using the built-in variables. You saw that Simple pro-
vides functions, such as a date function that formats dates and a bean function that
invokes methods on beans.

 Finally, we covered OGNL notation, which makes it even easier to access data from
nested beans.

 All together, the Simple language is a great expression language that should help
you with 95 percent of your use cases.

 www.it-ebooks.info

http://www.it-ebooks.info/

471

appendix B
Expressions

 and predicates

Expressions and predicates are built-in types in Camel that you’ve seen used
throughout this book. They’re very versatile and are used in different places, but
they’re most noticeable in the Camel routes. For example, predicates are used in
the Message Filter and Content-Based Router EIPs. Expressions are used for com-
puting correlation keys for the Aggregator EIP, and appendix A covered the Simple
expression language, which is another testament to the versatility of expressions.

B.1 Expressions
A Camel expression (org.apache.camel.Expression) is evaluated at runtime on
the instance of Exchange that is under processing. You can use either standard or
custom expressions.

B.1.1 Standard expressions

The org.apache.camel.Expression interface is as follows:

public interface Expression {
 <T> T evaluate(Exchange exchange, Class<T> type);
}

The evaluate method uses generics to specify the desired return type.
SYNTAX SUGAR
Camel provides syntax sugar for working with expressions. Suppose you want to
implement a route that can return a message consisting of “Hello ” plus the input
message. This can be done using the Message Translator EIP, which leverages an
Expression to transform a message. With the help of the syntax sugar, you can use

 www.it-ebooks.info

http://www.it-ebooks.info/

472 APPENDIX B Expressions and predicates

the fluent builder style in the Java DSL to express that you want to prepend “Hello ” to
the message body:

from("direct:hey").transform(body().prepend("Hello "));

Alternatively, you could use the Simple expression language (covered in appendix A),
which may be easier to understand in this example:

from("direct:hey").transform(simple("Hello ${body}"));

Simple comes in handy when using Spring XML, because it’s a scripting language that
can be used in XML, as opposed to the former solution, which can’t easily be used in
Spring XML. That’s because it’s based on Java code, which you can’t use directly in
Spring XML files.
USING EXPRESSIONS WITH SPRING XML
In the Java DSL, you have all the power of the Java language, which you don’t have at
your fingertips in Spring XML. The following route isn’t possible in Spring XML.

<route>
 <from uri="direct:hey"/>
 <transform>
 <body><prepend>Hello </prepend></body>
 </transform>
</route>

Instead, you can leverage Simple, like this:

<route>
 <from uri="direct:hey"/>
 <transform>
 <simple>Hello ${body}</simple>
 </transform>
</route>

Although Camel provides a lot of built-in expressions to support many common use
cases, there could be situations where you need to implement a custom expression.

B.1.2 Using custom expressions

Suppose you need to transform the message in a different way, and only the power of
the Java programming language can perform the transformation. In this case, you can
use a custom expression, as shown in listing B.1.

public class MyExpression implements Expression {

 public <T> T evaluate(Exchange exchange, Class<T> type) {
 String body = exchange.getIn().getBody(String.class);
 Object answer;
 if (body.contains("Camel")) {
 answer = "Yes Camel rocks";
 } else {
 answer = "Hello " + body;

Listing B.1 Implementing a custom expression

 www.it-ebooks.info

http://www.it-ebooks.info/

473Predicates

 }
 return exchange.getContext().getTypeConverter()
 .convertTo(type, answer);
 }

}

Using a custom expression in the Java DSL is just a matter of providing an instance in
the Transform EIP, as follows:

from("direct:hey").transform(new MyExpression());

When using custom expressions in Spring XML, you have to define the expression as a
bean, and then use the method call expression to invoke the expression:

<bean id="myExpression" class="camelinaction.MyExpression"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:hey"/>
 <transform>
 <method ref="myExpression"/>
 </transform>
 </route>
</camelContext>

You may have noticed that listing B.1 uses the Camel type converter to convert the
answer to the given type. Camel offers an ExpressionAdapter class that removes the
need for converting. Here’s the same custom expression using the adapter:

public class MyExpression extends ExpressionAdapter {

 @Override
 public Object evaluate(Exchange exchange) {
 String body = exchange.getIn().getBody(String.class);
 if (body.contains("Camel")) {
 return "Yes Camel rocks";
 } else {
 return "Hello " + body;
 }
 }
}

That’s it for expressions. Let’s look now at predicates.

B.2 Predicates
A Camel predicate (org.apache.camel.Predicate) is a specialized expression that
always returns a boolean type. This makes predicates useful for yes/no kinds of
expressions. For example, predicates are used with the Content-Based Router EIP.
There are standard predicates and also custom and compound predicates.

Listing B.2 Implementing custom expression by extending ExpressionAdapter

 www.it-ebooks.info

http://www.it-ebooks.info/

474 APPENDIX B Expressions and predicates

B.2.1 Standard predicates

This is the Predicate interface:

public interface Predicate {
 boolean matches(Exchange exchange);
}

First we’ll cover the common use cases for using predicates.
SYNTAX SUGAR
Camel provides syntax sugar for working with predicates. Suppose you want to filter
messages using the Message Filter EIP and only allow “Camel” messages to pass
through the filter. This can easily be defined in a Camel Java DSL route, as follows:

from("direct:quotes")
 .filter(body().contains("Camel")).to("direct:camelQuotes");

As you can see, you can define the predicate as if the body contained the word
“Camel” using the fluent builder style.

 Implementing this example using Spring XML requires a different approach,
because Spring XML is not Java code and it doesn’t provide the same level of syntax
sugar.
USING PREDICATES WITH SPRING XML
When you use Spring XML, you can use expression languages such as Simple (covered
in appendix A). For example, you can leverage Simple as follows:

<route>
 <from uri="direct:quotes"/>
 <filter>
 <simple>${body} contains 'Camel'</simple>
 <to uri="direct:camelQuotes"/>
 </filter>
</route>

Although Camel provides a lot of built-in predicates to support many common use case,
there may be situations where you need to implement a custom predicate.

B.2.2 Using custom predicates

Suppose you need to filter messages using a more complex algorithm, or you just feel
more comfortable using Java code to compute the predicate. In that case, you can
implement a custom predicate.

public class MyPredicate implements Predicate {

 public boolean matches(Exchange exchange) {
 String body = exchange.getIn().getBody(String.class);
 if (body.contains("Camel")) {
 return true;
 } else if (body.startsWith("Secret")) {
 return true;

Listing B.3 Implementing a custom predicate

 www.it-ebooks.info

http://www.it-ebooks.info/

475Predicates

 }

 return false;
 }
}

As you can see in listing B.3, it’s easy to implement a custom predicate. All you have to
do is implement the matches method and return either true or false.

 Using a custom predicate in a route is just as easy. You simply provide an instance
of it to the filter EIP:

from("direct:quotes")
 .filter(new MyPredicate()).to("direct:camelQuotes");

When using custom predicates in Spring XML, you have to define the predicate as a
bean, and then use the method call expression to invoke the predicate. Here’s the
equivalent example in Spring XML:

<bean id="myPredicate" class="camelinaction.MyPredicate"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:quotes"/>
 <filter>
 <method ref="myPredicate"/>
 <to uri="direct:camelQuotes"/>
 <filter>
 </route>
</camelContext>

Before we end this appendix, we want to show you one last thing: how to combine
other predicates into a compound predicate.

B.2.3 Using compound predicates

You may have a number of existing predicates you want to use together. For example,
you may want to define a predicate as follows: Is the message a String message and either
a Camel or a secret quote?

 In this definition, you have three predicates:

A Is the message a String type?
B Is the message a "Camel" quote?
C Is the message a "Secret" quote?

You just have to use these three predicates together in a compound predicate:

A and (B or C)

Implementing this in Camel can be done with the help of PredicateBuilder, which
provides a range of predicate-related methods. The builder has methods to combine
two predicates using the binary operators and and or. You can then define this in your
Camel routes, like this:

 www.it-ebooks.info

http://www.it-ebooks.info/

476 APPENDIX B Expressions and predicates

Predicate a = body().isInstanceOf(String.class);
Predicate b = body().contains("Camel");
Predicate c = body().startsWith("Secret");

Predicate bc = PredicateBuilder.or(b, c);
Predicate compound = PredicateBuilder.and(a, bc);

from("direct:quotes")
 .filter(compound).to("direct:camelQuotes");

First you define the three predicates. Then, to build the compound predicate, you
first combine predicates b and c together using the or operator. Then this combined
predicate is combined with the a predicate using the and operator.

B.3 Summary
This appendix covered two central concepts used in Camel: expressions and predi-
cates. Both are used throughout Camel and this book.

 In many normal use cases, the built-in predicates and expressions should be suffi-
cient. In this appendix, you learned how to use custom expressions and predicates.
This should give you enough information that you’ll have no trouble using predicates
and expressions with Camel.

 www.it-ebooks.info

http://www.it-ebooks.info/

477

appendix C
The producer

 and consumer templates

Throughout this book, you’ve seen the ProducerTemplate used as an easy way of
sending messages to a Camel endpoint. While it was simple to understand in those
cases, there are many more options to the ProducerTemplate. There is also an ana-
log for consumers—the ConsumerTemplate, which makes consuming messages easy.

 Both of these templates are inspired by the template utility classes in the Spring
Framework that simplify access to an API. In Spring, you may have used a JmsTem-
plate or JdbcTemplate to simplify access to the JMS and JDBC APIs. In the case of
Camel, the ProducerTemplate and ConsumerTemplate interfaces allow you to easily
work with producers and consumers.

 By “easily work,” we mean you can send a message to any kind of Camel compo-
nent in only one line of code. For example, the following code sends a JMS text
message to the ActiveMQ JMS queue named quotes:

producerTemplate.sendBody("activemq:quotes", "Camel Rocks");

Anyone who has worked with the JMS API will know that it takes quite a bit of work
to replicate what Camel does in that single line of code.

 In this appendix, we’ll show you how to use the ProducerTemplate and Consumer-
Template in detail.

C.1 The ProducerTemplate
The ProducerTemplate has a lot of methods that at first may seem a bit overwhelm-
ing. But these methods make it powerful and flexible, which in turn makes it a time
saver in many situations.

 Table C.1 lists the most commonly used ProducerTemplate methods. Notice
that the table lists two sets of methods: send and request methods. It’s very important

 www.it-ebooks.info

http://www.it-ebooks.info/

478 APPENDIX C The producer and consumer templates

to know the difference between these two. Send methods are used for InOnly-style
messaging, where you send a message to a given endpoint and don’t expect any reply.
Request methods are used for InOut-style messaging, where you send a message to a
given endpoint and expect and wait for a reply.

The ProducerTemplate has many variations on these methods, which you’ll learn to
appreciate over time. Also, for each of these methods there’s a corresponding asyn-
chronous method. If you wanted to send a message body asynchronously, you could
use the asyncSendBody method instead of the sendBody method. Chapter 10 details
these methods and how to use them.

C.1.1 Using the ProducerTemplate
Here’s an example of how to use the ProducerTemplate to send a message to a JMS
topic that’s used to audit orders.

public class AuditOrderBean {
 private ProducerTemplate template;

 public AuditOrderBean(CamelContext context) {
 template = context.createProducerTemplate();
 }

 public void auditOrder(String order) {
 template.sendBody(
 "activemq:topic:order.audit", order);
 }
}

In the constructor, you create a new instance of the ProducerTemplate B by invoking
createProducerTemplate on the CamelContext. This template is then used when
sending the audit messages C.

Table C.1 The most commonly used ProducerTemplate methods

Method MEP Description

sendBody InOnly Sends a message payload to a destination.

sendBodyAndHeader InOnly Sends a message payload and a header to a destination.

sendBodyAndHeaders InOnly Sends a message payload with a map of headers to a
destination.

requestBody InOut Sends a message payload to a destination. The reply from
the destination is returned.

requestBodyAndHeader InOut Sends a message payload and a header to a destination.
The reply from the destination is returned.

requestBodyAndHeaders InOut Sends a message payload with a map of headers to a des-
tination. The reply from the destination is returned.

Listing C.1 Using a ProducerTemplate to send a message to a JMS topic

Creates new
template

B

Sends JMS
message
to topic

C

 www.it-ebooks.info

http://www.it-ebooks.info/

479The ProducerTemplate

 To try this out for yourself, find the appendixC/producer directory in the book’s
source and run the following Maven command:

mvn test –Dtest=ProducerTemplateInOnlyTest

If you were instead accessing an HTTP service that returned a reply, you would need to
use one of the request methods from table C.1. Here’s how you could do this.

public class OrderStatusBean {
 private ProducerTemplate template;

 public OrderStatusBean() {
 }

 public OrderStatusBean(CamelContext context) {
 setTemplate(context.createProducerTemplate());
 }

 public void setTemplate(ProducerTemplate template) {
 this.template = template;
 }

 public String orderStatus(String orderId) {
 return template.requestBody(
 "http://localhost:8080/order/status?id="
 + orderId,
 null, String.class);
 }
}

Here you use the requestBody method B to invoke a remote HTTP service with a
header id set to the specified order ID. You then get the order status returned as a
string. Notice that you pass in null for the body because this particular web service only
needs the id header. The HTTP producer will send an HTTP GET request in this case.

 This example is found in the appendixC/producer directory of the book’s source
and can be tested using the following Maven command:

mvn test –Dtest=ProducerTemplateInOutTest

Rather than creating these templates by directly invoking the CamelContext, you can
use features built into the Spring DSL to do this. The template and consumer-
Template elements within the camelContext element allow you to create a template
and then refer to it later by using its ID. Let’s look at this in action.

<bean id="orderStatus" class="camelinaction.OrderStatusBean">
 <property name="template" ref="producerTemplate"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <template id="producerTemplate"/>

Listing C.2 Using a ProducerTemplate to get a reply from an endpoint

Listing C.3 Declaring reusable producer and consumer templates

B Requests result
from web service

Injects Producer-
Template beanB

Creates Producer-
Template beanC

 www.it-ebooks.info

http://www.it-ebooks.info/

480 APPENDIX C The producer and consumer templates

 <consumerTemplate id="consumerTemplate"/>

 <route>
 <from uri="activemq:order.status"/>
 <bean ref="orderStatus" method="orderStatus"/>
 </route>
</camelContext>

Within the camelContext element, you declare reusable templates (C and D) that
you can wire into the OrderStatusBean from listing C.2 by using the bean ID B.

NOTE You may find the template element name a bit confusing. Why not use
the name producerTemplate to align with the consumerTemplate element? At
first, in Camel, there was only the producer template so the XML element was
named template. When the consumer template was introduced, the template
element name was kept to be backwards compatible.

You can find listing C.3 along with a test case in the appendixC/producer directory.
Run the test case with the following Maven command:

mvn test –Dtest=ProducerTemplateDefinedInSpringTest

Next, we’ll focus on the ConsumerTemplate, which you may not have seen much of yet.

C.2 The ConsumerTemplate
The ConsumerTemplate doesn’t have as many methods as the ProducerTemplate. It
only works using the InOnly messaging style, where you use it to poll a given endpoint
for a message. Table C.2 lists the methods you’re most likely to use.

Let’s take a moment to see how you could use the ConsumerTemplate to solve a prob-
lem that’s been asked about again and again on the Camel mailing lists: how can you
use Camel to empty a JMS queue?

Table C.2 The most commonly used ConsumerTemplate methods

Method MEP Description

receive InOnly Polls an endpoint to receive a message and will wait until a
message exists. The entire message is returned.

receive(Timeout) InOnly Polls an endpoint to receive a message, and will wait until a
timeout occurs. The entire message is returned.

receiveNoWait InOnly Polls an endpoint to receive a message, but will not wait if a
message doesn’t exist. The entire message is returned.

receiveBody InOnly Polls an endpoint to receive a message, and will wait until a
message exists. Only the message body is returned.

receiveBody(Timeout) InOnly Polls an endpoint to receive a message, and will wait until a
timeout occurs. Only the message body is returned.

receiveBodyNoWait InOnly Polls an endpoint to receive a message, but will not wait if a
message doesn’t exist. Only the message body is returned.

Creates Consumer-
Template beanD

 www.it-ebooks.info

http://www.it-ebooks.info/

481The ConsumerTemplate

C.2.1 Using the ConsumerTemplate
You can use the ConsumerTemplate much like the ProducerTemplate. For example,
you can use it to empty a JMS queue containing new orders, as shown in listing C.4.
Notice how easily you can use the receiveBody method from table C.2 to retrieve a
message from a JMS queue.

public class OrderCollectorBean {
 private ConsumerTemplate consumer;

 public void setConsumer(ConsumerTemplate consumer) {
 this.consumer = consumer;
 }

 public String getOrders() {
 String order = "";
 String orders = "";

 while (order != null) {
 order = consumer.receiveBody(
 "activemq:orders",
 1000, String.class);
 if (order != null) {
 orders = orders + "," + order;
 }
 }
 return orders;
 }
}

The OrderCollectorBean bean uses a setter for the ConsumerTemplate B so you can
inject it using Spring as follows:

<bean id="orderCollectorBean" class="camelinaction.OrderCollectorBean">
 <property name="consumer" ref="consumerTemplate"/>
</bean>

Of course, this requires that you already have a consumerTemplate element defined,
as shown in listing C.3.

TIP The template and consumerTemplate elements are optional. If you have
no need to refer to them by ID or configure any options on them, you can just
inject them into your bean by type, using Spring’s @Autowired annotation. This
is possible because Camel creates a default instance of each on startup.

You can then empty the order queue by looping until a null body is returned C.
By using the receiveBody method with a timeout of 1000 milliseconds, you’ll wait
for 1 second before returning a null when the queue is empty.

 This example can be found in the appendixC/consumer directory of the book’s
source. Run the test case with the following Maven command:

mvn test

Listing C.4 Using the ConsumerTemplate to poll a JMS queue

Sets Consumer-
Template on
beanB

C Consumes message
from queue

 www.it-ebooks.info

http://www.it-ebooks.info/

482 APPENDIX C The producer and consumer templates

The test case essentially populates the “orders” queue in ActiveMQ with a few messages
and then invokes the OrderCollectorBean to retrieve them.

C.3 Summary
In this appendix we looked at the extremely useful producer and consumer tem-
plates. These two templates give you a way of quickly accessing any Camel endpoint
with one method call. In addition to the examples presented in this appendix, the
ProducerTemplate is used throughout the book.

 www.it-ebooks.info

http://www.it-ebooks.info/

483

appendix D
The Camel community

As with any open source project, the community behind it is extremely important.
We think of community as an all-encompassing term for the official website, mailing
lists, the issue tracker, Camel users, projects based on or extending Camel, and
much more. It’s hard to measure how vibrant a community is when it has this many
moving parts, but it’s important. Having a stagnant or small community will make
your (the user’s) experience more difficult when things go wrong and during
development in general. We think Camel’s community is highly active and expand-
ing, so you are in luck!

 In this appendix we cover some main aspects of the Camel community.

D.1 Apache Camel website
The Apache Camel website, http://camel.apache.org, will be your main resource
when using Camel. You may have already noticed that we reference pages from the
Camel website throughout the book. That’s no mistake—it’s a good resource for
us too.

 On the Camel website, you’ll find links for downloads, documentation, support,
and many other topics.

D.2 FuseSource
FuseSource is a company that offers a productized version of Apache Camel, as
well as training, consulting, and enterprise subscriptions to help IT organizations
build mission-critical applications with Apache Camel. FuseSource does the same
for other popular Apache projects, including ServiceMix, ActiveMQ, and CXF. The
FuseSource team includes founders, PMC members, and many of the committers
to Apache Camel, and they know the code better than anyone else does. The
FuseSource website includes free downloads, documentation, training videos,

 www.it-ebooks.info

http://camel.apache.org
http://www.it-ebooks.info/

484 APPENDIX D The Camel community

webinars, and other tools to help developers get started and be successful with
Apache Camel.

D.3 Camel Tooling
Rider is a visual designer tool from FuseSource (http://fusesource.com) for creating,
editing, testing, and debugging Camel routes. Rider lets you drag and drop all the
enterprise integration patterns supported by Apache Camel onto a canvas and easily
wire them together and configure them. You can use Rider as a tool to visualize exist-
ing routes, modify them, or create brand new integrations.

 Rider comes in two flavors: a web version which can be used with any modern web
browser, or as an Eclipse plugin.

 The web version is very handy for viewing and editing routing rules running inside
your running application, whether it's in a standalone JVM or inside Apache Tomcat,
Apache ServiceMix, or some Java EE container. Figure D.1 shows using Rider inside
the Google Chrome web browser to edit routing rules from a web application running
on top of Apache Tomcat.

 If you use Eclipse as your IDE, using the Rider Eclipse plugin might be an easier
option for you to choose, particularly if you want to design and edit your Camel routes
as part of your development process. Figure D.2 shows using the Rider Eclipse plugin
to edit a Spring XML containing Camel routing rules.

 Visit the FuseSource Rider website (http://rider.fusesource.org) for links to all the
various Rider documentation, screencasts, and download links.

Figure D.1 Rider web tooling visualizes the route. You can drag and drop EIPs from the palette to the
canvas to design the route at design time.

 www.it-ebooks.info

http://fusesource.com
http://rider.fusesource.org
http://www.it-ebooks.info/

485Camel-extra project

D.4 Camel-extra project
Camel ships with a large number of components, but there are also other compo-
nents available separately from the camel-extra project at Google Code (http://
code.google. com/p/camel-extra). The main motivator for not including all Camel
components in the main distribution is licensing. Apache Camel is developed and
distributed under the Apache License, version 2. The camel-extra project contains
components that integrate with libraries that have GPL and LGPL licenses, which are
incompatible with Apache.

 At camel-extra, you’ll find components for integrating with the following, among
others:

■ The Esper Event Stream Processing library
■ The Hibernate ORM tool
■ JBoss Application Server

The components from camel-extra are not officially affiliated with or supported by
Apache.

Figure D.2 Rider Eclipse tooling allows developers to design routes using the Eclipse IDE.

 www.it-ebooks.info

http://www.it-ebooks.info/

486 APPENDIX D The Camel community

D.5 JIRA, mailing lists, and IRC
When things don’t go as planned, you’ll need to get help from people in the Camel com-
munity. If you know you have a problem with a demonstrative test case or have a feature
request, you can create a ticket in Camel’s JIRA instance: http://issues.apache.org/
activemq/browse/CAMEL. From here, one of the Camel developers will assign the ticket
to themselves and possibly commit a fix for the issue. It’s also acceptable to attach a source
code patch that fixes the issue directly to the JIRA ticket (http://camel.apache.org/con-
tributing.html). This allows a Camel developer to apply your patch to the Camel source.

 When you have general questions, you can send a message to the Camel user list
(http://camel.apache.org/mailing-lists.html), which will be answered by one of the
Camel developers or another Camel user.

 You can even chat in real time with a Camel developer or user on the Camel IRC
chat room (http://camel.apache.org/irc-room.html).

D.6 Camel quick reference card
There’s a printable quick reference card available for several of Camel’s EIPs at
dzone.com (http://refcardz.dzone.com/refcardz/enterprise-integration). This card
contains a short description of each EIP, followed by Java DSL and Spring XML snip-
pets that you can reuse in your own applications.

D.7 Other resources
The Camel website has an extensive collection of links to external articles, blogs, proj-
ects, presentations, podcasts, and other sources that cover Camel (http://
camel.apache.org/articles.html). There’s also a link collection to other third-party
Camel projects and companies who use Camel (http://camel.apache.org/user-stories.
html). If you’ve written a blog entry or article, or your company uses Camel and wants
to have a link added, please contact the Camel team on the mailing list.

 www.it-ebooks.info

http://issues.apache.org/activemq/browse/CAMEL
http://issues.apache.org/activemq/browse/CAMEL
http://camel.apache.org/contributing.html
http://camel.apache.org/contributing.html
http://camel.apache.org/mailing-lists.html
http://camel.apache.org/irc-room.html
http://refcardz.dzone.com/refcardz/enterprise-integration
http://camel.apache.org/articles.html
http://camel.apache.org/articles.html
http://camel.apache.org/user-stories.html
http://camel.apache.org/user-stories.html
http://www.it-ebooks.info/

487

appendix E
Akka and Camel

by Martin Krasser

Akka aims to be the platform for the next-generation, event-driven, scalable, and
fault-tolerant architectures on the JVM. One of the core features of Akka is an
implementation of the Actor model. It alleviates the developer from having to deal
with explicit locking and thread management. Using the Actor model raises the
abstraction level and provides a better platform for building correct concurrent
and scalable applications.

 Akka comes with a Camel integration module that allows Akka actors to interact
with communication partners over a great variety of protocols and APIs. This
appendix presents selected Akka-Camel integration features by example. In partic-
ular, it covers the following:

■ An introduction to Akka’s Actor API
■ Implementing consumer actors for receiving messages from Camel end-

points
■ Implementing producer actors for sending messages to Camel endpoints
■ Using and customizing Akka’s CamelService
■ Camel’s ActorComponent for exchanging messages with actors

We’ll also look at a complete routing example that combines many of the features
presented in this appendix.

 The examples only scratch the surface of what can be done with Akka. Inter-
ested readers may want to refer to the Akka online documentation for details
(http://akkasource.org). The Actor model is also discussed on Wikipedia: http://
en.wikipedia.org/wiki/Actor_model. The code examples in this appendix are avail-
able in the source code for the book, and they include a README file that explains
how to build and run them.

 www.it-ebooks.info

http://akkasource.org
http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Actor_model
http://www.it-ebooks.info/

488 APPENDIX E Akka and Camel

 Akka offers both a Scala API and a Java API for actors. Here, only the Scala API will
be covered. We’ll assume that you already have a basic knowledge of the Scala pro-
gramming language.

E.1 Introducing the Akka-Camel integration
In the Actor model, each object is an actor; an actor is an entity that has a mailbox
and a behavior. Messages can be exchanged between actors, and they’ll be buffered in
the mailbox. Upon receiving a message, the behavior of the actor is executed. An
actor’s behavior can be any piece of code, such as code that changes internal state,
sends a number of messages to other actors, creates a number of actors, or assumes
new behavior for the next message to be received.

 An important property of the Actor model is that there’s no shared state between
actors; all communications happen by means of messages. Messages are exchanged
asynchronously, but Akka supports waiting for responses as well. Also, messages are
always processed sequentially by an actor. There’s no concurrent execution of a single
actor instance, but different actor instances can process their messages concurrently.

 Akka, itself, is written in Scala, so applications often use Akka’s Scala API for
exchanging messages with actors. But this is not always an option, especially in the
domain of application integration. Existing applications often can’t be modified to
use the Scala API directly, but can use file transfer on FTP servers or low-level TCP to
exchange messages with other applications. For existing applications to communicate
with actors, a separate integration layer is needed, and this is where Camel fits in:
Camel is designed around the messaging paradigm, and it supports asynchronous
message exchanges as well.

 For implementing an integration layer between Akka actors and third-party appli-
cations or components, Akka provides the akka-camel module (http://doc.akkasource.
org/camel). With the akka-camel module, it’s almost trivial to implement message
exchanges with actors over protocols and APIs such as HTTP, SOAP, TCP, FTP, SMTP,
JMS, and others. Actors can both consume messages from and produce messages for
Camel endpoints.

 Another important feature of the akka-camel module is that it fully supports
Camel’s asynchronous, nonblocking routing engine: asynchronous message
exchanges with actors can be extended to a number of additional protocols and APIs.
Furthermore, all Camel components are supported in a generic way: whenever a new
Camel component is released by the Camel community, it can readily be used to
exchange messages with Akka actors.

 The following section gives a brief introduction to Akka’s Actor API and shows how
to create actors and exchange messages with them.

E.2 Getting started with Akka actors
Let’s start with a simple example: an actor that prints any message it receives to std-
out. When it receives a special stop message, the actor stops itself.

 www.it-ebooks.info

http://doc.akkasource.org/camel
http://doc.akkasource.org/camel
http://www.it-ebooks.info/

489Getting started with Akka actors

 An actor implementation class must extend the Actor trait and implement the
receive partial function. Incoming messages are matched against the case patterns
defined in receive.

import akka.actor.Actor

class SimpleActor extends Actor {
 protected def receive = {
 case "stop" => self.stop
 case msg => println("message = %s" format msg)
 }
}

If one of the patterns matches, the statement after => is executed. Akka’s Actor API
doesn’t impose any constraints on the message type and format—any Scala object can
be sent to an actor.

 Before sending a message to the preceding actor, clients need to create and start
an instance of SimpleActor. This is done with the actorOf factory method, which
returns an actor reference, and by calling the start method on that reference. This
can be done as follows, where the client creates the actor and sends two messages to it:

import akka.actor.Actor._

val simpleActor = actorOf[SimpleActor].start

simpleActor ! "hello akka"
simpleActor ! "stop"

The actor reference, once it’s created, is also used for sending messages to the actor.
With the ! (bang) operator, clients send messages with fire-and-forget semantics. The
! operator adds the message to the actor’s mailbox, and the actor processes the mes-
sage asynchronously. The preceding example first sends a "hello akka" string that
matches the second pattern in the receive method. The message is therefore
written to stdout. The "stop" message sent afterwards is matched by the first pat-
tern, which stops the actor. Note that sending a message to a stopped actor throws
an exception.

 To run the example from the appendixE directory, enter sbt run on the com-
mand line and select camelinaction.SectionE2 from the list of main classes.

NOTE The source code for this book contains a README file in the appen-
dixE directory that explains how to install and set up the Simple Build Tool
(sbt). All the examples in this appendix can be run by executing sbt run
from the command line. This command displays a menu, from which you can
choose the example to run by its number.

The preceding example only uses a small part of Akka’s Actor API. It demonstrates
how clients can send messages to actors and how actors can match and process these
messages. The next step is to add an additional interface to the actor so that it can
receive messages via a Camel endpoint.

 www.it-ebooks.info

http://www.it-ebooks.info/

490 APPENDIX E Akka and Camel

E.3 Consuming messages from Camel endpoints
If you want to make actors accessible via Camel endpoints, actor classes need to mixin
the Consumer trait and implement the endpointUri method. Consumer actors can be
used for both one-way and request-response messaging.

E.3.1 One-way messaging

The following listing extends the example from the previous section and enables the
actor to receive messages from a SEDA endpoint.

import akka.actor.Actor
import akka.camel.{Consumer, Message}

class SedaConsumer extends Actor with Consumer {
 def endpointUri = "seda:example"

 protected def receive = {
 case Message("stop", headers) => self.stop
 case Message(body, headers) => println("message = %s" format body)
 }
}

The endpointUri method is implemented to return a SEDA endpoint URI. This causes
the actor to consume messages from the seda:example queue once it is started. One
important difference, compared to SimpleActor, is that the received messages are of
type Message, which are immutable representations of Camel messages. A Message
object can be used for pattern matching, and the message body and headers can be
bound to variables, as shown in listing E.1.

 For any consumer actor to receive messages, an application needs to start a
CamelService before starting a consumer actor:

import akka.actor.Actor._
import akka.camel._

val service = CamelServiceManager.startCamelService

service.awaitEndpointActivation(1) {
 actorOf[SedaConsumer].start
}

for (template <- CamelContextManager.template) {
 template.sendBody("seda:example", "hello akka-camel")
 template.sendBody("seda:example", "stop")
}

service.stop

A CamelService can be started with CamelServiceManager.startCamelService. The
started CamelService instance is returned from the startCamelService method call.

 When a consumer actor is started, the CamelService is notified and it will create
and start (activate) a route from the specified endpoint to the actor. This is done

Listing E.1 Actor as consumer receiving messages from a SEDA endpoint

 www.it-ebooks.info

http://www.it-ebooks.info/

491Consuming messages from Camel endpoints

asynchronously, so if an application wants to wait for a certain number of endpoints
to be activated, it can do so with the awaitEndpointActivation method. This
method blocks until the expected number of endpoints have been activated in the
block that follows that method.

 The application is then ready to produce messages to the seda:example queue. A
Camel ProducerTemplate for sending messages can be obtained via CamelContext-
Manager.template.

 This returns an instance of Option[ProducerTemplate] that can be used with a
for comprehension. If the CamelService has been started, the body of the for com-
prehension will be executed once with the current ProducerTemplate bound to the
template variable. If the CamelService hasn’t been started, the for body won’t be
executed at all.

 Alternatively, applications may also use CamelContextManager.mandatory-
Template which returns the ProducerTemplate directly or throws an IllegalState-
Exception if the CamelService hasn’t been started.

 The application first sends a message that will be printed to stdout, and then it
sends a special stop message that stops the actor. Alternatively, clients can also send
Message objects directly via the native Actor API:

actor ! Message("hello akka-camel")

Finally, the application gracefully shuts down the CamelService.
SedaConsumer is an actor that doesn’t reply to the initial sender. Request-response

message exchanges require a minor addition, as shown in the next section for a con-
sumer actor with a Jetty endpoint.

E.3.2 Request-response messaging
Listing E.2 shows how an actor can reply to the initial sender using the self.reply
method. In this example, the initial sender is an HTTP client that communicates with
the actor over a Jetty endpoint.

class HttpConsumer1 extends Actor with Consumer {
 def endpointUri = "jetty:http://0.0.0.0:8811/consumer1"

 protected def receive = {
 case msg: Message => self.reply("received %s"
 format msg.bodyAs[String])
 }
}

NOTE Valid initial senders can either be other actors or Camel routes to
that actor. This is an implementation detail: for the receiving actor, both
initial sender types appear to be actor references.

When POSTing a message to http://localhost:8811/consumer1, the actor converts the
received message body to a String and prepends "received " to it. The result is

Listing E.2 Actor acting as consumer which sends back replies to sender

 www.it-ebooks.info

http://www.it-ebooks.info/

492 APPENDIX E Akka and Camel

returned to the HTTP client with the self.reply method. The self object is the self-
reference to the current actor.

 The reply message is a plain String that’s internally converted to a Camel Message
before returning it to the Jetty endpoint. If applications additionally want to add or
modify response headers, they can do so by returning a Message object containing the
response body and headers. The next example creates an XML response and sets the
Content-Type header to application/xml.

class HttpConsumer2 extends Actor with Consumer {
 def endpointUri = "jetty:http://0.0.0.0:8811/consumer2"

 protected def receive = {
 case msg: Message => {
 val body = "<received>%s</received>" format msg.bodyAs[String]
 val headers = Map("Content-Type" -> "application/xml")
 self.reply(Message(body, headers))
 }
 }
}

Consumer actors wait for their clients to initiate message exchanges. If actors them-
selves want to initiate a message exchange with a Camel endpoint, a different
approach must be taken.

E.4 Producing messages to Camel endpoints
For producing messages to Camel endpoints, actors have two options. They can either
use a Camel ProducerTemplate directly or mixin the Producer trait in the actor
implementation class. This section will cover the use of the Producer trait. The use of
the Camel ProducerTemplate is explained in appendix C.

 The advantage of using the Producer trait is that actors fully leverage Camel’s asyn-
chronous routing engine. To produce messages to a Camel endpoint, an actor must
implement the endpointUri method from the Producer trait, as follows.

import akka.actor.Actor
import akka.camel.Producer

class HttpProducer1 extends Actor with Producer {
 def endpointUri = "http://localhost:8811/consumer2"
}

In this example, any message sent to an instance of HttpProducer1 will be POSTed to
http://localhost:8811/consumer2, which is the endpoint of the consumer actor in
listing E.3 (these two actors are communicating over HTTP).

 In the following code example, an application sends a message to the producer
actor with the !! (bangbang) operator, which means it sends and receives eventually:

Listing E.3 An actor sending back XML messages as reply to sender

Listing E.4 An actor as a producer sending messages to the defined HTTP endpoint

 www.it-ebooks.info

http://www.it-ebooks.info/

493Producing messages to Camel endpoints

the message is sent to the actor asynchronously, but the caller also waits for a
response.

import akka.actor.Actor._
import akka.camel.{Failure, Message}

val httpProducer1 = actorOf[HttpProducer1].start

httpProducer1 !! "Camel rocks" match {
 case Some(m: Message) => println("response = %s" format m.bodyAs[String])
 case Some(f: Failure) => println("failure = %s" format f.cause.getMessage)
 case None => println("timeout")
}

The return type of !! is Option[Any]. For a producer actor at runtime, the type can
be one of the following:

■ Some(Message) for a normal response
■ Some(Failure) if the message exchange with the endpoint failed
■ None if waiting for a response timed out

The timeout for a response is defined by the timeout attribute on the actor refer-
ence (ActorRef.timeout). The default value is 5000 (ms) and it can be changed by
applications.

 As you’ve probably realized, HttpProducer1 doesn’t implement a receive
method. This is because the Producer trait provides a default receive implementa-
tion that’s inherited by HttpProducer1. The default behavior of Producer.receive is
to send messages to the specified endpoint and to return the result to the initial
sender. In the preceding example, the initial sender obtains the result from the !!
method call.

 Actor classes can override the Producer.receiveAfterProduce method to, for
example, forward the result to another actor, instead of returning it to the original
sender. In this case, the original sender should use the ! operator for sending the
message; otherwise it will wait for a response until timeout. In the following exam-
ple, the producer actor simply writes the result to stdout instead of returning it to
the sender.

class HttpProducer2 extends Actor with Producer {
 def endpointUri = "http://localhost:8811/consumer3"

 override protected def receiveAfterProduce = {
 case m: Message => println("response = %s" format m.bodyAs[String])
 case f: Failure => println("failure = %s" format f.cause.getMessage)
 }
}

A producer actor by default initiates in-out message exchanges with the specified end-
point. For initiating in-only message exchanges, producer implementations must
either override the Producer.oneway method to return true or mixin the Oneway
trait. The following code shows the latter approach by mixin the Oneway trait:

 www.it-ebooks.info

http://www.it-ebooks.info/

494 APPENDIX E Akka and Camel

import akka.actor.Actor
import akka.camel.{Oneway, Producer}

class JmsProducer extends Actor with Producer with Oneway {
 def endpointUri = "jms:queue:test"
}

For producer and consumer actors to work with Camel, applications need to start the
CamelService, which sets up the CamelContext for an application. The next section
shows some examples of how applications can customize the process of setting up a
CamelContext.

E.5 Customizing CamelService
When started, a CamelService creates a default CamelContext and makes it accessible
via the CamelContextManager singleton. Applications can access the current Camel-
Context within a for (context <- CamelContextManager.context) { … } compre-
hension and make any modifications they want. Alternatively, a CamelContext can also
be obtained directly via CamelContextManager.mandatoryContext. This will throw
an IllegalStateException if the CamelService hasn’t been started.

 But modifying a CamelContext after it’s been started isn’t always an option. For
example, applications may want to use their own CamelContext implementations or to
make some modifications before the CamelContext is started. This can be achieved
either programmatically or declaratively, as explained in the following subsections.

E.5.1 Programmatic customization

If an application wants to disable JMX, for example, it should do so before the Camel-
Context is started. This can be achieved by manually initializing the CamelContext-
Manager and calling disableJMX on the created CamelContext:

import akka.camel._

CamelContextManager.init
CamelContextManager.context.disableJMX

CamelServiceManager.startCamelService

By default, the CamelContextManager.init method creates a DefaultCamelContext
instance, but applications may also pass any other CamelContext instance as an argu-
ment to the init method:

import akka.camel._

val camelContext: CamelContext = ...

CamelContextManager.init(camelContext)
CamelContextManager.context.disableJMX

CamelServiceManager.startCamelService

When the CamelService is started, it will also start the user-defined CamelContext.

 www.it-ebooks.info

http://www.it-ebooks.info/

495Customizing CamelService

E.5.2 Declarative customization

Alternatively, a CamelService can be created and configured within a Spring applica-
tion context. The following Spring XML configuration uses the Akka and Camel XML
namespaces to set up a CamelService and a CamelContext respectively. The custom
CamelContext is injected into the CamelService.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:akka="http://www.akkasource.org/schema/akka"
 xmlns:camel="http://camel.apache.org/schema/spring"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.akkasource.org/schema/akka
http://scalablesolutions.se/akka/akka-1.0.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camel:camelContext id="camelContext">

 </camel:camelContext>

 <akka:camel-service id="camelService">
 <akka:camel-context ref="camelContext" />
 </akka:camel-service>

</beans>

After creating an application context from the XML configuration, a CamelService B
runs and listens for consumer actors to be started. If an application wants to interact
with the CamelService directly, it can obtain the running CamelService instance
either via CamelServiceManager.service, CamelServiceManager.mandatoryService,
or directly from the Spring application context.

 The following code shows how you can use the former approach for obtaining the
CamelService from the CamelServiceMananger:

import org.springframework.context.support.ClassPathXmlApplicationContext
import akka.actor.Actor._
import akka.camel._

val appctx = new ClassPathXmlApplicationContext("/sample.xml")
val camelService = CamelServiceManager.mandatoryService

appctx.destroy

When the application context (appctx) is destroyed, the CamelService and the
CamelContext are shut down as well.

 In all the examples so far, routes to actors have been automatically created by the
CamelService. Whenever a consumer actor has been started, this was detected by the
CamelService and a route from the actor’s endpoint to the actor itself was added to

Listing E.5 Spring XML file setting up Akka and Camel

Akka
CamelService

B

Do something
with CamelService

 www.it-ebooks.info

http://www.it-ebooks.info/

496 APPENDIX E Akka and Camel

the current CamelContext. Alternatively, applications can also define custom routes to
actors by using Akka’s ActorComponent.

E.6 The Actor component
Accessing an actor from a Camel route is done with the Actor component, a Camel
component for producing messages to actors. For example, when starting Seda-
Consumer from listing E.1, the CamelService adds the following (simplified) route to
the CamelContext:

from("seda:example").to("actor:uuid:<actoruuid>")

The route starts from seda:example and goes to the started SedaConsumer instance,
where <actoruuid> is the consumer actor’s UUID. An actor’s UUID can be obtained
from its reference. Endpoint URIs starting with the actor scheme are used to produce
messages to actors.

 The Actor component isn’t only intended for internal use but can also be used by
user-defined Camel routes to access any actor; in this case, the target actor doesn’t
need to implement the Consumer trait. The Actor component also supports Camel’s
asynchronous routing engine and allows asynchronous in-only and in-out message
exchanges with actors.

 Listing E.6 shows an example: a user-defined Camel route that sends a message to
an instance of HttpProducer1 (the producer actor from listing E.4). This producer
actor sends a message to http://localhost:8811/consumer2. If the communication
with the HTTP service succeeds, the producer actor returns a Message object contain-
ing the service response or a Failure object with the cause of the failure. If the pro-
ducer can’t connect to the service, for example, the failure cause will be a
ConnectException. This exception can be handled in the route. Other exceptions are
possible, but they aren’t included here, to keep the example simple.

import java.net.ConnectException
import org.apache.camel.builder.RouteBuilder
import akka.actor.Actor._
import akka.actor.Uuid
import akka.camel._

class CustomRoute(uuid: Uuid) extends RouteBuilder {
 def configure = {
 from("direct:test")
 .onException(classOf[ConnectException])
 .handled(true).transform.constant("feel bad").end
 .to("actor:uuid:%s" format uuid)
 }
}

val producer = actorOf[HttpProducer1].start

CamelServiceManager.startCamelService

Listing E.6 Camel route sending message to Akka actor

Camel route
sending to actor

 www.it-ebooks.info

http://www.it-ebooks.info/

497A routing example

for (context <- CamelContextManager.context;
 template <- CamelContextManager.template) {
 context.addRoutes(new CustomRoute(producer.uuid))
 template.requestBody("direct:test", "feel good", classOf[String]) match {
 case "<received>feel good</received>" => println("communication ok")
 case "feel bad" => println("communication failed")
 case _ => println("unexpected response")
 }
}

After starting the target actor and a CamelService, the application adds the user-
defined route to the current CamelContext. It then uses a ProducerTemplate to initi-
ate an in-out exchange with the route and tries to match the response, where the
response either comes from the HTTP service or from the error handler.

 We’ll now move on to a more advanced example that applies many of the features
described so far. It combines different actor types to a simple integration solution for
transforming the content of a web page.

E.7 A routing example
Camel applications usually define message-processing routes with the Camel DSL.
Akka applications can alternatively define networks of interconnected actors, in com-
bination with consumer and producer actors, to set up message-processing routes.

 This section shows a simple example of how to set up a message-processing route
with actors. The goal of this example is to display the Akka homepage (http://akka-
source.org) in a browser, with occurrences of Akka in the page content replaced with
an uppercase AKKA. The example combines a consumer and a producer actor with
another actor that transforms the content of the homepage.

 The setup of the example application is sketched in figure E.1; the corresponding
code is shown in listing E.7.

Figure E.1 The setup of the example application. A consumer and a producer actor provide connectivity
to external systems. The consumer actor receives requests from a browser and forwards them to a
producer actor, which fetches the HTML page. The HTML page is then forwarded to an actor that
transforms the content of the page and returns the transformation result to the initial sender, so that it
can be displayed in the browser.

 www.it-ebooks.info

http://akkasource.org
http://akkasource.org
http://www.it-ebooks.info/

498 APPENDIX E Akka and Camel

import org.apache.camel.Exchange
import akka.actor.Actor._
import akka.actor.{Actor, ActorRef}
import akka.camel._

class HttpConsumer(producer: ActorRef) extends Actor with Consumer {
 def endpointUri = "jetty:http://0.0.0.0:8875/"
 protected def receive = {
 case msg => producer forward msg
 }
}

class HttpProducer(transformer: ActorRef) extends Actor with Producer {
 def endpointUri = "jetty:http://akkasource.org/?bridgeEndpoint=true"

 override protected def receiveBeforeProduce = {
 case msg: Message =>
 msg.setHeaders(msg.headers(Set(Exchange.HTTP_PATH)))
 }

 override protected def receiveAfterProduce = {
 case msg => transformer forward msg
 }
}

class HttpTransformer extends Actor {
 protected def receive = {
 case msg: Failure => self.reply(msg)
 case msg: Message => self.reply(msg.transformBody[String] {
 _ replaceAll ("Akka ", "AKKA ")
 })
 }
}

CamelServiceManager.startCamelService

val httpTransformer = actorOf(new HttpTransformer).start
val httpProducer = actorOf(new HttpProducer(httpTransformer)).start
val httpConsumer = actorOf(new HttpConsumer(httpProducer)).start

HttpConsumer is an actor that accepts HTTP GET requests on port 8875 and is config-
ured to forward requests to an instance of HttpProducer. When an actor forwards a
message to another actor, it forwards the initial sender reference as well. This refer-
ence is needed later for returning the result to the initial sender.

 A forwarded message causes the HttpProducer to send a GET request to http://
akkasource.org. Before doing so, it drops all headers B from the request message,
except for the HTTP_PATH header, which is needed by the bridge endpoint. This pre-
processing is done in the producer’s receiveBeforeProduce method. The received
HTML content from http://akkasource.org is then forwarded C to an instance of
HttpTransformer.

 The HttpTransformer D is an actor that replaces all occurrences of Akka in the
message body with an uppercase AKKA and returns the result to the initial sender. The
reference to the initial sender has been forwarded by the producer actor C.

Listing E.7 Akka consumer and producer example

Drops message
headers except
HTTP_PATH

B

Forwards message
to transformer

C

Transforms
the message

D

 www.it-ebooks.info

http://akkasource.org
http://akkasource.org
http://akkasource.org
http://www.it-ebooks.info/

499Summary

 After starting the CamelService, the actors are wired and started.
 To run the example from the appendixE directory, enter sbt run on the com-

mand line, and select camelinaction.SectionE7 from the list of main classes. Access
http://localhost:8875 from a browser, and a transformed version of the Akka home-
page should be displayed.

 Finally, it should be noted that the actors and the Jetty endpoints in this example
exchange messages asynchronously; no single thread is allocated or blocked for the full
duration of an in-out message exchange. Although it’s not critical for this example,
exchanging messages asynchronously can help to save server resources, especially in
applications with long-running request-response cycles and frequent client requests.

E.8 Summary
This appendix shows you how to exchange messages with Akka actors over protocols
and APIs supported by the great variety of Camel components. You saw how consumer
actors can receive messages from Camel endpoints and producer actors can send mes-
sages to Camel endpoints. Setting up a Camel endpoint for an actor is as easy as defin-
ing an endpoint URI for that actor.

 The prerequisite for running consumer and producer actors is a started Camel-
Service that manages an application’s CamelContext. Applications can configure the
CamelService either programmatically or declaratively based on custom Spring XML
schemas provided by Akka and Camel.

 You also saw how to use Akka’s Actor component to access any actor from a user-
defined Camel route. Actor endpoints are implemented by defining an actor end-
point URI in the route. A routing example finally demonstrated how to combine con-
sumer and producer actors to develop a simple integration solution for transforming
the content of a web page.

 The features described in this appendix are those of Akka version 1.0. If you want
to keep track of the latest development activities, get in touch with the Akka commu-
nity via the Akka User List (http://groups.google.com/group/akka-user) and the
Akka Developer List (http://groups.google.com/group/akka-dev). Your feedback is
highly welcome.

 www.it-ebooks.info

http://groups.google.com/group/akka-user
http://groups.google.com/group/akka-dev
http://www.it-ebooks.info/

 www.it-ebooks.info

http://www.it-ebooks.info/

501

index

Symbols

--> operator 381
==> operator 381

A

ACID 284, 297, 300
ActiveMQ 4, 27

dead letter queue 294
TCP connectors 288
VM protocol 288

ActiveMQ component
292, 303, 457

ActiveMQConnectionFactory 27
addInterceptStrategy

method 378
addRoutes 28
aggregate 71
<aggregate> tag 241, 250
AggregationStrategy

71, 240–241
example 242
thread safe 243
using 242–243

Aggregator EIP 238–255
aggregated size 246
aggregation strategy 240–241
AggregationStrategy 263
combining message

242–243, 263
completion condition

240–241, 243–248
Aggregated 246

batch consumer
completion 244

conditions provided 244
examples 244
interval completion 244
predicate completion

244, 247
size completion 244–245
timeout completion

244–246
using multiple

conditions 245–247
completion size 241
configuration

additional option 247
closeCorrelationKeyOn-

Completion 247
eagerCheckCompletion

247
groupExchanges 248
mandatory 240

correlation expression 241
correlation group 243
correlation identifier

240, 243, 246
invalid 247–248

Exchange properties 246
in Splitter EIP 262
ordering 243
persistence 248–251

AggregationRepository
248, 250

example 250
file based repository 249
HawtDB 249
memory repository 248

pluggable repository 248
RecoverableAggregation-

Repository 249
setup HawtDB 249

recovery 249, 251–255
background task 253, 255
commit 253
dead letter channel 255
HawtDBAggregation-

Repository 254
interval 254–255
maximum redeliveries

254–255
recover 253
RecoverableAggregation-

Repository 255
redelivered 254
rollback 253
setup 254
similar to JMS Broker 252
transaction 252–253
using error handler 251

reject incoming message 247
uses cases 239

akka 487
actor 488–489

actor API 488
bang operator 489
pattern match 488
reply 491

actor model 487
ActorComponent 495–496
akka-camel component 488
asynchronous 488
bangbang operator 492

 www.it-ebooks.info

http://www.it-ebooks.info/

INDEX502

akka (continued)
CamelContextManager 494

sending message 491
CamelService 490, 495

customize 494–495
CamelServiceManager

490, 495
consume from Camel

489–492
disable JMX 494
endpointUri 490–492, 497
forwarding message 493, 498
immutable message 490
message exchange

pattern 493
one-way messaging 490
produce message 492–493
ProducerTemplate 492
receive 490–491, 497
receiveAfterProduce 493, 498
receiveBeforeProduce 498
reply 498
request-reply messaging 491
route

routing example 497–498
sending message to

actor 496
software transactional

memory 487
some failure 493
some message 493
timeout 492–493
with Spring 494
XML response 491

alternative languages 380
annotation

@Attachments 114
@Autowired 96
@Bean 116
@BeanShell 116
@Body 107, 113–114
@Consume 446–447
@DynamicRouter 271
@EL 116
@EndpointInject 163
@Groovy 116
@Handler 107–108
@Header 107, 114
@Headers 114
@InOnly 459
@InOut 459
@JavaScript 116
@MVEL 116
@ONGL 116
@OutHeaders 114

@PHP 116
@Produce 447–450
@Properties 114
@Property 114
@Python 116
@RoutingSlip 269
@Ruby 116
@Simple 116
@XPath 116, 286
@XQuery 116

Apache ActiveMQ 361, 452, 477
Apache Camel website 483
Apache CXF 205

HTTP transport 434
link to website 205

Apache Felix 438
Apache Karaf 428, 437

adding Camel feature 439
features 439
install bundle 440
installing 439
listing installed bundles 440
log file 441
shutdown OSGi

container 441
starting 439

Apache Maven 359, 428
archetype plugin 360

archetypeArtifactId 362
archetypeVersion 362
create vs. generate goal 362

archetypes 360
artifactId 361
central repository 12, 364
configuring local Maven

repository in Eclipse 368
convention over

configuration 361
data directory 11
dependency tree 365
directories installed 11
generating an OSGi

bundle 438
groupId 361
local download cache 12
managing projects 360–366
Maven Eclipse plugin 366
obtaining 11
POM 11, 360
pom.xml 11, 361
quickstart archetype 360
recommended reading 12
src directory 11
transitive dependencies 364

using the m2eclipse
plugin 368

Apache MINA 216
Apache OpenJPA 227
Apache ServiceMix 353, 414

message bus 353
scalability 353

Apache Tomcat 215, 428
deploying Camel 432
hot deployment 432, 435
leverage servlet transport 434
starting 432–433
using CXFServlet 434

ApplicationContext 34, 429
ApplicationContextRegistry

registry 99, 101
Archetypes 360
asynchronous 335

messaging 197, 230, 286
Atomikos6 299
@Attachments 114
auditing 56
autocomplete 29
automating tasks 232
AutoStartup, disabling 418
@Autowired 96

B

BatchConsumer 244
@Bean 116
bean

BeanProcessor 98, 103, 112
method

adapting to method
signature 111

AmbigiousMethodCall
Exception 107–109

BeanInvocation 106
beanRef 110
CamelBeanMethodName

105
@Handler 107–108
method selection

algorithm 105–107
MethodNotFoundException

104, 107, 109–110
NoTypeConversionAvailable

Exception 109–110
selecting bean method

103–111
selection example 107, 111
understanding bean method

selection 104
method call expression 268

 www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 503

bean (continued)
parameter binding 111–119

@Bean 117
@Body 107, 114
built-in types 113–114
exception 148
@Header 107, 114
multiple parameters

112–119
@NamespacePrefix 118
single parameter 111
table of annotations 114
table of build in types 113
table of language

annotations 116
using annotations 114–119
using language

annotations 115
@XPath 116
@XPath with

namespace 118
registry 98–102

ApplicationContextRegistry
101–102

JndiRegistry 99–101
lookup 99
lookup in OSGi service

registry 102
lookup in Spring 101
lookupByType 99
multiple registries 99
OsgiServiceRegistry 99–102
SimpleRegistry 100
table of registries 99
typesafe lookups 99

Service Activator EIP 94–98
Spring, @Autowired 96
using 94–97

bean in Java DSL 97
<bean> in Spring XML 96
beanRef 100
from a Processor 94

Bean component 98, 106
<bean> tag 96
BeanInvocation 456
@BeanShell 116
BeanShell 45
bindy 80

annotations 81
BindyType.Csv 82
@CsvRecord 81
data types used 81
@DataField 81
specifying package name 82
using CSV 80

using FIX 83
using fixed length 83

@Body 107, 113–114
browse 191
builder pattern 68

C

Camel 4
alternative languages

380–384
archetypes

list of archetypes 361
using camel-archetype-

component 371
using camel-archetype-

java 362
architecture 15–20

CamelContext 16
component 18
consumer 20
domain-specific language

(DSL) 17
endpoint 18
high level 15
modular and pluggable 7
processor 18
producer 19
routes 17
routing engine 17

bridging routes together 231
community 8, 483–484
component library 7
components,

understanding 188–236
configuration, easy 7
ConsumerTemplate 480–482
core, lightweight 7
creating custom

components 371–377
creating routes in Java 28–33
creating routes with

Spring 34–43
creating WAR from Camel

application 432
deploying Camel 428–441
developing interceptors

377–380
developing projects 359–384
directories installed 8
EIPs 43–57
endpoint 24
example

first 9–13
revisited 20

hide Camel APIs 443
hiding middleware 451–460
higher-level abstractions 4
Java DSL

bean method 54
choice method 44
convertBodyTo

method 419
end method 47, 421
endsWith predicate 45
executorService method 51
from method 30
header method 45
log method 418
multicast method 51
noStreamCaching

method 415
otherwise method 46
recipientList method 53
regex predicate 46
stop method 47
stopOnException

method 52
streamCaching

method 414
to method 32
tokenize method 53
using Camel Proxy from

Java DSL 460
wireTap method 56
xpath method 49

Maven dependencies 364
message model 13–15

exchange 14
message 13

obtaining 8
OSGi ready 437
payload-agnostic router 7
POJO model 7
predicates and expressions 45

regular expression
predicate 46

xpath expression 49
producer and consumer

templates 477–482
ProducerTemplate

448, 477–480
protocol support 4
reasons to use 5
remoting and Camel

proxy 456
route startup order 413
routing 22–57

 www.it-ebooks.info

http://www.it-ebooks.info/

INDEX504

Camel (continued)
routing and mediation

engine 5
routing annotations 444, 450

@Consume example 446
dependencies 446
injecting a proxy

producer 449
loading annotated classes

into Camel 446
@Produce example 449
receiving messages with

@Consume 445
referencing a shared

endpoint 447
sending messages with

@Produce 448
specifying what Camel-

Context to use 447
routing engine 4
routing with beans 443–451
running 410–442
Scala DSL 380–381

--> operator 381
==> operator 381
adding Scala routes to the

CamelContext 382
comparison with Java

DSL 380
EIPs support 382
maven-scala-plugin 383
Scala RouteBuilder 381
using Java-based Camel-

Context with routes 382
shutting down 424
Spring DSL 37–40

adding a processor 38
adding multiple routes 39
advanced configuration

options 43
CamelBeanPostProcessor

447
configuring components

and endpoints 41
consumerTemplate

element 479
custom camelContext

element 412
defining a reusable

endpoint 42
dynamic RouteBuilder

loading 40
example 38
finding route builders 40

importing configuration
and routes 42

importing route defined in
another file 43

naming a component 41
packageScan element 40
proxy element 455
route id 417
routeContext element 43
routePolicyRef option 424
routerBuilder element 40
shutdownRoute option 427
starting a Spring Camel-

Context manually 429
streamCache option 414
template element 479
when method 44

starting 411, 413–419
startup options 413

scope 415
TypeConverter 33
using in Eclipse 366–371
web console 362, 419

Camel community
articles, blogs, podcasts 486
IRC and JIRA 486
mailing list and reference

card 486
website 483

.camel directory 194
Camel extensions, JUnit 155
Camel Extra project 436, 485
Camel registry 99
Camel Test Kit 155–166
camel-core module,

components 191
CamelContext 11, 190, 411

accessing via Processor 64
createNewProducerTemplate

method 478
graceful shutdown 425
namespace 412
setStreamCaching

method 414
start method 411
starting 412
startRoute 419
stopRoute 419–420

CamelContext id 448
<camelContext> tag 137
CamelContextFactoryBean 412
CamelInvocationHandler 458
CamelNamespaceHandler 412
Channel 125–126, 132, 181, 398
code-first 205, 215

codec 218
commons-net 364
compensation 309

rollback 310
using synchronization 310

Component 18, 374
component

ActiveMQ 303, 457
activemq transaction 292
actor 495
asynchronous

processing 353–354
akka-camel 488

Bean 98, 106
bean, using OGNL 468
custom component,

@ManagedAttribute 407
customize output log 396
Direct 304, 322
@EndpointInject 163
fault 138
File 310–311
file

concurrency 332
simple language

variables 465
FTP 310

simple language
variables 465

HawtDB 249, 251
HTTP 151
Jasypt 164
Jetty 83, 142, 175, 387

continuations 354
JMS 169
log 395
MINA 73, 142, 175
Mock 155, 166–178

unit testing 167–178
Properties 161–165, 465

properties file 165
syntax 162
using without Spring 163

SEDA 169, 273, 304, 322
simulating 175–177
smtp 88
velocity 88
XSLT 73

Component interface 190
component resolver 191
components

ActiveMQ 198
autodiscovering

components 190

 www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 505

components (continued)
bean 191

example using InOut
MEP 201

how BeanComponent is
resolved 191

camel-core module 191
creating a custom

component 371
CXF 205

code-first
development 215–216

configuring using endpoint
bean 207

configuring using URI
options 206

contract-first
development 209–215

cxf-codegen-plugin in
Maven 211

dataFormat option 207
dataformats 207
document literal 211
exposing a route as a web

service 208, 213
HTTP-based

components 214
invoking a web service 213
Maven dependencies 208
modes of development 205
operationName header 214
portName option 206
producer and consumer ter-

minology in web
services 208

Service Endpoint
Interface 206

serviceClass option 206
serviceName option 206
specifying operation to

invoke 214
transports 209
using a WSDL 211–213
using Apache Tomcat for

HTTP inbound
endpoints 434

wsdl2java tool 211
wsdl2service tool 210
wsdl2xml tool 210
wsdlURL option 206

dataset 191
Direct 229, 455

how a consumer calls a
producer 376

File 191
default filename 195
delay option 193
delete option 193–194
exclude option 193
fileName option 195
include option 193–194
locking files 194
maxMessagesPerPoll

option 420
move option 193–194
noop option 38, 193
reading and writing

files 193–194
recursive option 193
simple expression for

filename 195
writing files example 194

File and FTP
Components 192–197

FTP 24–25
binary option 196
CamelFileName header 33
consuming files 25
default FTP port 25
disconnect option 196
example using embedded

FTP server 197
Maven dependency

25, 196, 364
maximumReconnect-

Attempts option 196
password 25
password option 196
reconnectDelay option 196
remote directory 25
transitive

dependencies 364
URI options 196
username 25
username option 196
using embedded FTP server

for testing 197
Hibernate 221
HTTP 214, 479
JBI 414–415
JBoss 436
JDBC 221–224

example 224
Maven dependency 221
readSize option 222
statement option 222
URI options 222

useJDBC4ColumnName
AndLabelSemantics
option 222

using a bean to create the
SQL statement 223

Jetty 214
JMS 26–28, 197–204, 457

ActiveMQConnection-
Factory 197

autoStartup options 199
clientId options 199
concurrentConsumers

options 199
configure JMS provider 26
connecting to ActiveMQ 27

over TCP 197
disableReplyTo options 199
durableSubscriptionName

options 199
endpoint URI 27
exchangePattern

option 202
how headers are

handled 204
how to empty a JMS

queue 480
JMSCorrelationID

header 201
JMSReplyTo header 201
mapJmsMessage

option 204
Maven dependency 27, 198
maxConcurrentConsumers

options 199
message mappings 202
replyTo option 199, 202
request/reply

messaging 201
requestTimeout

options 199
selector options 199
sending and receiving

messages 200
sending messages with the

ProducerTemplate 201
TCP as transport 457
timeToLive option 199
transacted options 199
URI options 198
using a topic 200
using multiple JMS

providers 42
valid JMS headers 204

 www.it-ebooks.info

http://www.it-ebooks.info/

INDEX506

components (continued)
JPA 224–229

connecting Camel JPA to
OpenJPA 227

consumeDelete option 225
consumeLockEntity

option 225
consumer.delay option 225
consumer.initialDelay

option 225
consumer.namedQuery

option 225
consumer.nativeQuery

option 225
consumer.query option 225
@Entity 226
example 228
flushOnSend option 225
manually querying the

database 228
Maven dependencies 224
maximumResults

option 225
maxMessagesPerPoll

option 225
persistenceUnit option 225
persistenceUnitName 227
transactionManager

option 225
URI options 225

LGPL/GPL components 436
manually adding to the

CamelContext 190
message headers set 33
MINA 216–221

codec option 217
CumulativeProtocol-

Decoder 220
custom codecs 219, 221
encoding option 217
example 218
filters option 217
Maven dependency 216
object serialization

codec 219
setting up a TCP server 218
sync option 217
textline codec 218
textline option 217
textlineDelimiter

option 217
timeout option 217
transferExchange

option 217

transport types 217
URI options 216

mock 192
naming a component in

Spring 41
no component found

error 363
number of components 189
overview 189–192
Quartz 233–235

cron option 234
cron triggers 235
job.name option 235
job.propertyName

option 234
JobDetail 234
Maven dependency 234
SimpleTrigger 234
Trigger 234
trigger.propertyName

option 234
trigger.repeatCount

option 234
trigger.repeatInterval

option 234
URI options 234

ref 192
SEDA 192, 230, 455

concurrentConsumers
option 230

multipleConsumers
option 230–231

pros and cons 230
publish-subscribe 231
size option 230
timeout option 230
URI options 230
waitForTaskToComplete

option 230
Servlet 215, 436
SQL 221
stream 194
timer 232–233
VM 192, 230–232

Composed Message Processor
EIP 238

concurrency 316
akka 487
asynchronous task 342
CPU-bound 319
eip

aggregate 330
multicast 330, 332–334
recipient list 331
split 331

threads 331
using 330–335
wiretap 331, 334–335, 343

Future 342
IO-bound 319
ordering 334
parallel processing 319–320
parallelProcessing 333
performance 334

improving 319
splitter,

parallelProcessing 319
transaction limitation 335

concurrency client API
asynchronous task 344
Callable 344–345
ExecutorService 344
Future 344–345, 347
future

get 345–346
get with timeout 346
isDone 345–346

in Camel 347–350
in Java 344–347
ProducerTemplate 347

asyncCallback 348–350
asyncCallbackRequestBody

348–349
asyncCallbackSendBody

348
asynchronous methods

provided 348
asyncRequestBody 348
asyncSend 348
asyncSendBody 348

Runnable 344
Synchronization 348
SynchronizationAdapter 349
timeout 346, 349–350

ConnectionFactory 26
@Consume 445–447
consumer 33, 374

event-driven consumer 20
polling consumer 20
ScheduledPollConsumer 124

Consumers 477
ConsumerTemplate, list of

methods 480
receiveBodyNoWait 294

Content Enricher EIP 71
enrich 71, 73
pollEnrich 71, 73

Content-Based Router EIP
44, 295, 304

 www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 507

<context:property-placeholder>
tag 165

contextConfigLocation 431
convention over configuration 7
correlation id 397, 399
<correlationExpression>

tag 241
cron expressions 235
CSV 23, 44

table of data types used 80
transforming using bean 66
transforming using

Processor 64
custom component 371

changing endpoint URI
scheme 372

Component and Endpoint
classes 373

data marshaling 376
disabling producer or con-

sumer creating 374
extending from default

implementations 374
how endpoint URI properties

work 373
Producers and

Consumers 375
what makes up a

component 373
CXFServlet 434

D

data format
configuring 84
CSV 317

camel-csv 79
configure 84
consume CSV files 79

DataFormat API 85
JSON 83

camel-jackson 83
camel-xstream 83

marshal 75, 77, 85
table of data formats 78
unmarshal 75, 77, 85
using JAXB 77
using XStream 75
writing custom 85

ReverseDataFormat 85
using Camel type

converters 86
data format transformation 62
data integration and data

mapping 63

data mapping, definition 63
data transformation 62–63

enrich 71
in routes 63–73
message transformation in

component adapter 63
using bean 66–67
using components 63
using data formats 63, 77–86
using Freemarker 86
using Processor 64
using templating 86–88
using the Content Enricher

EIP 70
using the Message Translator

EIP 63
using transform()

from Java 67–69
from Spring XML 69–70

using Velocity 86–87
using XStream 75
XSL Transformations

(XSLT) 73
data type transformation 62

using type converter 63
database

HSQLDB 287
SQL 285

databases 221
Dead Letter Channel EIP

124, 126, 294
decouple middleware from busi-

ness logic 451
DefaultComponent 373
DefaultConsumer 376
DefaultEndpoint 374
DefaultProducer 375
Delayer EIP 134
dependencies 364
deploying Camel

in a Java application
file copy example 428
pros and cons 430
using Main helper class to

load Spring
context 429

using raw Spring 429
in a web application 430–431

in Apache Tomcat 432
in Jetty 432
overriding CamelContext

filename 431
pros and cons 436
using Spring context

listener 431

in Apache Karaf 437
in JBoss Application

Server 436
pros and cons 437

in OSGi
installing a bundle 440
pros and cons 441

standalone 428
deployment strategy 428

Apache Tomcat 432
pros and cons 436

Java application 428
pros and cons 430

Java EE Application
Server 437

JBoss Application Server 436
pros and cons 437

Jetty 432
OSGi 437

pros and cons 441
standalone 428

pros and cons 430
web application 430

pros and cons 436
developing Camel projects 359
Direct component 191, 304
distribution, obtaining 8
doc directory 9
doCatch 144
doFinally 144
domain-specific language

(DSL) 6, 17, 30
doTry 144
DSL 6

which DSL to use? 39
Dynamic Router EIP 238–239,

270–272
@DynamicRouter 271

E

EAI 451
Eclipse 29, 210, 359

configuring local Maven
repository 368

import wizard 367
M2_REPO variable 368
m2eclipse plugin 368
Maven Eclipse plugin 366
package explorer 367
using Camel 366

Eclipse Equinox 438
EIP 238–239

Aggregator 238–255
command message 222

 www.it-ebooks.info

http://www.it-ebooks.info/

INDEX508

EIP (continued)
Composed Message

Processor 238, 262
concurrent consumers

318, 322–323
content enricher 242
Content-Based Router

295, 304
content-based router

(CBR) 44
example 45
routing after a CBR 47

Dead Letter Channel
124, 126–128, 135, 254, 294

Delayer 134
Dynamic Router 238–239,

266, 270–272
@DynamicRouter 271
Load Balancer 238–239,

272–280
log 396
message filter 49
Message Translator 307
multicast 51

configuring the thread
pool 51

implement with a JMS
topic 200

parallel multicast 51
parallelProcessing 51
stopping on exception 52

multicast, aggregate reply 333
patterns supporting

concurrency 330
Recipient List 147
recipient list 52

comma-separated
recipients 53

example 55
RecipientList

annotation 54
Routing Slip 238–239,

266–270
@RoutingSlip 269
Service Activator EIP 97, 103
Splitter 238, 255–266,

317, 416
big file 318
configuring thread

pool 320
file example 317
low memory usage 317
ordering 319–320
parallelProcessing 319

streaming mode 317
thread pool 320

threads 328
Throttler 134
Transactional Client 296–297
wiretap 334, 394–395

concurrency 334–335
@EL 116
EL 45
embedded FTP server 197
endpoint 18, 374

BrowsableEndpoint 184
@EndpointInject 162
file 158, 179
FTP 179
HTTP 179–180, 182
mock 167–178, 256
SEDA 273, 322
TCP 145, 148
URI 161, 164–165,

267, 269–270
URL 182

<endpoint> tag 165
Endpoint URI 24

context path 19, 25
how options work 373
options 19, 25
scheme 19, 25

@EndpointInject 163
enrich 71

Enrich 73
vs. pollEnrich 71

enterprise integration patterns
(EIPs) 5

implemented as Processor 33
Enterprise Service Bus

(ESB) 353
Camel is not an ESB 4

@Entity 226
entity manager 227
error handler

HandleFault 415
Load Balancer EIP

failover 277
TransactionErrorHandler 298

error handlers 124–129
DeadLetterChannel 124, 126
DefaultErrorHandler

124–125, 132
features 128
LoggingErrorHandler

124, 128
NoErrorHandler 124, 128

scope 135
TransactionErrorHandler

124, 128
error handling

caught exception 147
context scoped 135, 137
continued 148
dead letter channel 126–128

dead letter endpoint 127
dead letter queue 136
useOriginalMessage 128
using original

message 127–128
dead letter queue 126–127
default error handler

125–126
default settings 126

detour 126
detour message 150–151
doTry...doCatch...doFinally

144
error handlers provided

124–129
errorHandler 127, 135
errorHandlerRef 137
exception

caused exception 147
context scope 144
continued 146
custom exception

handling 146–148
detour message 138
exception hierarchy 139
gap detection 140
handle 138
handled 145–146
maximumRedeliveries 141
multiple exception 142
onException 139, 141–142
onWhen 150–151
redeliverDelay 141
understanding

catching 139–142
understanding handle

143–146
understanding

redelivery 142–143
using exception

policies 138–150
using processor 146

failover 149
failure endpoint 147
fault 137–138
getException 122

 www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 509

error handling (continued)
handle fault 138
ignoring exception 148
lifecycle 124
logging error handler 128
no error handler 128
onException 143, 149, 178
original input message 126
PollingConsumerPollStrategy

124
redeliver 125
redelivery

asynchronous 131, 134
backOffMultiplier 132
custom processing 151
exhausted 133, 136
exponential backoff 136
file rollback 130
maximumRedeliveries 132
onRedeliver 151
recoverable errors 129
redeliverDelay 130
redelivered 133
redelivery counter 133
redelivery policy 130, 142
redeliveryDelay 132
redeliveryPolicy 136
retryAttemptedLogLevel

132
retryWhile 152–153
synchronous 134
table of redelivery

options 130
useExponentialBackOff

132
using 129–137

RedeliveryErrorHandler
125, 128

route scoped 135
scope 129, 132, 135–137
setException 122, 124
setFault 123
table of error handlers 124
transaction error handler 128
try catch 143
understanding 121–124

irrecoverable 121
recoverable 121
redelivery 122

where error handling
applies 123–124

<errorHandler> tag 132, 137
errors, recoverable and

irrecoverable 121, 123

event
EventNotifier 402
EventObject 404
filtering event 403
notification 402–405
using custom

EventNotifier 403–405
examples directory 9
exception policies 138–150
<exception> tag 146
ExceptionHandler 423
exchange 14

exchange ID 14
in message 15
instance, working on via

Processor 64
MEP 14
out message 15
properties 15

exchange id 397
Exchange.CAUSED_

EXCEPTION 127
expression 471

compound 68
custom 68
evaluate 471–472
ExpressionAdapter 473
fluent builder, syntax

sugar 472
Message Translator EIP 471

transform 472
method call 69, 259, 473, 475
syntax sugar 471
using 471–472

custom expression 472–473
in Java DSL 472
with Spring XML 472

using scripting language as 69
expression builder methods 45
expression language 461

dependency 461
evaluate 461
expression 461
Simple 397, 461

external DSL 30

F

failed to resolve endpoint 363
failover

Load Balancer EIP 274–278
strategy

custom 278
priority based 278
round robin 277

<failover> tag 278
File component 310–311
file endpoint 158, 179
file transfer 192
files 192
filesystem 192
filter 49
flow of messages in route 32
fluent interface 30
<from> tag 165
FTP 23–24, 196
FTPComponent 25, 196, 310
FTPEndpoint 25, 179
FTPS 196

G

generate an Eclipse project 29
GenericFile 396
graceful shutdown 424–425

example 427
@Groovy 116
Groovy 45, 380

H

HandleFault 415
@Handler 107–108
HawtDB 249

persistence aggregator
249–251

setup 249
transaction 253

HawtDB component 249, 251
@Header 107, 114
@Headers 114
hello world 9
Hibernate 224
hiding middleware 443, 451
high availability 387
Hohpe, Gregor 5
HTTP 23, 214, 479

HttpOperationFailed-
Exception 151

ping service 387
HTTP endpoint 179–180, 182
HyperSQL 224

I

IDEs 366
importing Camel project into

Eclipse 366

 www.it-ebooks.info

http://www.it-ebooks.info/

INDEX510

importing generated Eclipse
project 29

in-flight messages 425
in-flight registry 420
in-memory messaging 229
@InOnly 459
InOnly MEP 218, 478
@InOut 459
InOut MEP 201, 230, 478
inspecting messages 55
integration testing 183–187
interceptors 181, 377

adding an interceptor to the
CamelContext 378

addInterceptStrategy
method 378

applying more than one
interceptor 378

delay 399
example 379
excluding a Processor from

interception 379
how interceptors modify a

route 378
intercept 181
intercept multiple

endpoints 182
InterceptFromEndpoint 181
InterceptStrategy

interface 377
wrapping Processors in

interceptors 377
wrapProcessorInInterceptors

method 377
InterceptStrategy 377
internal DSL 30
Inversion of Control (IoC) 34

J

Jasypt component 164
Java 364
Java API for XML Web Services.

See JAX-WS
Java DSL 28, 30–33
Java EE container 437
Java Management Extensions.

See JMX
Java Message Service. See JMS
Java Persistence Architecture. See

JPA
Java Transaction API (JTA) 298
Java Web Start 441
java.util.Timer 233
@JavaScript 116

JavaScript 45
javax.jms.Message 203
javax.jws.WebService 215
javax.persistence.Entity 226
javax.sql.DataSource 222
JAX-WS 205, 215
jaxb

annotated bean 76
contextPath 77
jaxb.index 77
using annotations 76
@XmlAccessorType 76
@XmlAttribute 76
@XmlRootElement 76

JBI 414
JBoss Application Server 428

starting 436
JConsole 388, 390, 401, 405,

408, 419
JDBC 221, 477
jdbc, data source 288
JdbcTemplate 477
Jetty

continuations 354
deploying Camel in 432

JMS 26, 477
acknowledge mode, auto 289
ActiveMQ, embedded

broker 288
browse queue 184
BytesMessage 203
consumer 285
dead letter queue 294, 304
how to empty a JMS

queue 480
JMS message

implementations 202
MapMessage 203
ObjectMessage 203
StreamMessage 203
TextMessage 203
transaction 290

JMS component 169, 457
JMS destination 26
JmsTemplate 477
JMX 386, 388

DefaultManagementAgent
392

exposed Camel MBeans 391
JMX connector 391
jmxAgent 392
@ManagedResource 407
ManagementAgent 391–392
ManagementAware 407

managing Camel
application 405–408

managing lifecycle 405–406
managing Tracer 400–402
MBean 391
Spring JMX 389
using JConsole 390–393

remotely 391–393
using JMX with Camel

389–393
JNDI

JndiRegistry 101
lookup in WebSphere 101

JndiRegistry 99, 101, 220
JPA 221, 224
JpaTransactionManager 225
jsch 365
json

JSON 83
marshaling beans 84
selecting json library 83

JUnit 154–166
extensions 155

JXPath 45

L

lib directory 9
LICENSE.txt 9
Load Balancer EIP 238–239,

272–280
across remote service 272
concept behind 272
introducing 272–274
strategy 272, 274–275

custom 274
failover 277–278
failover by exception 276
failover inherit error

handler 277
failover maximum

attempts 277
failover with round

robin 277–278
random 274
round robin 272, 274
sticky 274–275
topic 274

<loadBalance> tag 279
log 191
log4j 403

 www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 511

M

M2_REPO variable 368
m2eclipse plugin 368

creating new Camel
projects 369

installation instructions 369
performance issues 369
running a project 370
using archetypes 369

Main 430
main class 430
management 407

JMX
@ManagedAttribute 407
ManagementAware 407

ManagementStrategy
392, 403

managing
Camel application 405–408
consumer 406
custom component 406–408

@ManagedResource 407
lifecycle 405–406
stop route 406

Maven archetype plugin 360
maven-eclipse-plugin 366
maven-scala-plugin 383
Maven, Eclipse Maven plugin 29
MBean 391
mediator service 97
message 13

body 14
transforming from one

form to another 62
correlate 399

exchangeId 133
fault message

14, 123–124, 137
headers 13
in-flight 424–425
poison message 294
tracing 398

message exchange pattern
(MEP) 335, 399

InOnly 14, 335, 337, 399
InOut 14, 335, 338, 341, 399

message exchange using
akka 488

message filter 49
message processing

asynchronous 336–340, 350
InOnly 337, 339
Threads EIP 339
Wire Tap EIP 342

asynchronous API
AsyncCallback 356

asynchronous message
processing 352–353

asynchronous processing
model 353

asynchronously 335
blocked thread 351
concurrently 319
in parallel 333
in sequence 333
InOnly 336
multiple threads 335
returning early reply to

caller 342–344
synchronous 340–342, 351

InOut 338–340
synchronously 335

message transformation using
custom expression 473

Message Translator EIP 307
messaging annotations 451
message processing

asynchronous API 354–356
AsyncCallback 355–356
AsyncProcessor 355, 357
callback 357
DefaultAsyncProducer

356–357
process 356–357
using AsyncProcessor

rules 355
asynchronous message

processing
callback 354–355
using AsyncProcessor

rules 357
method signature naming 67
<method> tag 260
middleware 451
mina 73
Mock component 155, 166–178

unit testing 167, 178
mock endpoint 167–178, 256
mocked service 454
monitoring

application activity 393–405
audit 395
audit log 394
correlation 397
correlation id 397
event 403
lifecycle event 394
log EIP 396
log file scanning 393

trace logs 398
using custom log 394–398
using log 393–398
using notification 402–405
using Tracer 398–401

Camel application 386–389
health

checking at application
level 388–389

checking at JVM level 388
checking network

level 386–388
load balancer 387

Java Management Extensions
(JMX) 386, 388

Nagios 386
periodic health check 386
ping service 386
Simple Network Management

Protocol (SNMP) 386, 388
using JMX 389–393

multicast 50
@MVEL 116
Mvel 45

N

Nagios 386
NamespaceHandler 412
networking 216
noAutoStartup 419
NOTICE.txt 9
notification

configuring
EventNotifier 403

EventNotifier 403
filtering event 403
LoggingEventNotifier

402–403
PublishEventNotifier 402
setEventNotifier 403
using 402–405
using custom

EventNotifier 403–405
NotifyBuilder 185–187

O

Object/Relational Mapping
(ORM) 224

Odersky, Martin 381
OGNL 45

accessing bean 468
accessing List 469

 www.it-ebooks.info

http://www.it-ebooks.info/

INDEX512

OGNL (continued)
accessing Map 469
bean parameter binding 469
null safe operator 469

onCompletion 420–421
different from

synchronization 313
onCompleteOnly option 422
onFailureOnly option 422
OnWhen 422
scope 313
using 312–313

onException 139
and exceptions 143
and redelivery 142–146

onExchangeBegin method 422
onExchangeDone method 422
@ONGL 116
onRedeliver 151
onWhen 150
Open eHealth Integration Plat-

form (IPF) 380
OpenJPA 224
ordering routes 416
OSGi 411, 428

hot deployment 437
import and export 438
Maven bundle plugin 438
OSGi bundle 438
OSGi compliant 437
osgi service 102
OsgiServiceRegistry 102
Spring Dynamic Modules 102
with Maven 438

OSGi in Action 437–438
OsgiServiceRegistry registry

99, 102
@OutHeaders 114

P

parameter binding, in
beans 111–119

parameter-binding
annotations 446

payload conversion 32
performance 316

impact 321
improving 319, 323, 333

persistence.xml 228
@PHP 116
PHP 45
ping service 386
pipeline 32

Plain Old Java Object (POJO)
7, 23, 205

messaging 444
pollEnrich 71

vs. enrich 71
POM 11
predicate 473

combining predicates 475
compound predicate 475

and 476
or 476
PredicateBuilder 476

custom predicate 474–475
using in Java DSL 475
using in Spring XML 475

definition 474
Filter EIP 474
matches 474
syntax sugar 474

fluent builder 474
using

with Java DSL 474
with Spring XML 474

predicate interface 45
Processor 18, 64, 94

inlined in route 95
interface 33
introduction 64
invoking a bean 94
process 95
using to translate custom for-

mat to CSV 64
@Produce 447–450
Producer 19, 374
producers 33, 477
ProducerTemplate 100, 229

example 478
request-reply example 479
requesting a response

202, 214
Programming in Scala 381
Project Object Model. See POM
project templates 360
@Properties 114
properties 192
Properties component 161–165
@Property 114
property placeholders 164–166
<proxy> tag 458
ProxyBuilder 460
ProxyHelper 458
proxying Camel route as a

interface 455
publish/subscribe 26

@Python 116
Python 45

Q

QName 206
Quartz 233

scheduling job with 65
queue 26

R

reading files 193
README.txt 9
Recipient List EIP 147
@RecipientList 54
recovery, Aggregator EIP 251
redelivery 130–135

asynchronous 134
attempts 122
policy 130
policy options 130

registry 25
ApplicationContextRegistry

99, 101
Camel 99
JndiRegistry 99, 101
OsgiServiceRegistry 99, 102
SimpleRegistry 99–100

request-reply messaging 459
resource

CPU-bound 316, 350
IO-bound 316, 350, 352

REST 362
retryWhile 152
Rider Auto Parts 217, 222, 224,

416, 418, 434
introduction 23
inventory update 444
inventory updates from

suppliers 411
starter kit 451
web service for order

submission 206
route

additional routing using
OnCompletion 420

adviceWith 182
assign id 182
AutoStartup 416, 418
defining in Spring XML

file 96
defining with

RouteBuilder 95

 www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 513

route (continued)
difference between stop and

suspend 428
flip routes being active 422
lookup by id 182
OnCompletion 420
ordering 416–418
RouteDefinition 182
RoutePolicy 422

start route 422
stop route 422

shared route 427
StartupOrder 416
stop graceful 428

RouteBuilder 21, 28–30, 95
add to CamelContext 29
anonymous RouteBuilder

class 29
configure method 29

RouteBuilder interface 28
RouteDefinition 30
routeId 417
RoutePolicy 422

method 423
RoutePolicySupport 422–423
router, payload agnostic 7
routes 17

introduction 11
ManagedRoute MBean 419
ordering example 416
starting and stopping

programmatically 419
starting and stopping via

JMX 419
StartupOrder 418

option 417
stopping and starting with

CamelContext 420
stopping and starting with

RoutePolicy 422
streamCache option 415

routing
slow processing down 399

routing engine 17, 350, 353
asynchronous 350, 353–354,

356–358, 488, 498
advantage 354
disadvantage 354

synchronous 353, 355
Routing Slip EIP 238, 266–270

@RoutingSlip 269
using a bean as slip 267
using expression as slip 268
using header as slip 267

@RoutingSlip 269

@Ruby 116
Ruby 45, 380

S

Scala 380–381
maven-scala-plugin 383
Scala plugin for Eclipse 381

Scala DSL 361, 380
scala, akka 488
scalability 350

Apache SerivceMix 353
asynchronous

message processing 350
processing model 352–353
routing engine 350
writing custom

component 356–358
blocked thread 351, 355
error handling 134
high scalability 353–354
in Camel 352–353
increasing load 351
jetty

consumer 350
continuations 354
thread pool 351

limit 352
scalability goal 352
scalability problem 350–352
thread blocked 352

schedule tasks 232
ScheduledPollConsumer 376
scripting language, using as

expression 69
SEDA component 169, 273,

304, 455
sending to multiple

destinations 50
Service Activator EIP 97–98, 103
service level agreement 23, 284
service provider interface,

registry 99
service-oriented architecture. See

SOA
ServiceMix 4
SFTP 196
shutdown 424

defer 425, 427
graceful 424

timeout 425
reliable 424–425, 427
ShutdownRoute option 427
suspend 425

shutdownRoute method 427

ShutdownRoute.Defer 427
ShutdownStrategy 425
@Simple 116
Simple

built-in file variables 465–466
file extension 466
filename 465–466

built-in functions 463–465
bean 464
bodyAs 463
date 464
properties 464–465

built-in operators 466–468
automatic type coerce 467
combining two

expressions 468
contains 466
equals 466–467
greater than 466
in 466
less than 466–467
null safe operator 468
range 467
regex 467–468
syntax 467
with built-in functions 468

built-in variables 462–463
body 463
date 466
header 463
property 463

expression 461, 470
OGNL 468–469
operator 462
predicate 461–462, 470
SimpleBuilder 469–470
splitting message body 80
syntax 462
using as expression 69
using from Processor 469
using with

Content Based Router
EIP 461

using with custom Java
code 469

variables binding to
Exchange 462

simple expression 195
simple language 233
Simple Network Management

Protocol (SNMP) 386, 388
Simple Object Access Protocol.

See SOAP
<simple> tag 260

 www.it-ebooks.info

http://www.it-ebooks.info/

INDEX514

simple, invoke method on mes-
sage body 260

SimpleDataFormat 195
SimpleRegistry registry 99–100
SOA 205
SOAP 138, 205, 211
SoapUI 433
SonicMQ 42
split big file 318
<split> tag 261, 264
Splitter EIP 238, 255–266

aggregate 258–264
AggregationStrategy 262

big message 260–262
streaming mode 261–262
using stream 260

combine message 262
Exchange properties 258
Expression 258
handling error 264–266

by AggregationStrategy 265
by stopping 264
in AggregationStrategy 264
stopOnException 264

iterate 257–258
message body 256
overview 255
split 79–80
split complete 258
split index 258
split size 258
splitting message body 79
tokenizer 261
using 256–257

beans for splitting 258–260
Expression 256

using java.util.Scanner 261
Spring 34, 361–362, 411

bean wiring example 34
BeanPostProcessor 447
ClassPathXmlApplicationCon

text 35, 160
configuring Camel

components 36
context listener 431
defining bean in Spring

XML 95
invoking a bean 95
JMX 407

@ManagedAttribute 407
@ManagedResource 407

loading CamelContext in
Spring XML 36

property placeholder 161

referencing a
RouteBuilder 37

RouteBuilder 95
separate wiring into several

XML files 42
Spring JMX 389
Spring Remoting 456
Spring transaction 290–291
wiring 35

Spring in Action 34
Spring property

placeholders 164–166
spring.handlers 412
SpringCamelContext 447
SQL 222, 228
SSL 196
staged event-driven architecture

(SEDA) 322, 340, 342
concurrency 322–323
concurrent consumer 323

starting
Camel 411–419

autostartup 412
startup diagram 412

reliable startup 411
route startup order 416

StartupOrder 416
StreamCaching 344, 414
synchronicity 335–344

eip threads 339
Synchronization 311

using 310–312
synchronous 335
synchronous messaging 229

T

template, transforming using
JAXB 76

Test Kit 8
testing

Camel test kit 155, 166
CamelSpringTestSupport

156, 304
CamelTestSupport 156
createRouteBuilder 157
existing RouteBuilder

class 159
Maven dependencies 156
RouteBuilder 157
SpringCamelTestSupport

159
@Test 157
TestSupport 156
unit testing route 156

using SpringCamelTest-
Support 159–161

camel-test.jar 155
externalize dynamic parts 161
file copy example 157–159
in multiple

environments 161–166
reusable unit test 162

integration test 182–185
NotifyBuilder 185–187

message ordering 174
expects 175
expectsAscending 174
expectsDescending 174
gap detection 174
using custom

expression 174–175
MockEndpoint 167
NotifyBuilder 184

from a specific
endpoint 185

matches 186
table of methods 185
understanding message

complete 186
using predicate 185
whenAnyDoneMatches 185
whenDone 186
whenFailed 186

replacing JMS with SEDA 169
simulating error 178

communication error 180
connection error 288
interceptSendToEndpoint

181, 288
skipSendToOriginal-

Endpoint 181
using interceptor 180–183
using mock 180
using processor 178–180

transaction 293–295
database 293
JMS broker 293

unit test 155
using interceptor

adviceWith 182, 289
wildcard 182

using mock 166
AssertionError 168
assertIsNotSatisfied 175
assertIsSatisfied 168, 175
assertMockEndpointsIs-

Satisfied 171

 www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 515

testing (continued)
expectation 167
expectedBodiesReceived

168, 170
expectedMessageCount

168–169
expectedMinimumMessage

Count 168
expression-based

methods 171
getReceivedExchanges 171
message 172
regular expression 173
setResultWaitTime 169
simulating real

component 175–177
table of predicate

methods 172
verify message content 169
whenAnyExchangeReceived

176–177, 180
whenExchangeReceived

176
with expression 170–174

using ProducerTemplate
158, 162

using Spring property
placeholders 164

verify message content 169
without mock 183

thread pool 319
benefits by Camel 325
blocked thread 351–352
cached thread pool 321
concurrency 323
creating 320

custom pool 334
Java DSL 328
Spring XML 328
ThreadPoolBuilder 328
using Executors 325

custom profile 326
configuring 327–328
idle time 327
ThreadPoolProfileSupport

327
custom thread pool 320–322
default profile 326–327

configuring 326–327
getDefaultThreadPool-

Profile 326
settings 326

eip
splitter 320
threads 331–332

execute task 323
ExecutorService 320, 324
executorServiceRef

327–328, 334
ExecutorServiceStrategy

325–326, 329
custom 329
using in custom

component 329–330
exhausted 324, 326
fixed thread pool 321
idle time 324, 326, 328
JMX 325
list of options 324
lookup 327

executorServiceRef
327–328

maximum pool size
324, 326–328, 334

newScheduledThreadPool
329

parallelProcessing 331
pool size 324, 326, 328,

331, 334
profile 327–328
rejected policy 326
schedule task 329–330
scheduled background

task 329
ScheduledExecutorService

329
shutdown 325
sizing 322
task queue 323, 325
task queue size 326
thread blocking 353–354
thread factory 325
thread name 320

human understandable 325
ThreadPoolBuilder 334
ThreadPoolExecutor 324
understanding 323–326
unique thread names 325
using 323–330
WorkManager 323

threading model 335
Throttler EIP 134
timer 192
TLS 196
<to> tag 165
tooling 8
topic 26
TopLink 224
tracer 398–401

customizing 399

enable 398
managing using JMX 400–401
noTracing 400
per route 400
trace logs 398
traceFormatter 399
tracing 400

<transacted> tag 302
transaction

ActiveMQXAConnection-
Factory 299

begin 289, 291
boundary 296
commit 289, 291,

296–297, 304
compensation 309

on completion 309
rollback 309
synchronization 310

configuring 301–303
Camel route 292
convention over

configuration 302
default configurations

293, 302
Spring XML 291–292

declarative 290
EIP, transactional client 296
example 291–295

configuring 291
global transaction 298–301
JMS, transacted acknowledge

mode 289, 292
JmsTransactionManager

291, 297
timeout 292

JPA
EntityManager 289
EntityTransaction 289

JtaTransactionManager
298–299

local transaction 295, 297
locally managed 289
losing message 288–289,

291, 297
markRollbackOnly 306–307
markRollbackOnlyLast 306
multiple resource 297–298
multiple transaction 305
multiple transaction

manager 292
propagation 337, 340, 342
redelivery 294

JMSRedelivered 295

 www.it-ebooks.info

http://www.it-ebooks.info/

INDEX516

transaction (continued)
rollback 289, 291, 298, 300,

304, 306–307
return custom

response 306
route

convention over
configuration 292

transacted 292
runtime environment

agnostic 290
single resource 297
spring transaction

JmsTransactionManager
291

TransactionManager 290
transacted 292–293, 301–303,

305–306
transaction manager,

suspension 306
transaction propagation 301

required 301–302, 305
requires new 301, 305
SpringTransactionPolicy

302
with multiple routes 303
XA standard protocol 299

transaction, error handling
onException 307

Transactional Client EIP 296
transform

XML to SQL 285–286
XML, @XPath 286

transform, losing message 293
transform()

from Java 67
from Spring XML 69

Transmission Control Protocol
(TCP) 216

endpoint 145, 148
type converter 7, 62

AnnotationTypeConverter-
Loader 89

convertBodyTo 90

@Converter 89
convertTo 89, 159
data type transformation

using 88–91
encoding 90
getBody 88
IOConverter example 89
loading 89
TypeConverter 89
TypeConverterRegistry 88
understanding 88
using 90
writing custom 90

type converters 446

U

unit of work 309
boundaries 310
introducing 309–310
synchronization 309

adding 311
UnitOfWorkProcessor 310

User Datagram Protocol
(UDP) 216

V

Velocity
endpoint 88
generating email content 87
loading templates 88
table of information in

VelocityContext 87
template 87

W

Walls, Craig 34
WAR 362
web console 362
web services

contract 205

service endpoint interface
(SEI) 205

with transaction 306
Web Services Description Lan-

guage (WSDL) 205, 307
WEB-INF directory 431
@WebService 215
website links for

components 189
wire tap 55
Woolf, Bobby 5
writing files 194
WSDL 205, 209

binding 211
example 209
message 211
other bindings and

encodings 211
portType 211
service 211
tools that help generate

WSDLs 210
WSDL 2.0 support 210

X

XML
object marshaling 75
serializing objects to and from

XML 75–76
transforming 73–77
transforming using XSLT 73
XPath 116

with namespace 118
XML schema 211
@XPath 54, 116, 223, 286
XPath 45, 50, 223
@XQuery 116
XQuery 45
XSLT, loading stylesheets 73

 www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

	Camel in Action
	brief contents
	contents
	foreword
	foreword
	preface
	acknowledgments
	Claus
	Jon

	about this book
	Roadmap
	Who should read this book
	Code conventions
	Source code downloads
	Software requirements
	Author Online

	about the cover illustration
	about the authors
	First steps
	Meeting Camel
	1.1 Introducing Camel
	1.1.1 What is Camel?
	1.1.2 Why use Camel?

	1.2 Getting started
	1.2.1 Getting Camel
	1.2.2 Your first Camel ride

	1.3 CamelÆs message model
	1.3.1 Message
	1.3.2 Exchange

	1.4 CamelÆs architecture
	1.4.1 Architecture from 10,000 feet
	1.4.2 Camel concepts

	1.5 Your first Camel ride, revisited
	1.6 Summary

	Routing with Camel
	2.1 Introducing Rider Auto Parts
	2.2 Understanding endpoints
	2.2.1 Working with files over FTP
	2.2.2 Sending to a JMS queue

	2.3 Creating routes in Java
	2.3.1 Using the RouteBuilder
	2.3.2 The Java DSL

	2.4 Creating routes with Spring
	2.4.1 Bean injection and Spring
	2.4.2 The Spring DSL
	2.4.3 Using Camel and Spring

	2.5 Routing and EIPs
	2.5.1 Using a content-based router
	2.5.2 Using message filters
	2.5.3 Using multicasting
	2.5.4 Using recipient lists
	2.5.5 Using the wireTap method

	2.6 Summary and best practices

	Core Camel
	Transforming data with Camel
	3.1 Data transformation overview
	3.1.1 Data transformation with Camel

	3.2 Transforming data using EIPs and Java
	3.2.1 Using the Message Translator EIP
	3.2.2 Using the Content Enricher EIP

	3.3 Transforming XML
	3.3.1 Transforming XML with XSLT
	3.3.2 Transforming XML with object marshaling

	3.4 Transforming with data formats
	3.4.1 Data formats provided with Camel
	3.4.2 Using CamelÆs CSV data format
	3.4.3 Using CamelÆs Bindy data format
	3.4.4 Using CamelÆs JSON data format
	3.4.5 Configuring Camel data formats
	3.4.6 Writing your own data format

	3.5 Transforming with templates
	3.5.1 Using Apache Velocity

	3.6 About Camel type converters
	3.6.1 How the Camel type-converter mechanism works
	3.6.2 Using Camel type converters
	3.6.3 Writing your own type converter

	3.7 Summary and best practices

	Using beans with Camel
	4.1 Using beans the hard way and the easy way
	4.1.1 Invoking a bean from pure Java
	4.1.2 Invoking a bean defined in Spring
	4.1.3 Using beans the easy way

	4.2 The Service Activator pattern
	4.3 CamelÆs bean registries
	4.3.1 SimpleRegistry
	4.3.2 JndiRegistry
	4.3.3 ApplicationContextRegistry
	4.3.4 OsgiServiceRegistry

	4.4 Selecting bean methods
	4.4.1 How Camel selects bean methods
	4.4.2 CamelÆs method-selection algorithm
	4.4.3 Some method-selection examples
	4.4.4 Potential method-selection problems

	4.5 Bean parameter binding
	4.5.1 Binding with multiple parameters
	4.5.2 Binding using built-in types
	4.5.3 Binding using Camel annotations
	4.5.4 Binding using Camel language annotations

	4.6 Summary and best practices

	Error handling
	5.1 Understanding error handling
	5.1.1 Recoverable and irrecoverable errors
	5.1.2 Where CamelÆs error handling applies

	5.2 Error handlers in Camel
	5.2.1 The default error handler
	5.2.2 The dead letter channel error handler
	5.2.3 The transaction error handler
	5.2.4 The no error handler
	5.2.5 The logging error handler
	5.2.6 Features of the error handlers

	5.3 Using error handlers with redelivery
	5.3.1 An error-handling use case
	5.3.2 Using redelivery
	5.3.3 Error handlers and scopes
	5.3.4 Handling faults

	5.4 Using exception policies
	5.4.1 Understanding how onException catches exceptions
	5.4.2 Understanding how onException works with redelivery
	5.4.3 Understanding how onException can handle exceptions
	5.4.4 Custom exception handling
	5.4.5 Ignoring exceptions
	5.4.6 Implementing an error handler solution

	5.5 Other error-handling features
	5.5.1 Using onWhen
	5.5.2 Using onRedeliver
	5.5.3 Using retryWhile

	5.6 Summary and best practices

	Testing with Camel
	6.1 Introducing the Camel Test Kit
	6.1.1 The Camel JUnit extensions
	6.1.2 Using the Camel Test Kit
	6.1.3 Unit testing with the CamelTestSupport class
	6.1.4 Unit testing an existing RouteBuilder class
	6.1.5 Unit testing with the SpringCamelTestSupport class
	6.1.6 Unit testing in multiple environments

	6.2 Using the Mock component
	6.2.1 Introducing the Mock component
	6.2.2 Unit testing with the Mock component
	6.2.3 Verifying that the correct message arrived
	6.2.4 Using expressions with mocks
	6.2.5 Testing the ordering of messages
	6.2.6 Using mocks to simulate real components

	6.3 Simulating errors
	6.3.1 Simulating errors using a processor
	6.3.2 Simulating errors using mocks
	6.3.3 Simulating errors using interceptors

	6.4 Testing without mocks
	6.4.1 Integration testing
	6.4.2 Using NotifyBuilder

	6.5 Summary and best practices

	Understanding components
	7.1 Overview of Camel components
	7.1.1 Manually adding components
	7.1.2 Autodiscovering components

	7.2 Working with files (File and FTP components)
	7.2.1 Reading and writing files with the File component
	7.2.2 Accessing remote files with the FTP component

	7.3 Asynchronous messaging (JMS component)
	7.3.1 Sending and receiving messages
	7.3.2 Request-reply messaging
	7.3.3 Message mappings

	7.4 Web services (CXF component)
	7.4.1 Configuring CXF
	7.4.2 Using a contract-first approach
	7.4.3 Using a code-first approach

	7.5 Networking (MINA component)
	7.5.1 Using MINA for network programming
	7.5.2 Using custom codecs

	7.6 Working with databases (JDBC and JPA components)
	7.6.1 Accessing data with the JDBC component
	7.6.2 Persisting objects with the JPA component

	7.7 In-memory messaging (Direct, SEDA, and VM components)
	7.7.1 Synchronous messaging with the Direct component
	7.7.2 Asynchronous messaging with SEDA and VM

	7.8 Automating tasks (Timer and Quartz components)
	7.8.1 Using the Timer component
	7.8.2 Enterprise scheduling with Quartz

	7.9 Summary and best practices

	Enterprise integration patterns
	8.1 Introducing enterprise integration patterns
	8.1.1 The Aggregator and Splitter EIPs
	8.1.2 The Routing Slip and Dynamic Router EIPs
	8.1.3 The Load Balancer EIP

	8.2 The Aggregator EIP
	8.2.1 Introducing the Aggregator EIP
	8.2.2 Completion conditions for the Aggregator
	8.2.3 Using persistence with the Aggregator
	8.2.4 Using recovery with the Aggregator

	8.3 The Splitter EIP
	8.3.1 Using the Splitter
	8.3.2 Using beans for splitting
	8.3.3 Splitting big messages
	8.3.4 Aggregating split messages
	8.3.5 When errors occur during splitting

	8.4 The Routing Slip EIP
	8.4.1 Using the Routing Slip EIP
	8.4.2 Using a bean to compute the routing slip header
	8.4.3 Using an Expression as the routing slip
	8.4.4 Using @RoutingSlip annotation

	8.5 The Dynamic Router EIP
	8.5.1 Using the Dynamic Router
	8.5.2 Using the @DynamicRouter annotation

	8.6 The Load Balancer EIP
	8.6.1 Introducing the Load Balancer EIP
	8.6.2 Load-balancing strategies
	8.6.3 Using the failover load balancer
	8.6.4 Using a custom load balancer

	8.7 Summary and best practices

	Out in the wild
	Using transactions
	9.1 Why use transactions?
	9.1.1 The Rider Auto Parts partner integration application
	9.1.2 Setting up the JMS broker and the database
	9.1.3 The story of the lost message

	9.2 Transaction basics
	9.2.1 About SpringÆs transaction support
	9.2.2 Adding transactions
	9.2.3 Testing transactions

	9.3 The Transactional Client EIP
	9.3.1 Using local transactions
	9.3.2 Using global transactions

	9.4 Configuring and using transactions
	9.4.1 Configuring transactions
	9.4.2 Using transactions with multiple routes
	9.4.3 Returning a custom response when a transaction fails

	9.5 Compensating for unsupported transactions
	9.5.1 Introducing UnitOfWork
	9.5.2 Using Synchronization callbacks
	9.5.3 Using onCompletion

	9.6 Summary and best practices

	Concurrency and scalability
	10.1 Introducing concurrency
	10.1.1 Running the example without concurrency
	10.1.2 Using concurrency

	10.2 Using thread pools
	10.2.1 Understanding thread pools in Java
	10.2.2 Camel thread pool profiles
	10.2.3 Creating custom thread pools
	10.2.4 Using ExecutorServiceStrategy

	10.3 Using concurrency with EIPs
	10.3.1 Using concurrency with the Threads EIP
	10.3.2 Using concurrency with the Multicast EIP
	10.3.3 Using concurrency with the Wire Tap EIP

	10.4 Synchronicity and threading
	10.4.1 Asynchronous caller using one thread
	10.4.2 Synchronous caller using one thread
	10.4.3 Asynchronous caller using multiple threads
	10.4.4 Synchronous caller using multiple threads
	10.4.5 Returning an early reply to a caller

	10.5 The concurrency client API
	10.5.1 The concurrency client API in Java
	10.5.2 The concurrency client API in Camel

	10.6 The asynchronous routing engine
	10.6.1 Hitting the scalability limit
	10.6.2 Scalability in Camel
	10.6.3 Components supporting asynchronous processing
	10.6.4 Asynchronous API
	10.6.5 Writing a custom asynchronous component

	10.7 Summary and best practices

	Developing Camel projects
	11.1 Managing projects with Maven
	11.1.1 Using Camel Maven archetypes
	11.1.2 Camel Maven dependencies

	11.2 Using Camel in Eclipse
	11.2.1 Using the Maven Eclipse plugin
	11.2.2 Using the m2eclipse plugin

	11.3 Developing custom components
	11.3.1 Setting up a new Camel component
	11.3.2 Diving into the implementation

	11.4 Developing interceptors
	11.4.1 Creating an InterceptStrategy

	11.5 Using alternative languages
	11.5.1 The Scala DSL
	11.5.2 Adding Scala routes to the CamelContext
	11.5.3 Mixing Java and Scala

	11.6 Summary and best practices

	Management and monitoring
	12.1 Monitoring Camel
	12.1.1 Checking health at the network level
	12.1.2 Checking health at the JVM level
	12.1.3 Checking health at the application level

	12.2 Using JMX with Camel
	12.2.1 Using JConsole to manage Camel
	12.2.2 Using JConsole to remotely manage Camel

	12.3 Tracking application activity
	12.3.1 Using log files
	12.3.2 Using core logs
	12.3.3 Using custom logging
	12.3.4 Using Tracer
	12.3.5 Using notifications

	12.4 Managing Camel applications
	12.4.1 Managing Camel application lifecycles
	12.4.2 Managing custom Camel components

	12.5 Summary and best practices

	Running and deploying Camel
	13.1 Starting Camel
	13.1.1 How Camel starts
	13.1.2 Camel startup options
	13.1.3 Ordering routes
	13.1.4 Disabling autostartup

	13.2 Starting and stopping routes at runtime
	13.2.1 Using CamelContext to start and stop routes at runtime
	13.2.2 Using RoutePolicy to start and stop routes at runtime

	13.3 Shutting down Camel
	13.3.1 Graceful shutdown

	13.4 Deploying Camel
	13.4.1 Embedded in a Java application
	13.4.2 Embedded in a web application
	13.4.3 Embedded in JBoss Application Server

	13.5 Camel and OSGi
	13.5.1 Setting up Maven to generate an OSGi bundle
	13.5.2 Installing and running Apache Karaf
	13.5.3 Deploying the example

	13.6 Summary and best practices

	Bean routing and remoting
	14.1 Using beans for routing
	14.1.1 Inventory update at Rider Auto Parts
	14.1.2 Receiving messages with @Consume
	14.1.3 Sending messages with @Produce
	14.1.4 When to use beans for routing

	14.2 Hiding middleware
	14.2.1 Introducing the starter kit
	14.2.2 Using Spring remoting and Camel proxies

	14.3 Summary and best practices

	appendix A: Simple, the expression language
	A.1 Introducing Simple
	A.2 Syntax
	A.3 Built-in variables
	A.4 Built-in functions
	A.5 Built-in file variables
	A.6 Built-in operators
	A.6.1 Combining expressions

	A.7 The OGNL feature
	A.8 Using Simple from custom Java code
	A.9 Summary

	appendix B: Expressions and predicates
	B.1 Expressions
	B.1.1 Standard expressions
	B.1.2 Using custom expressions

	B.2 Predicates
	B.2.1 Standard predicates
	B.2.2 Using custom predicates
	B.2.3 Using compound predicates

	B.3 Summary

	appendix C: The producer and consumer templates
	C.1 The ProducerTemplate
	C.1.1 Using the ProducerTemplate

	C.2 The ConsumerTemplate
	C.2.1 Using the ConsumerTemplate

	C.3 Summary

	appendix D: The Camel community
	D.1 Apache Camel website
	D.2 FuseSource
	D.3 Camel Tooling
	D.4 Camel-extra project
	D.5 JIRA, mailing lists, and IRC
	D.6 Camel quick reference card
	D.7 Other resources

	appendix E: Akka and Camel
	E.1 Introducing the Akka-Camel integration
	E.2 Getting started with Akka actors
	E.3 Consuming messages from Camel endpoints
	E.3.1 One-way messaging
	E.3.2 Request-response messaging

	E.4 Producing messages to Camel endpoints
	E.5 Customizing CamelService
	E.5.1 Programmatic customization
	E.5.2 Declarative customization

	E.6 The Actor component
	E.7 A routing example
	E.8 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Back cover

