(laus Ibsen
Jonathan Anstey

Farewnords by
Gregor Hohpe and lames Strachan

|'Il MANNING

http://www.it-ebooks.info/

Camel in Action

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Camel 1n Action

CLAUS IBSEN
JONATHAN ANSTEY

MANNING

Greenwich
(74° w. long.)

www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad Street, Suite 1323
Stamford, CT 06901

Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

® Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Cynthia Kane
180 Broad Street, Suite 1323 Copyeditor: Andy Carroll
Stamford, CT 06901 Cover designer: Marija Tudor

Typesetter: Gordan Salinovic

ISBN 978-1-935182-36-8
Printed in the United States of America

123456789 10- MAL- 15 14 13 12 11 10

www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

To the Apache Camel community
May this book be a helpful companion on your journeys with Camel

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

brief contents

PART 1 FIRST STEPS. tececeecceccescescesccnscescescoscosscsscescessossssssessossossanse 1

1 = Meeting Camel 3
2 = Routing with Camel 22

PART 2 CORE CAMEL..uecetetureeeerererereecesesersscesesssssesessssssssesssssssnns 59

3 = Transforming data with Camel 61
» Using beans with Camel 93

= Error handling 120

Testing with Camel 154

» Understanding components 188

L I O Ot W
|

= Enterprise integration patterns 237

PART 3 QOUT IN THE WILD . ceeuteereecescescscescescscescessssessessscesssssssesons 281

9 = Using transactions 283
10 = Concurrency and scalability 315
11 = Developing Camel projects 359
12 = Management and monitoring 385
13 = Running and deploying Camel 410

14 = Bean routing and remoting 443

vii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

contents

Sforeword xvii

Sforeword xix

preface xxi

acknowledgments — xxiii

about this book xxv

about the cover illustration xxix
about the authors — xxxi

PART 1 JFIRST STEPS. .eeeececececsccescensccssoesccsscessoesssssscssoessonsel

Meeting Camel 3

1.1

1.2

1.3

1.4
1.5

Introducing Camel 4

What is Camel? 4 = Why use Camel? 5 = Gelling
started 8 = Getting Camel 8 = Your first Camel ride 9

Camel’s message model 13

Message 13 = Exchange 14
Camel’s architecture 15

Architecture from 10,000 feet 15 = Camel concepts 16
Your first Camel ride, revisited 20

Summary 21

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Routing with Camel 22
2.1 Introducing Rider Auto Parts 23
2.2 Understanding endpoints 24
Working with files over FITP 24 = Sending to a [MS queue 26
2.3 Creating routes in Java 28
Using the RouteBuilder 29 = The Java DSL 30
2.4 Creating routes with Spring 34
Bean injection and Spring 34 = The Spring DSL 37 = Using
Camel and Spring 40
2.5 Routing and EIPs 43

Using a content-based router 44 = Using message filters 49
Using multicasting 50 = Using recipient lists 52 = Using the
wireTap method 55

2.6 Summary and best practices 57

PART 2 CORE CAMEL ..veuteereeseescescescescessescessescessessessescesesD

Transforming data with Camel 61
3.1 Data transformation overview 62
Data transformation with Camel 62
3.2 Transforming data using EIPs and Java 63

Using the Message Translator EIP 63 = Using the Content
Enricher EIP 70

3.3 Transforming XML 73

Transforming XML with XSLT 73 = Transforming XML with
object marshaling 75

3.4 Transforming with data formats 77

Data formats provided with Camel 78 = Using Camel’s CSV data
Jormat 79 = Using Camel’s Bindy data format 80 = Using
Camel’s [SON data format 83 = Configuring Camel data
Jormats 84 = Writing your own data format 85

3.5 Transforming with templates 86
Using Apache Velocity 87

3.6 About Camel type converters 88

How the Camel type-converter mechanism works 88 = Using Camel
type converters 90 = Writing your own type converter 90

3.7 Summary and best practices 92

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi

Using beans with Camel 93

4.1

4.2

4.3

4.4

4.5

4.6

Using beans the hard way and the easy way 94

Invoking a bean from pure Java 94 = Invoking a bean defined in
Spring 95 = Using beans the easy way 96

The Service Activator pattern 97

Camel’s bean registries 98
SimpleRegistry 100 = [ndiRegistry 101 = ApplicationContext-
Registry 101 = OsgiServiceRegistry 102

Selecting bean methods 103

How Camel selects bean methods 104 = Camel’s method-selection
algorithm 105 = Some method-selection examples 107
Potential method-selection problems 109

Bean parameter binding 111
Binding with multiple parameters 112 = Binding using built-in
types 113 = Binding using Camel annotations 114 = Binding
using Camel language annotations 115

Summary and best practices 119

Error handling 120

5.1

5.2

5.3

5.4

5.5

5.6

Understanding error handling 121
Recoverable and irrecoverable errors 121 = Where Camel’s error
handling applies 123

Error handlers in Camel 124

The default error handler 125 = The dead letter channel error
handler 126 = The transaction error handler 128 = The no error
handler 128 = The logging error handler 128 = Features of the
error handlers 128

Using error handlers with redelivery 129
An error-handling use case 129 = Using redelivery 130 = Error
handlers and scopes 135 = Handling faults 137

Using exception policies 138
Understanding how onException catches exceptions 139 = Understanding
how onException works with redelivery 142 = Understanding how
onlixception can handle exceptions 143 = Custom exception
handling 146 = Ignoring exceptions 148 = Implementing an error
handler solution 149

Other error-handling features 150
Using onWhen 150 = Using onRedeliver 151 = Using
retryWhile 152

Summary and best practices 153

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Testing with Camel 154

6.1

6.2

6.3

6.4

6.5

Introducing the Camel Test Kit 155
The Camel JUnit extensions 155 = Using the Camel Test Kit 156
Unit testing with the CamelTestSupport class 156 = Unit testing an
existing RouteBuilder class 159 = Unit testing with the SpringCamel-
TestSupport class 159 = Unit testing in multiple environments 161
Using the Mock component 166
Introducing the Mock component 167 = Unit testing with the Mock
component 167 = Verifying that the correct message arrived 169
Using expressions with mocks 170 = Testing the ordering of
messages 174 = Using mocks to simulate veal components 175
Simulating errors 178
Simulating errovs using a processor 178 = Simulating errors using
mocks 180 = Simulating errors using interceptors 180
Testing without mocks 183
Integration testing 183 = Using NotifyBuilder 185

Summary and best practices 187

Understanding components 188

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Overview of Camel components 189
Manually adding components 190 = Autodiscovering components 190

Working with files (File and FTP components) 192
Reading and writing files with the File component 193 = Accessing remote
files with the FTP component 196
Asynchronous messaging (JMS component) 197
Sending and receiving messages 200 = Request-reply
messaging 201 = Message mappings 202
Web services (CXF component) 205
Configuring CXF 206 = Using a contract-first approach 209
Using a code-first approach 215
Networking (MINA component) 216
Using MINA for network programming 217 = Using custom codecs 219

Working with databases (JDBC and JPA components) 221

Accessing data with the]DBC component 221 = Persisting objects with the
JPA component 224

In-memory messaging (Direct, SEDA, and VM
components) 229

Synchronous messaging with the Direct component 229
Asynchronous messaging with SEDA and VM~ 230

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii

7.8 Automating tasks (Timer and Quartz components) 232
Using the Timer component 232 = Enterprise scheduling with
Quarlz 233

7.9 Summary and best practices 235

Enterprise integration patterns 237
8.1 Introducing enterprise integration patterns 238
The Aggregator and Splitter EIPs 238 = The Routing Slip and
Dynamic Router EIPs 239 = The Load Balancer EIP 239

8.2 The Aggregator EIP 239

Introducing the Aggregator EIP 240 = Completion conditions for
the Aggregator 243 = Using persistence with the Aggregator 248
Using recovery with the Aggregator 251

8.3 The Splitter EIP 255
Using the Splitter 256 = Using beans for splitting 258 = Splitting
big messages 260 = Aggregating split messages 262 = When errors
occur during splitting 264

8.4 The Routing Slip EIP 266
Using the Routing Slip EIP 267 = Using a bean to compute the
routing slip header 267 » Using an Expression as the routing
slip 268 = Using @RoutingSlip annotation 269

8.5 The Dynamic Router EIP 270

Using the Dynamic Router 270 » Using the @DynamicRouter
annotation 271

8.6 The Load Balancer EIP 272

Introducing the Load Balancer EIP 272 = Load-balancing
strategies 274 = Using the failover load balancer 275 = Using a
custom load balancer 278

8.7 Summary and best practices 280

PART 3 QOUT IN THE WILD . ceveeecercceccsccsscsscsscsscsscsscsscescss 21

Using transactions 283

9.1 Why use transactions? 284
The Rider Auto Parts partner integration application 284 = Setting
up the JMS broker and the database 287 = The story of the lost
message 288

9.2 Transaction basics 289

About Spring’s transaction support 290 = Adding
transactions 291 = Testing transactions 293

www.it-ebooks.info

http://www.it-ebooks.info/

Xiv CONTENTS

9.3 The Transactional Client EIP 296
Using local transactions 297 = Using global transactions 298

9.4 Configuring and using transactions 301
Configuring transactions 301 = Using transactions with multiple
routes 303 = Returning a custom response when a transaction
fails 306

9.5 Compensating for unsupported transactions 309
Introducing UnitOfWork 309 = Using Synchronization
callbacks 310 = Using onCompletion 312

9.6 Summary and best practices 313

1 Concurrency and scalability 315

10.1 Introducing concurrency 316
Running the example without concurrency 318 = Using
concurrency 318

10.2 Using thread pools 323

Understanding thread pools in Java 323 = Camel thread pool
profiles 326 = Creating custom thread pools 328 = Using
ExecutorServiceStrategy ~ 329

10.3 Using concurrency with EIPs 330

Using concurrency with the Threads EIP 331 = Using concurrency
with the Multicast EIP 332 = Using concurrency with the Wire
Tap EIP 334

10.4 Synchronicity and threading 335

Asynchronous caller using one thread 336 = Synchronous caller
using one thread 337 = Asynchronous caller using multiple
threads 339 = Synchronous caller using multiple threads 340
Returning an early reply to a caller 342

10.5 The concurrency client API 344

The concurrency client API in Java 344 = The concurrency client
APl in Camel 347
10.6 The asynchronous routing engine 350

Hitting the scalability limit 350 = Scalability in Camel 352
Components supporting asynchronous processing 353
Asynchronous AP 354 = Writing a custom asynchronous
component 356

10.7 Summary and best practices 358

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

1 Developing Camel projects 359
11.1 Managing projects with Maven 360

Using Camel Maven archetypes 360 = Camel Maven
dependencies 364 = Using Camel in Eclipse 366 = Using the
Maven Eclipse plugin = 366 » Using the m2eclipse plugin 368

11.2 Developing custom components 371

Setting up a new Camel component 371 = Diving into the
implementation 373

11.3 Developing interceptors 377
Creating an InterceptStrategy 377

11.4 Using alternative languages 380

The Scala DSL 380 = Adding Scala routes to the CamelContext 382

Mixing Java and Scala 382
11.5° Summary and best practices 384

] Management and monitoring 385
12.1 Monitoring Camel 386

Checking health at the network level 386 = Checking health at the
JVM level 388 = Checking health at the application level 388

12.2 Using JMX with Camel 389

Using JConsole to manage Camel 390 = Using JConsole to remotely
manage Camel 391

12.3 Tracking application activity 393

Using log files 393 = Using core logs 394 = Using custom
logging 394 = Using Tracer 398 = Using notifications 402

12.4 Managing Camel applications 405

Managing Camel application lifecycles 405 = Managing custom
Camel components 406

12.5 Summary and best practices 409

] Running and deploying Camel 410
13.1 Starting Camel 411

How Camel starts 411 = Camel startup options 413 = Ordering
routes 416 = Disabling autostartup 418

13.2 Starting and stopping routes at runtime 419

Using CamelContext to start and stop routes at runtime 420
Using RoutePolicy to start and stop routes at runtime 422

www.it-ebooks.info

XV

http://www.it-ebooks.info/

xXvi CONTENTS

13.3 Shutting down Camel 424
Graceful shutdown 425
13.4 Deploying Camel 428

Embedded in a Java application 428 = Embedded in a web
application 430 = Embedded in [Boss Application Server 436

13.5 Camel and OSGi 437

Setting wp Maven to generate an OSGi bundle 438 = Installing
and running Apache Karaf 439 = Deploying the example 440

13.6 Summary and best practices 441

1 Bean routing and remoting 443
14.1 Using beans for routing 444

Inventory update at Rider Auto Parts 444 = Receiving messages
with @Consume 445 = Sending messages with @Produce 448
When to use beans for routing 450

14.2 Hiding middleware 451

Introducing the starter kit 453 = Using Spring remoting and
Camel proxies 456

14.3 Summary and best practices 460

appendix A Simple, the expression language 461
appendix B Expressions and predicates 471
appendix C The producer and conswmer templates 477
appendix D The Camel community 483
appendix E Akka and Camel 487

index 501

www.it-ebooks.info

http://www.it-ebooks.info/

Joreword

Languages are a critical aspect of software development. They give us the vocabulary
to express what a program should do. They force us to encode our requirements in
precise and non-ambiguous terms. Lastly, they enable the sharing of knowledge
between developers. No, I'm not talking about Java, Haskell, or PL/1. I'm talking
about the languages we use to communicate from human to human, from developer
to developer, or from end user to product manager. For a long time, the world of
enterprise integration (or EAJ as it was commonly known in the “dark ages of integra-
tion”) lacked such a vocabulary. Each vendor offered a proprietary solution, which
not only failed to integrate at a technical level with other vendors’ offerings, but also
used a different language to describe the main components and their functions. This
not only caused confusion, but was also a key inhibitor to creating a community of
developers that could span the vast space of enterprise integration. Each “tribe” was
essentially held hostage by the language bestowed upon them. Ironically, integration
developers were faced with the same “tower of Babel” problem that their software was
designed to solve!

Establishing a common vocabulary that enables knowledge sharing and collabora-
tion was the key motivator for us to write Enterprise Integration Patterns (EIPs). Each
of the 65 patterns has a descriptive name, which represents the solution to a design
challenge in the integration space. Besides supporting effective communication, this
vocabulary also raises the level of abstraction at which we can describe integration
problems and solutions.

A shared vocabulary is a big step forward, but a giant step we could not imagine at
the time was that our language would spur the development of a whole family of open

xvii

www.it-ebooks.info

http://www.it-ebooks.info/

xviii

FOREWORD

source messaging and enterprise service bus (ESB) products. These tools embrace the
EIP vocabulary by implementing many patterns directly in the platform. With Apache
Camel, a Splitter pattern translates directly into a “split” element in the Camel DSL.
We couldn’t have wished for a more direct translation of the pattern language into an
implementation platform.

Claus and Jon bring the saga to a grand finale by showing us how to use the Camel
pattern language to compose real-life messaging solutions. In doing so, they not only
cover fundamental concepts like routing and transformation, but also dig into often-
neglected parts of the development process, including testing, monitoring, and deploy-
ing. They find the right balance of the pattern language, Camel core concepts, and run-
ning code to help you build easy-to-understand and robust messaging solutions.

GREGOR HoHPE
COAUTHOR OF ENTERPRISE INTEGRATION PATTERNS
WWW.EAIPATTERNS.COM

www.it-ebooks.info

WWW.EAIPATTERNS.COM
http://www.it-ebooks.info/

Joreword

I was one of the original founders of both Apache ActiveMQ (an open source high-
performance message broker) and ServiceMix (an open source ESB based on JBI and
OSGi). I found that Enterprise Integration Patterns were becoming increasingly cen-
tral to what we were doing on these projects and how we were using them; the only dif-
ference was the context and technologies with which we were using the patterns.

There have been many libraries and frameworks over the years to help with inte-
gration. But frequently the concepts behind the Enterprise Integration Patterns get
transformed into some complex class hierarchies or objects that need to be wired
together just so, and the original intentions and patterns are often lost. The developer
is forced from then on to focus on the low-level detail and some complex class library
API, losing the bigger picture and patterns.

Integration is hard and once you start down the path of integrating things together
the code can very easily mushroom; being able to easily comprehend, communicate,
adapt, and maintain integration solutions is vital to be able to solve integration prob-
lems efficiently in an agile way.

So we decided it was time for a new integration framework that put the EIPs at its
core and tried to raise the abstraction level so that developers could describe declara-
tively in very concise terms what Enterprise Integration Patterns they wanted to use in
a simple domain-specific language. Using a convention over configuration approach,
developers would declaratively describe what they wanted to do, using the Enterprise
Integration Pattern language; it would be both quick and easy to get things done and

www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORD

also very easy for any developer on a team (including the developer himself months
after writing the code!) to understand and adapt the code.

There are many different places we wanted to use the EIPs; whether in a stand-
alone application, a web services stack, an enterprise message broker like Apache
ActiveMQ, or inside a full-blown ESB like Apache ServiceMix, so we wanted a light-
weight framework that was middleware agnostic that users could embed anywhere
they wanted it. We also wanted developers to focus on the Enterprise Integration Pat-
terns first and foremost and not to get lost in the weeds of different middleware APIs
and technologies.

We also wanted developers to be able to use whatever DSL flavor they wished
(whether Java, XML, Groovy, Ruby, Scala, or whatever) and yet, at runtime, still be able
to introspect the framework and understand all of the EIPs that were being used. They
would be able to visualize the core patterns to the team at any point in the project life-
cycle, auto-document the patterns, or even support things like graphical editing of the
Enterprise Integration Patterns at design time or runtime.

So Apache Camel was born, and since then we’ve seen the codebase, community,
and number of components, technologies, and data formats grow massively as more
and more developers have found Apache Camel an ideal way to design, implement,
and maintain the Enterprise Integration Patterns.

In this book Claus and Jon describe the Enterprise Integration Patterns and the
concepts which underlie Apache Camel. Then they walk you through how to take the
concepts and apply them to many real-life scenarios to provide scalable and efficient
solutions that are easy to understand and quick to adapt to your integration needs. I
hope you’ll enjoy reading this book as much as I did!

JAMES STRACHAN

CO-FOUNDER OF APACHE ACTIVEMQ
CAMEL, AND SERVICEMIX

TecuNICAL DIRECTOR FUSESOURCE.COM
HTTP:/ /MACSTRAC.BLOGSPOT.COM

www.it-ebooks.info

HTTP://MACSTRAC.BLOGSPOT.COM
http://www.it-ebooks.info/

preface

Developers who have done integration work know what a difficult task it can be. IT sys-
tems may not have been designed to be accessible from other systems, and if they were
designed for interoperability, they may not speak the protocol you need. As a devel-
oper, you end up spending a considerable amount of time working with the plumbing
of the integration protocols to open up the IT systems to the outside world.

In Enterprise Integration Patterns, Gregor Hohpe and Bobby Woolf gave us a standard
way to describe, document, and implement complex integration problems. Develop-
ers and architects alike can use this common language and catalog of solutions to
tackle their integration problems. But although Hohpe and Woolf gave us the theory,
the industry still needed an open source implementation of the book.

James Strachan, Rob Davies, Guillaume Nodet, and Hiram Chirino, within the
open source communities of Apache ActiveMQ and Apache ServiceMix, brought the
idea of Camel to life. Apache Camel is essentially an implementation of the EIP book,
and in the summer of 2007 version 1.0 was released.

Apache Camel is an integration framework whose main goal is to make integration
easier. It implements many of the EIP patterns and allows you to focus on solving busi-
ness problems, freeing you from the burden of plumbing. Using connectivity compo-
nents has never been easier, because you don’t have to implement JMS message
listeners or FTP clients, deal with converting data between protocols, or mess with the
raw details of HTTP requests. All of this is taken care of by Camel, which makes media-
tion and routing as easy as writing a few lines of Java code or XML in a Spring XML file.

www.it-ebooks.info

http://www.it-ebooks.info/

xxii

PREFACE

Apache Camel has since become very popular and today has an ever-growing com-
munity. As with many open source projects that become popular, a logical next step is
for someone to write a book about the project. Hadrian Zbarcea, the Project Manage-
ment Committee chair of the Apache Camel project, realized this, and in early 2009
he contacted Manning to discuss the need for such a book. Hadrian got in touch with
me (Claus Ibsen), inviting me in as a coauthor. It was perfect timing, as I was taking
over from James Strachan as the lead on Apache Camel. Later that year, Hadrian had
to step down as an author, but he invited Jonathan Anstey in as his replacement, to
ensure the project could continue.

Jonathan and I are both integration specialists working for FuseSource, which is
the professional company that offers enterprise services around various Apache proj-
ects. This book is written by the people who wrote the Camel code, which ensures you
have the most updated Camel book on the market.

Writing this book has been a very intense journey, proven by the fact that we were
able to complete the manuscript in a year. It took a long time to implement the exam-
ples and to ensure that the accompanying source code is of the highest standard. But
the result is a great source of examples that should inspire you to get the best out of
Camel, and it should be a good starting point for your Camel projects. While we were
writing this book, we were also implementing new features in Camel, which often
meant we had to go back and revise the material along the way. But we have kept up,
and this book uses the latest Camel release at the time of writing (Camel 2.5).

We hope this book brings great value to you and helps you prosper in the Camel
community.

Craus IBsEN

www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments

We first want to thank Cynthia Kane, our development editor at Manning, who put up
with our many missed deadlines and gave great feedback during the writing process.
We’d also like to thank our awesome copy editor, Andy Carroll, for catching an amaz-
ing number of grammatical errors in the early revisions of the book. The greater Man-
ning team deserves kudos as well; they’ve made for a very pleasant writing experience
over the past year and a half.

Big thanks to our team of reviewers, who provided invaluable feedback during var-
ious stages of the book’s development: Bruce Snyder, Charles Moulliard, Christophe
Avare, Christopher Hunt, Domingo Suarez Torres, Doug Tillman, Fintan Bolton, Gor-
don Dickens, Gregor Hohpe, Jeroen Benckhuijsen, John S. Griffon, Kevin Jackson,
Marco Ughetti, Martin Gilday, Martin Krasser, Michael Nash, Mick Knutson, Roman
Kalukiewicz, Tijs Rademakers, and Willem Jiang.

Special thanks to Willem Jiang for being our technical proofreader, catching those
bugs we missed, and helping improve the source code for the book.

Thanks to Martin Krasser for contributing appendix E, which is all about using
Camel from the Akka project. We couldn’t think of a better person to write about
Camel and Akka.

We’d also like to thank Hadrian Zbarcea for getting this book project started—who
knows when this book would have been written or by whom if he hadn’t gotten us
together!

We’d like to thank Gregor Hohpe and James Strachan for writing the forewords to
our book. Gregor’s book, Enterprise Integration Patterns, has been one of our favorite

xxiii

www.it-ebooks.info

http://www.it-ebooks.info/

XXiv

ACKNOWLEDGMENTS

tech books for years now, so it’s an honor to have Gregor on board to write the fore-
word. Without the EIP book, Apache Camel would look a lot different than it does
today, if it existed at all.

In our opinion, James is an inspiration to many developers out there—including
us. He has co-founded tons of successful open source projects; Camel is just one of
them. If James and the other Apache Camel co-founders had not decided to create
Camel, we wouldn’t be writing this book. So, again, thanks!

Finally, we’d like to give a big warm thank you to the community. Without the com-
munity, the Apache Camel project wouldn’t be as successful as it is today. In fact, with-
out the success, both of us would have different kinds of jobs today, which wouldn’t
involve hacking on Camel all day along.

Craus
I would like to thank my beautiful wife, Christina, for her understanding of the long
hours I needed to spend during evenings and weekends working on the book. Knowing
that you would never let my hand go, that the family life is safe and secure, is exactly the
support any writer needs in taking up such a big challenge as writing a book.

Awarm thank you goes to our dog, Bambi, who patiently sleeps in my office, and occa-
sionally wakes up and politely “asks” me for a break and a walk. I must admit many of
the ideas and thoughts behind this book came to me during my walks with Bambi.

JonN

I'would like to thank my amazing wife, Lisa, for the patience, support, and encourage-
ment I needed throughout the writing of this book. It simply would not have hap-
pened if it wasn’t for you. To Georgia, my beautiful daughter: thank you for cheering
me up when the writing got the better of me. I love you both!

www.it-ebooks.info

http://www.it-ebooks.info/

about this book

Apache Camel exists because integration is hard and Camel’s creators wanted to make
things easier for users. Camel’s online documentation serves as a reference for its
many features and components. In contrast, this book aims to guide readers through
these features, starting with the simple points and building up to advanced Camel
usage by the end of the book. Throughout the book, Camel’s features are put into

action in real-life scenarios.

Roadmap
The book is divided into three parts:

= Part 1—First steps
= Part 2—Core Camel
= Part 3—Out in the wild

Part 1 starts off simple by introducing you to Camel’s core functionality and concepts,
and it presents some basic examples.

= Chapter 1 introduces you to Camel and explains what Camel is and where it fits
into the bigger enterprise software picture. You’ll also learn the concepts and
terminology of Camel.

= Chapter 2 covers Camel’s main feature, which is message routing. The Java DSL
and Spring DSL are covered as are several enterprise integration patterns
(EIPs). EIPs are basically canned solutions to integration problems.

XXV

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK

Building on part 1’s foundation, part 2 covers the core features of Camel. You’ll need
many of these features when using Camel.

Chapter 3 explains how Camel can help you transform your data to different
formats while it’s being routed.

In chapter 4 we take a look at how you can use Java beans in Camel.

Chapter 5 covers all of Camel’s error-handling features.

In chapter 6 we look at the testing facilities shipped with Camel. You can use
these features for testing your own Camel applications or applications based on
other stacks.

Chapter 7 covers the most heavily used components among Camel’s large selec-
tion of components.

Chapter 8 looks in depth at five of the most complex EIPs.

In part 3 we cover the topics that are useful when you’ve gained a better understand-
ing of Camel from the earlier chapters.

Chapter 9 explains how you can use transactions in your Camel applications.

In chapter 10 we discuss how to deal with concurrency and scalability in your
Camel applications.

Chapter 11 explains how to create new Camel projects, which could be Camel
applications, custom components, or interceptors. This chapter doesn’t require
much additional Camel knowledge, so you could read this right after part 1.
The Scala DSL is also touched on here.

In chapter 12 we cover how to manage and monitor Camel applications.
Among other things, how to read the Camel logs and how to control Camel
with JMX are covered.

In chapter 13 we discuss the many ways to start and stop Camel. Deployment to
several of the most popular containers is also discussed.

Chapter 14 covers what we consider extra features of Camel: routing with beans
and using remoting to hide Camel APIs. We consider this extra because these
features do routing without using any of Camel’s DSLs and in some cases with
no Camel APIs. They take a different approach than what was discussed
throughout the book.

The appendixes at the end of the book contain useful reference material on the Sim-
ple expression language, expressions and predicates, the producer and consumer

templates, and the Camel community. Appendix E is written by Martin Krasser and

shows how to use Akka with Camel.

Who should read this book

We wrote this book primarily for developers who have found the online Camel docu-
mentation lacking and needed a guidebook that explained things in a more detailed
and organized way. Although we mainly targeted existing Camel users, Camel in Action

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK XXVii

is a great way to start learning about Camel. Experienced engineers and architects are
also encouraged to read this book, as it explains advanced Camel concepts that you
just can’t find elsewhere. Test and Q&A engineers will find Camel and this book useful
as a means of driving tests that require communication with various transports and
APIs. System administrators, too, may find the management, monitoring, and deploy-
ment topics of great value.

Camel’s features are focused on the enterprise business community and its needs,
but it’s also a generic and very useful integration toolkit. Any Java developer who
needs to send a message somewhere will probably find Camel and this book useful.

Code conventions

The code examples in this book are abbreviated in the interest of space. In particular,
some of the namespace declarations in the XML configurations and package imports
in Java classes have been omitted. We encourage you to use the source code when
working with the examples. The line lengths of some of the examples exceed the page
width, and in cases like these, the marker is used to indicate that a line has been
wrapped for formatting.

All source code in listings or in text is in a fixed-width font like this to separate
it from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

Source code downloads

The source code for the examples in this book is available online from the publisher’s
website at http://www.manning.com/CamelinAction, as well as from this site: http://
code.google.com/p/camelinaction.

Software requirements
The following software is required to run the examples:
= JDK b5 or better
= Maven 2.2.1 or better
* Apache Camel 2.5 or better
Apache Camel can be downloaded from its official website: http://camel.apache.org/
download.html.

All the examples can be run using Maven. Chapter 1 shows you how to get started
with Maven and run the examples.

Author Online

The purchase of Camel in Action includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum and

www.it-ebooks.info

http://www.manning.com/CamelinAction
http://code.google.com/p/camelinaction
http://code.google.com/p/camelinaction
http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://www.it-ebooks.info/

Xxviii

ABOUT THIS BOOK

subscribe to it, point your web browser to http://www.manning.com/CamelinAction.
This page provides information on how to get on the forum once you’re registered,
what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

www.it-ebooks.info

http://www.manning.com/CamelinAction
http://www.it-ebooks.info/

about the cover illustration

The illustration on the cover of Camel in Action bears the caption “A Bedouin,” and is
taken from a collection of costumes of the Ottoman Empire published on Janu-
ary 1, 1802, by William Miller of Old Bond Street, London. The title page is missing
from the collection and we have been unable to track it down to date. The book’s
table of contents identifies the figures in both English and French, and each illustra-
tion also bears the names of two artists who worked on it, both of whom would no
doubt be surprised to find their art gracing the front cover of a computer program-
ming book...200 years later.

The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor did not have on his person the substantial amount of
cash that was required for the purchase and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening, the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed that
the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed by
this unknown person’s trust in one of us. It recalls something that might have hap-
pened a long time ago.

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE COVER ILLUSTRATION

The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries
ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present. Dress codes have changed since
then and the diversity by region, so rich at the time, has faded away. It is now often
hard to tell the inhabitant of one continent from another. Perhaps, trying to view it
optimistically, we have traded a cultural and visual diversity for a more varied personal
life. Or a more varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago, brought back to life by the pictures from this collection.

www.it-ebooks.info

http://www.it-ebooks.info/

about the authors

Craus IBsEN has worked as a software engineer and architect for more than 13 years.
He has often worked with integration in various forms, from integrating with legacy
systems on AS/400s to building custom in-house integration frameworks. Claus has
designed and architected a large solution for custom clearance for the district of
Shanghai, China. He tracks the trends in the open source integration space and it led
him to Camel in late 2007. He became a committer in March 2008.

He currently holds a position as principal software engineer at FuseSource, as proj-
ect lead on Apache Camel. Claus has ambitions to pick up speaking engagements, so
you will likely be able to catch up with him at various conferences.

Claus lives in Sweden near Malmo with his wife and dog, which is spoiled as the
only child in the family. He is Danish by nationality.

JONATHAN ANSTEY is a software engineer with varied experience in manufacturing con-
trol systems, build infrastructure, and enterprise integration. He got involved in the
Apache Camel project in early 2008 and hasn’t looked back since. Most recently, Jon
has been working on Apache Camel and other Apache open source projects
at FuseSource.

When Jon is not hacking on Camel, he likes to spend time with his wife and daugh-
ter in St. John’s, Newfoundland.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

Frst steps

pache Camel is an open source integration framework that aims to make
integrating systems easier. In the first chapter of this book we’ll introduce you to
Camel and show you how it fits into the bigger enterprise software picture. You’ll
also learn the concepts and terminology of Camel.

Chapter 2 focuses on one of Camel’s most important features: message rout-
ing. Camel has two main ways of defining routing rules: the Java-based domain-
specific language (DSL) and the Spring XML configuration format. In addition
to these route-creation techniques, we’ll show you how to design and implement
solutions to enterprise integration problems using enterprise integration pat-
terns (EIPs) and Camel.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Meeting Camel

This chapter covers

An introduction to Camel

Camel’s main features

Your first Camel ride

Camel’s architecture and concepts

Building complex systems from scratch is a very costly endeavor, and one that’s almost
never successful. An effective and less risky alternative is to assemble a system like a
Jjigsaw puzzle from existing, proven components. We depend daily on a multitude of
such integrated systems, making possible everything from phone communications,
financial transactions, and healthcare to travel planning and entertainment.

You can’t finalize a jigsaw puzzle until you have a complete set of pieces that plug
into each other simply, seamlessly, and robustly. That holds true for system integra-
tion projects as well. But whereas jigsaw puzzle pieces are made to plug into each
other, the systems we integrate rarely are. Integration frameworks aim to fill this gap.
Asan integrator, you're less concerned about how the system you integrate works and
more focused on how to interoperate with it from the outside. A good integration
framework provides simple, manageable abstractions for the complex systems you’re
integrating and the “glue” for plugging them together seamlessly.

Apache Camel is such an integration framework. In this book, we’ll help you
understand what Camel is, how to use it, and why we think it’s one of the best inte-
gration frameworks out there.

www.it-ebooks.info

http://www.it-ebooks.info/

11

111

CHAPTER 1 Meeting Camel

This chapter will start off by introducing Camel and highlighting some of its core
features. We’ll then take a look at the Camel distribution and explain how you can run
the Camel examples in the book. We’ll round off the chapter by bringing core Camel
concepts to the table so you can understand Camel’s architecture.

Are you ready? Let’s meet Camel.

Introducing Camel

Camel is an integration framework that aims to make your integration projects pro-
ductive and fun. The Camel project was started in early 2007, but although it’s rela-
tively young, Camel is already a mature open source project, available under the
liberal Apache 2 license, and it has a strong community.

Camel’s focus is on simplifying integration. We're confident that by the time you
finish reading these pages, you’ll appreciate Camel and add it to your “must have” list
of tools.

The Apache Camel project was named Camel simply because the name is short
and easy to remember. Rumor has it the name may be inspired by the fact that one of
the founders once smoked Camel cigarettes. At the Camel website a FAQ entry
(http://camel.apache.org/why-the-name-camel.html) lists other lighthearted reasons
for the name.

What is Camel?

At the core of the Camel framework is a routing engine, or more precisely a routing-
engine builder. It allows you to define your own routing rules, decide from which
sources to accept messages, and determine how to process and send those messages to
other destinations. Camel uses an integration language that allows you to define com-
plex routing rules, akin to business processes.

One of the fundamental principles of Camel is that it makes no assumptions about
the type of data you need to process. This is an important point, because it gives you,
the developer, an opportunity to integrate any kind of system, without the need to
convert your data to a canonical format.

Camel offers higher-level abstractions that allow you to interact with various sys-
tems using the same API regardless of the protocol or data type the systems are using.
Components in Camel provide specific implementations of the API that target differ-
ent protocols and data types. Out of the box, Camel comes with support for over 80
protocols and data types. Its extensible and modular architecture allows you to imple-
ment and seamlessly plug in support for your own protocols, proprietary or not.
These architectural choices eliminate the need for unnecessary conversions and make
Camel not only faster but also very lean. As a result, it’s suitable for embedding into
other projects that require Camel’s rich processing capabilities. Other open source
projects, such as Apache ServiceMix and ActiveMQ, already use Camel as a way to
carry out enterprise integration.

We should also mention what Camel isn’t. Camel isn’t an enterprise service bus
(ESB), although some call Camel a lightweight ESB because of its support for rout-
ing, transformation, monitoring, orchestration, and so forth. Camel doesn’t have a

www.it-ebooks.info

http://camel.apache.org/why-the-name-camel.html
http://www.it-ebooks.info/

1.1.2

Introducing Camel 5

container or a reliable message bus, but it can be deployed in one, such as Open-
ESB or the previously mentioned ServiceMix. For that reason, we prefer to call
Camel an integration framework rather than an ESB.

To understand what Camel is, it helps to look at its main features. So let’s take a
look at them.

Why use Camel?

Camel introduces a few novel ideas into the integration space, which is why its authors
decided to create Camel in the first place, instead of using an existing framework.
We’ll explore the rich set of Camel features throughout the book, but these are the
main ideas behind Camel:

® Routing and mediation engine ® Enterprise integration patterns (EIPs)
® Domain-specific language (DSL) ® Extensive component library

®m Payload-agnostic router ® Modular and pluggable architecture
= POJO model m Easy configuration

® Automatic type converters m Lightweight core

m Test kit ® Vibrant community

Let’s dive into the details of each of these features.

ROUTING AND MEDIATION ENGINE

The core feature of Camel is its routing and mediation engine. A routing engine will
selectively move a message around, based on the route’s configuration. In Camel’s
case, routes are configured with a combination of enterprise integration patterns and
a domain-specific language, both of which we’ll describe next.

ENTERPRISE INTEGRATION PATTERNS (EIPS)

Although integration problems are diverse, Gregor Hohpe and Bobby Woolf noticed
that many problems and their solutions are quite similar. They cataloged them
in their book Enterprise Integration Patterns, a must-read for any integration profes-
sional (http://www.enterpriseintegrationpatterns.com). If you haven’t read it, we
encourage you to do so. At the very least, it will help you understand Camel concepts
faster and easier.

The enterprise integration patterns, or EIPs, are helpful not only because they pro-
vide a proven solution for a given problem, but also because they help define and
communicate the problem itself. Patterns have known semantics, which makes com-
municating problems much easier. The difference between using a pattern language
and describing the problem at hand is similar to using spoken language rather than
sign language. If you’ve ever visited a foreign country, you’ve probably experienced
the difference.

Camel is heavily based on EIPs. Although EIPs describe integration problems and
solutions and also provide a common vocabulary, the vocabulary isn’t formalized.
Camel tries to close this gap by providing a language to describe the integration solu-
tions. There’s almost a one-to-one relationship between the patterns described in
Enterprise Integration Patterns and the Camel DSL.

www.it-ebooks.info

http://www.enterpriseintegrationpatterns.com
http://www.it-ebooks.info/

CHAPTER 1 Meeting Camel

DOMAIN-SPECIFIC LANGUAGE (DSL)

Camel’s domain-specific language (DSL) is a major contribution to the integration
space. A few other integration frameworks currently feature a DSL (and some allow
you to use XML to describe routing rules), but unlike Camel their DSLs are based on
custom languages. Camel is unique because it offers multiple DSLs in regular pro-
gramming languages such as Java, Scala, Groovy, and it also allows routing rules to be
specified in XML.

The purpose of the DSLis to allow the developer to focus on the integration problem
rather than on the tool—the programming language. Although Camel is written mostly
in Java, it does support mixing multiple programming languages. Each language has its
own strengths, and you may want to use different languages for different tasks. You have
the freedom to build a solution your own way with as few constraints as possible.

Here are some examples of the DSL using different languages and staying func-
tionally equivalent:

= Java DSL
from("file:data/inbox") .to("jms:queue:order") ;
= Spring DSL
<route>
<from uri="file:data/inbox"/>
<to uri="jms:queue:order"/>
</routes>

= Scala DSL

from "file:data/inbox" -> "jms:queue:order"

These examples are real code, and they show how easily you can route files from a
folder to a JMS queue. Because there’s a real programming language underneath, you
can use the existing tooling support, such as code completion and compiler error
detection, as illustrated in figure 1.1.

public static void main(String args[]) throws Exception {
CamelContext context = new DefaultCamelContext();

context.addRoutes(new RouteBuilder() {
public void configure() {
from("file:data/inbox?noop=true").t

} threads() : ThreadsDefinition - ProcessorDefinitic
threads(int poolSize) : ThreadsDefinition - Processorl
throttle (long maximumBequestCount) : ThrottleDefir| =

1

context.start();
Thread. sleep(10000) ; throwException(Exception exception) : ProcessorDe:
to(Endpoint endpoint) : ProcessorDefinition
to(Endpoint... arg0) : ProcessorDefinition - Processor
to(lterable<Endpoint> arg0) : ProcessorDefinition - F
to(String uri) : ProcessorDefinition - ProcessorDefinit
to(String... arg0) : ProcessorDefinition orDe
to(ExchangePattern pattern, Endpoint endpoint) : Pre

to(ExchangePattern arg0, Endpoint... argl) : Procgss'v
11 | ¥
Press 'Ctrl+ Space’ to show Template Proposals

context.stopl();

o @ ¢ & © © © ® ¢© ¢ ©

Figure1.1 Camel DSLs use real programming languages like Java, so you can use existing tooling support.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Camel 7

Here you can see how the Eclipse IDE’s autocomplete feature can give us a list of DSL
terms that are valid to use.

EXTENSIVE COMPONENT LIBRARY
Camel provides an extensive library of more than 80 components. These components
enable Camel to connect over transports, use APIs, and understand data formats.

PAYLOAD-AGNOSTIC ROUTER

Camel can route any kind of payload—you aren’t restricted to carrying XML payloads.
This freedom means that you don’t have to transform your payload into a canonical
format to facilitate routing.

MODULAR AND PLUGGABLE ARCHITECTURE

Camel has a modular architecture, which allows any component to be loaded into
Camel, regardless of whether the component ships with Camel, is from a third party,
or is your own custom creation.

P0JO MODEL

Beans (or POJOs) are considered first-class citizens in Camel, and Camel strives to let
you use beans anywhere and anytime in your integration projects. This means that in
many places you can extend Camel’s built-in functionality with your own custom code.
Chapter 4 has a complete discussion of using beans within Camel.

EASY CONFIGURATION
The convention over configuration paradigm is followed whenever possible, which mini-
mizes configuration requirements. In order to configure endpoints directly in routes,
Camel uses an easy and intuitive URI configuration.

For example, you could configure a file consumer to scan recursively in a sub-
folder and include only a .txt file, as follows:

from("file:data/inbox?recursive=true&include=*.txt") ...

AUTOMATIC TYPE CONVERTERS

Camel has a built-in type-converter mechanism that ships with more than 150 convert-
ers. You no longer need to configure type-converter rules to go from byte arrays to
strings, for example. And if you find a need to convert to types that Camel doesn’t sup-
port, you can create your own type converter. The best part is that it works under the
hood, so you don’t have to worry about it.

The Camel components also leverage this feature; they can accept data in most
types and convert the data to a type they’re capable of using. This feature is one of the
top favorites in the Camel community. You may even start wondering why it wasn’t
provided in Java itself! Chapter 3 covers more about type converters.

LIGHTWEIGHT CORE

Camel’s core can be considered pretty lightweight, with the total library coming in at
about 1.6 MB and only having a dependency on Apache Commons Logging and Fuse-
Source Commons Management. This makes Camel easy to embed or deploy anywhere
you like, such as in a standalone application, web application, Spring application, Java

www.it-ebooks.info

http://www.it-ebooks.info/

1.2

1.2.1

CHAPTER 1 Meeting Camel

EE application, JBI container, OSGi bundle, Java Web Start, or on the Google App
engine. Camel was designed not to be a server or ESB but instead to be embedded in
whatever platform you choose.

TEST KIT

Camel provides a Test Kit that makes it easier for you to test your own Camel applica-
tions. The same Test Kit is used extensively to test Camel itself, and it includes more
than 6,000 unit tests. The Test Kit contains test-specific components that, for example,
can help you mock real endpoints. It also contains setup expectations that Camel can
use to determine whether an application satisfied the requirements or failed. Chap-
ter 6 covers testing with Camel.

VIBRANT COMMUNITY
Camel has an active community. This is essential if you intend to use any open source
project in your application. Inactive projects have little community support, so if you
run into issues, you’re on your own. With Camel, if you’re having any trouble, users
and developers alike will come to your aid promptly. For more information on
Camel’s community, see appendix D.

Now that you’ve seen the main features that make up Camel, we’ll get a bit more
hands on by looking at the Camel distribution and trying out an example.

Getting started

In this section, we’ll show you how to get your hands on a Camel distribution, explain
what’s inside, and then run an example using Apache Maven. After this, you’ll know
how to run any of the examples from the book’s source code.

Let’s first get the Camel distribution.

Getting Camel

Camel 1is available from the official Apache Camel website at http://
camel.apache.org/download.html. On that page you’ll see a list of all the Camel
releases and also the downloads for the latest release.

For the purposes of this book, we’ll be using Camel 2.5.0. To get this version, click
on the Camel 2.5.0 Release link and near the bottom of the page you’ll find two
binary distributions: the zip distribution is for Windows users, and the tar.gz distribu-
tion is for Unix/Linux/Cygwin users. When you’ve downloaded one of the distribu-
tions, extract it to a location on your hard drive.

Open up a command prompt, and go to the location where you extracted the
Camel distribution. Issuing a directory listing here will give you something like this:
jansteye@mojo:~/apache-camel-2.5.0$ 1s
doc examples 1lib LICENSE.txt NOTICE.txt README.txt
As you can see, the distribution is pretty small, and you can probably guess what each
directory contains already. Here are the details:

www.it-ebooks.info

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://www.it-ebooks.info/

1.2.2

Getting started 9

= doc—Contains the Camel Manual in PDF and HTML formats. This user guide is
a download of a large portion of the Apache Camel wiki at the time of release.
As such, it’s a great reference for those not able to browse to the Camel website.

= examples—Includes 27 Camel examples. You'll see an example shortly.

=]ib—Contains all Camel libraries and third-party dependencies needed for the
core of Camel to run. You'll see later in the chapter how Maven can be used to
easily grab dependencies for the components outside the core.

= LICENSE.txt—Contains the license of the Camel distribution. Because this is an
Apache project, the license is the Apache License, version 2.0.

= NOTICE.txt—Contains copyright information about the third-party dependen-
cies included in the Camel distribution.

= README.txt—Contains a short intro to what Camel is and a list of helpful links
to get new users up and running fast.

Now let’s try out one of the Camel examples.

Your first Camel ride

So far, we’ve shown you how to get a Camel distribution and we’ve explored what’s
inside. At this point, feel free to explore the distribution; all examples have instruc-
tions to help you figure them out.

From this point on, though, we won’t be using the distribution at all. The exam-
ples in the book’s source all use Apache Maven, which means that Camel libraries will
be downloaded automatically for you—there’s no need to make sure the Camel distri-
bution’s libraries are on the path, for example.

You can get the book’s source code from either the book’s website, at http://
manning.com/ibsen or from the Google Code project that’s hosting the source:
http://code.google.com/p/camelinaction.

The first example we’ll look at can
be considered the “helloworld” ofinte- ™,
grations: routing files. Suppose you
need to read files from one directory
(data/inbox), process them in some
way, and write the result to another
directory (data/outbox). For simplic-
ity, you’ll skip the processing, so your
output will be merely a copy of the original file. Figure 1.2 illustrates this process.

It looks pretty simple, right? Here’s a possible solution using pure Java (with no
Camel).

data/inbox File data/outbox

Figure 1.2 Files are routed from the data/inbox
directory to the data/outbox directory.

Listing 1.1 Routing files from one folder to another in plain Java

public class FileCopier ({

public static void main(String args[]) throws Exception {
File inboxDirectory = new File("data/inbox") ;
File outboxDirectory = new File ("data/outbox") ;

www.it-ebooks.info

http://manning.com/ibsen
http://manning.com/ibsen
http://code.google.com/p/camelinaction
http://www.it-ebooks.info/

10

CHAPTER 1 Meeting Camel

outboxDirectory.mkdir () ;

File[] files = inboxDirectory.listFiles() ;
for (File source : files) ({
if (source.isFile()) {

File dest = new File(
outboxDirectory.getPath ()
+ File.separator
+ source.getName()) ;
copyFIle (source, dest);

}

private static void copyFile(File source, File dest)
throws IOException {
OutputStream out = new FileOutputStream(dest) ;
byte[] buffer = new bytel[(int) source.length()];
FileInputStream in = new FileInputStream(source) ;
in.read (buffer) ;

try {
out.write (buffer) ;
} finally {
out.close() ;
in.close() ;

}

The FileCopier example in listing 1.1 is a pretty simple use case, but it still results
in 34 lines of code. You have to use low-level file APIs and ensure that resources get
closed properly, a task that can easily go wrong. Also, if you wanted to poll the data/
inbox directory for new files, you’d need to set up a timer and also keep track of
which files you’ve already copied. This simple example is getting more complex.

Integration tasks like these have been done thousands of times before—you
shouldn’t ever need to code something like this by hand. Let’s not reinvent the wheel
here. Let’s see what a polling solution looks like if you use an integration framework
like Apache Camel.

Listing 1.2 Routing files from one folder to another with Apache Camel

public class FileCopierWithCamel ({
public static void main(String args[]) throws Exception {
CamelContext context = new DefaultCamelContext () ;
context.addRoutes (new RouteBuilder()
public void configure() ({
from("file:data/inbox?noop=true") Routes files from
.to("file:data/outbox") ; ‘ inbox to outbox
1
P
context.start () ;
Thread.sleep(10000) ;

context.stop () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Getting started 11

Most of this code is boilerplate stuff when using Camel. Every Camel application uses
a CamelContext that’s subsequently started and then stopped. You also add a sleep
method to allow your simple Camel application time to copy the files. What you
should really focus on in listing 1.2 is the route 0.

Routes in Camel are defined in such a way that they flow when read. This route can
be read like this: consume messages from file location data/inbox with the noop
option set, and send to file location data/outbox. The noop option tells Camel to
leave the source file as is. If you didn’t use this option, the file would be moved. Most
people who have never seen Camel before will be able to understand what this route
does. You may also want to note that, excluding the boilerplate code, you created a
file-polling route in just one line of Java code @.

To run this example, you’ll need to download and install Apache Maven from the
Maven site at http://maven.apache.org/download.html. Once you have Maven up
and working, open a terminal and browse to the chapterl/file-copy directory of the
book’s source. If you take a directory listing here, you’ll see several things:

= data—Contains the inbox directory, which itself contains a single file named
messagel.xml.
= src—Contains the source code for the listings shown in this chapter.

= pom.xml—Contains information necessary to build the examples. This is the
Maven Project Object Model (POM) XML file.

NOTE We used Maven 2.2.1 during the development of the book. Newer ver-
sions of Maven may not work or appear exactly as we’ve shown.

The POM is shown here.

Listing 1.3 The Maven POM required to use Camel’s core library

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersions>
<parent> <+—@) Parent POM
<groupId>com.camelinaction</groupIds>
<artifactId>chapterl</artifactIds>
<version>1.0</version>
</parent>

<artifactId>file-copy</artifactIds>

<name>Camel in Action :: Chapter 1 :: File Copy Example</name>
<dependencies>
<dependency> ,
<groupldsorg.apache.camel</groupIds> <FAS) Came!s
<artifactIdscamel-core</artifactIds core library

<version>${camel-version}</version>
</dependency>
</dependencies>
</project>

www.it-ebooks.info

http://maven.apache.org/download.html
http://www.it-ebooks.info/

12

CHAPTER 1 Meeting Camel

Maven itself is a complex topic, and we won’t go into great detail here. We’ll give you
enough information to be productive with the examples in this book. For an in-depth
look at Maven, we recommend reading Maven by Example and Maven: The Complete Ref-
erence, both of which are freely available from http://www.sonatype.com/book. We’ll
also discuss using Maven to develop Camel applications in chapter 11, so there’s a
good deal of information there too.

The Maven POM in listing 1.3 is probably one of the shortest POMs you’ll ever
see—almost everything uses the defaults provided by Maven. Besides those defaults,
there are also some settings configured in the parent POM @. Probably the most
important section to point out here is the dependency on the Camel library @. This
dependency element tells Maven to do the following:

1 Create a search path based on the groupId, artifactId, and version. The ver-
sion element is set to the camel-version property, which is defined in the POM
referenced in the parent element @, and will resolve to 2.5.0. The type of depen-
dency was not specified, so the JAR file type will be assumed. The search path will
be org/apache/camel/camel-core/2.5.0/camel-core-2.5.0. jar.

2 Because listing 1.3 defined no special places for Maven to look for the Camel
dependencies, it will look in Maven’s central repository, located at http://
repol.maven.org/maven2.

3 Combining the search path and the repository URL, Maven will try to down-
load http://repol.maven.org/maven2/org/apache/camel/camel-core/2.5.0/
camel-core-2.5.0 jar.

4 This JAR will be saved to Maven’s local download cache, which is typically located
in the home directory under .m2/repository. This would be ~/.m2/repository on
Linux/Unix and C\Documents and Settings\<Username>\.m2\ repository on
Windows XP, and C:\Users\<Username>\m2\repository on Windows Vista/7.

5 When the application code in listing 1.2 is started, the Camel JAR will be added
to the classpath.

To run the example in listing 1.2, use the following command:
mvn compile exec:java -Dexec.mainClass=camelinaction.FileCopierWithCamel

This instructs Maven to compile the source in the src directory and to execute the
FileCopierWithCamel class with the camel-core JAR on the classpath.

NOTE In order to run any of the examples in this book you’ll need an Inter-
net connection. A broadband speed connection is preferable because Apache
Maven will download many JAR dependencies of the examples, some of which
are large. The whole set of examples will download about 140 MB of libraries.

Run the Maven command from the chapterl /file-copy directory, and after it completes,
browse to the data/outbox folder to see the file copy that has just been made. Congrat-
ulations, you’ve just run your first Camel example! It was a simple example, but knowing
how it’s set up will enable you to run pretty much any of the book’s examples.

www.it-ebooks.info

http://www.sonatype.com/book
http://repo1.maven.org/maven2
http://repo1.maven.org/maven2
http://repo1.maven.org/maven2/org/apache/camel/camel-core/2.5.0/camel-core-2.5.0.jar
http://repo1.maven.org/maven2/org/apache/camel/camel-core/2.5.0/camel-core-2.5.0.jar
http://www.it-ebooks.info/

1.3

13.1

Camel’s message model 13

We now need to cover some Camel basics and the integration space in general to
ensure that you’re well prepared for using Camel. We’ll turn our attention to the mes-
sage model, the architecture, and a few other Camel concepts. Most of the abstrac-
tions are based on known service-oriented architecture (SOA) and EIP concepts and
retain their names and semantics. We’ll start with Camel’s message model.

Camel’s message model
In Camel, there are two abstractions for modeling messages, both of which we’ll cover
in this section.
m org.apache.camel.Message—The fundamental entity containing the data
being carried and routed in Camel
® org.apache.camel.Exchange—The Camel abstraction for an exchange of mes-
sages. This exchange of messages has an “in” message and as a reply, an “out”
message

We’ll start by looking at Message to understand how data is modeled and carried in
Camel. Then we’ll look at how a “conversation” is modeled in Camel by the Exchange.

Message

Messages are the entities used by systems to communicate with each other when using

messaging channels. Messages flow in
one direction from a sender to a Sender i Receiver
receiver, as illustrated in figure 1.3.

Messages have a body (a payload), Message

headers, and optional attachments, as ~ Figure 1.3 Messages are entities used to send data
from one system to another.

illustrated in figure 1.4.
Messages are uniquely identified with an identifier of type
java.lang.String. The identifier’s uniqueness is enforced

and guaranteed by the message creator, it’s protocol depen- Message

dent, and it doesn’t have a guaranteed format. For protocols

that don’t define a unique message identification scheme, Headers

Camel uses its own UID generator.

Attachments
HEADERS AND ATTACHMENTS

Headers are values associated with the message, such as sender
identifiers, hints about content encoding, authentication infor-

Body
mation, and so on. Headers are name-value pairs; the name is a

an

unique, case-insensitive string, and the value is of type java.
lang.Object. This means that Camel imposes no constraints on

the type of the headers. Headers are stored as a map within the Figure 1.4

. X A message can contain
message. A message can also have optional attachments, which peaders, attachments,

are typically used for the web service and email components. and a body.

www.it-ebooks.info

http://www.it-ebooks.info/

14

1.3.2

CHAPTER 1 Meeting Camel

BODY

The body is of type java.lang.Object. That means that a message can store any kind
of content. It also means that it’s up to the application designer to make sure that the
receiver can understand the content of the message. When the sender and receiver
use different body formats, Camel provides a number of mechanisms to transform the
data into an acceptable format, and in many cases the conversion happens automati-
cally with type converters, behind the scenes.

FAULT FLAG
Messages also have a fault flag. Some protocols and specifications, such as WSDL and
JBI, distinguish between output and fault messages. They’re both valid responses to
invoking an operation, but the latter indicates an unsuccessful outcome. In general,
faults aren’t handled by the integration infrastructure. They're part of the contract
between the client and the server and are handled at the application level.

During routing, messages are contained in an exchange.

Exchange

An exchange in Camel is the message’s container during routing. An exchange also
provides support for the various types of interactions between systems, also known as
message exchange patterns (MEPs). MEPs are used to differentiate between one-way
and requestresponse messaging styles. The Camel exchange holds a pattern property
that can be either

= InOnly—A one-way message (also known asan Event message). For example, JMS
messaging is often one-way messaging.

= InOut—A request-response message. For
example, HTTP-based transports are often

Exchange N

MEP

request reply, where a client requests to
retrieve a web page, waiting for the reply
from the server.

Figure 1.5 illustrates the contents of an exchange

Exchange ID

Exception

..\

Properties

-

J

you're using the InOnly or InOut messag-
ing style. When the pattern is InOnly, the
exchange contains an in message. For
InOut, an out message also exists that con-
tains the reply message for the caller.

www.it-ebooks.info

in Camel 4 In message R Out message
Let’s look at the elements of figure 1.5 in C Headers) C Headers)
more detail:
m Exchange ID—A unique ID that identifies CAttaChmem) CAttaChmemSD
the exchange. Camel will generate a default
unique ID, if you don’t explicitly set one. Body Body
MEP—A pattern that denotes whether \k) U //

Figure 1.5 A Camel exchange has anID,
MEP, exception, and properties. It also
has an in message to store the incoming
message and an out message to store

the resulit.

http://www.it-ebooks.info/

14

14.1

Camel’s architecture 15

» Exception—If an error occurs at any time during routing, an Exception will be
set in the exception field.

= Properties—Similar to message headers, but they last for the duration of the
entire exchange. Properties are used to contain globallevel information,
whereas message headers are specific to a particular message. Camel itself will
add various properties to the exchange during routing. You, as a developer, can
store and retrieve properties at any point during the lifetime of an exchange.

= In message—This is the input message, which is mandatory. The in message con-
tains the request message.

® Out message—This is an optional message that only exists if the MEP is InOut.
The out message contains the reply message.

We discussed Camel’s message model before the architecture because we wanted you
to have a solid understanding of what a message is in Camel. After all, the most impor-
tant aspect of Camel is routing messages. You're now well prepared to learn more
about Camel and its architecture.

Camel’s architecture

Let’s now turn our attention to Camel’s architecture. We’ll first take a look at the high-
level architecture and then drill down into the specific concepts. After you've read
this section, you should be caught up on the integration lingo and be ready for chap-
ter 2, where we’ll explore Camel’s routing capabilities.

Architecture from 10,000 feet

We think that architectures are best viewed first from high above. Figure 1.6 shows a
high-level view of the main concepts that make up Camel’s architecture.

i i h Pr I N
Routing engine fCame|Context Viessage fter ocessors
ADSL wires processor Handle thingsin
endpointsand between endpoints
processors like
together to form e EIPs
routes. RouteN e Routing
from("file:c:\dir") " e Transformation
filter(. o Mediation
xpath(expression) .
‘to('jms:aQueuve”); Content-based router e Enrichment
Processor e Validation
e Interception
[=
[=

T T

File amn | IMS HTTP e Provideauniform

endpoint interface
e Connectto other systems

Components

Figure 1.6 At a high level, Camel is composed of processors, components, and routes. All of these are
contained within the CamelContext.

www.it-ebooks.info

http://www.it-ebooks.info/

16

14.2

CHAPTER 1 Meeting Camel

The routing engine uses routes as specifications for where messages are routed.
Routes are defined using one of Camel’s domain-specific languages (DSLs). Proces-
sors are used to transform and manipulate messages during routing and also to
implement all the EIP patterns, which have corresponding keywords in the DSL lan-
guages. Components are the extension points in Camel for adding connectivity to
other systems. To expose these systems to the rest of Camel, components provide an
endpoint interface.

With that high-level view out of the way, let’s take a closer look at the individual
concepts in figure 1.6.

Camel concepts

Figure 1.6 revealed many new concepts, so let’s take some time to go over them one by

one. We’ll start with the CamelContext, which is Camel’s runtime.
[Components [Endpoints j
T
vpe Data formats
converters
CamelContext

CAMELCONTEXT
You may have guessed that the Camel-
Context is a container of sorts, judging

from figure 1.6. You can think of it as

Camel’s runtime system, which keeps

all the pieces together.

Figure 1.7 shows the most notable
services that the CamelContext keeps
together.

Languages

Asyou can see from figure 1.7, there
are a lot of services for the Camel-
Context to keep track of. These are
described in table 1.1.

Figure 1.7 The CamelContext provides
access to many useful services, the most notable
being components, type converters, a registry,
endpoints, routes, data formats, and languages.

The details of each of these services will be discussed throughout the book. Let’s

now take a look at routes and Camel’s routing engine.

Table 1.1 The services that the CamelContext provides

Contains the components used. Camel is capable of loading components on the fly
either by autodiscovery on the classpath or when a new bundle is activated in an 0SGi

Contains the loaded type converters. Camel has a mechanism that allows you to manu-
ally or automatically convert from one type to another. Type converters are covered in

Service Description
Components
container. In chapter 7 we’ll discuss components in more detail.
Endpoints Contains the endpoints that have been created.
Routes Contains the routes that have been added. We'll cover routes in chapter 2.
Type
converters
chapter 3.
Data formats | Contains the loaded data formats. Data formats are covered in chapter 3.

www.it-ebooks.info

http://www.it-ebooks.info/

Camel’s architecture 17

Table 1.1 The services that the CamelContext provides (continued)

Service Description

Registry Contains a registry that allows you to look up beans. By default, this will be a JNDI registry.
If you're using Camel from Spring, this will be the Spring ApplicationContext. Itcan
also be an OSGi registry if you use Camel in an OSGi container. We’'ll cover registries in
chapter 4.

Languages Contains the loaded languages. Camel allows you to use many different languages to
create expressions. You'll get a glimpse of the XPath language in action when we cover
the DSL. A complete reference to Camel’s own Simple expression language is available
in appendix A.

ROUTING ENGINE

Camel’s routing engine is what actually moves messages under the hood. This engine
isn’t exposed to the developer, but you should be aware that it’s there and that it does
all the heavy lifting, ensuring that messages are routed properly.

ROUTES

Routes are obviously a core abstraction for Camel. The simplest way to define a route
is as a chain of processors. There are many reasons for using routers in messaging appli-
cations. By decoupling clients from servers, and producers from consumers, routes can

= Decide dynamically what server a client will invoke

= Provide a flexible way to add extra processing

= Allow for clients and servers to be developed independently

= Allow for clients of servers to be stubbed out (using mocks) for testing purposes

= Foster better design practices by connecting disparate systems that do one
thing well

= Enhance features and functionality of some systems (such as message brokers
and ESBs)

Each route in Camel has a unique identifier that’s used for logging, debugging, moni-
toring, and starting and stopping routes. Routes also have exactly one input source for
messages, so they’re effectively tied to an input endpoint.

To define a route, a DSL is used.

DOMAIN-SPECIFIC LANGUAGE (DSL)
To wire processors and endpoints together to form routes, Camel defines a DSL. The
term DSL is used a bit loosely here. In Camel, DSL means a fluent Java API that con-
tains methods named for EIP terms.
Consider this example:

from("file:data/inbox")

.filter() .xpath("/order [not (@test)]")

.to("jms:queue:order")
Here, in a single Java statement, you define a route that consumes files from a file end-
point. Messages are then routed to the filter EIP, which will use an XPath predicate to

www.it-ebooks.info

http://www.it-ebooks.info/

18

CHAPTER 1 Meeting Camel

test whether the message is a test order or not. If a message passes the test, it’s for-
warded to the JMS endpoint. Messages failing the filter test will be dropped.
Camel provides multiple DSL languages, so you could define the same route using
the Spring DSL, like this:
<route>
<from uri="file:data/inbox"/>
<filter>
<xpath>/order [not (etest)] </xpath>
<to uri="jms:queue:order"/>
</filter>
</route>
The DSLs provide a nice abstraction for Camel users to build applications with. Under
the hood, though, a route is actually composed of a graph of processors. Let’s take a
moment to see what a processor really is.

PROCESSOR
The processor is a core Camel concept that represents a node capable of using, creat-
ing, or modifying an incoming exchange. During routing, exchanges flow from one
processor to another; as such, you can think of a route as a graph having specialized
processors as the nodes, and lines that connect the output of one processor to the
input of another. Many of the processors are implementations of EIPs, but one could
easily implement their own custom processor and insert it into a route.

So how do exchanges get in or out of this processor graph? To find out, we’ll need
to look at both components and endpoints.

COMPONENT

Components are the main extension point in Camel. To date, there are over 80 com-
ponents in the Camel ecosystem that range in function from data transports, to DSLs,
data formats, and so on. You can even create your own components for Camel—we’ll
discuss this in chapter 11.

From a programming point of view, components are fairly simple: they’re associ-
ated with a name that’s used in a URI, and they act as a factory of endpoints. For exam-
ple, a FileComponent is referred to by file in a URI, and it creates FileEndpoints.
The endpoint is perhaps an even more fundamental concept in Camel.

ENDPOINT
An endpoint is the Camel abstraction that models the end of a channel through
which a system can send or receive messages. This is illustrated in figure 1.8.

Q_> ?D -—»?D—>=}—* ?I:] _>© Figure 1.8

Data Data

Message Message Channel Message An endpoint acts as
endpoint endpoint a neutral interface
Sender Receiver allowing systems
application application to integrate.

www.it-ebooks.info

http://www.it-ebooks.info/

Camel’s architecture

In Camel, you configure endpoints using URIs,
such as file:data/inbox?delay=5000, and you
also refer to endpoints this way. At runtime,
Camel will look up an endpoint based on the URI
notation. Figure 1.9 shows how this works.

The scheme @ denotes which Camel compo-
nent handles that type of endpoint. In this case,
the scheme of file selects the FileComponent.
The FileComponent then works as a factory creat-

19

file:data/inbox?delay=5000

Scheme Context path Options
(1 (2] (3]

Figure 1.9 Endpoint URIs are divided
into three parts: a scheme, a context
path, and options.

ing the FileEndpoint based on the remaining parts of the URI. The context path data/
inbox @ tells the FileComponent that the starting folder is data/inbox. The option,
delay=5000 @ indicates that files should be polled at a 5 second interval.

There’s more to an endpoint than meets the eye. Figure 1.10 shows how an end-
point works together with an exchange, producers, and consumers.

At first glance, figure 1.10 may seem a bit overwhelming, but it will all make sense

in a few minutes. In a nutshell, an endpoint acts as a factory for creating consumers
and producers that are capable of receiving and sending messages to a particular end-
point. We didn’t mention producers or consumers in the high-level view of Camel in
figure 1.6, but they’re important concepts. We’ll go over them next.

PRODUCER
A producer is the Camel abstraction that
refers to an entity capable of creating and
sending a message to an endpoint. Fig-
ure 1.10 illustrates where the producer fits
in with other Camel concepts.

When a message needs to be sent to an
endpoint, the producer will create an

a javax.jms.Message before sending it to a
JMS destination. This is an important fea-
ture in Camel, because it hides the com-
plexity of interacting with particular
transports. All you need to do is route a mes-
sage to an endpoint, and the producer does

i

Creates Uses

exchange and populate it with data compat- l creates

ible with that particular endpoint. For

example, a FileProducer will write the mes- Consumer Producer
sage body to a file. A JmsProducer, on the

other hand, will map the Camel message to

Creates—>| Exchange

i

Uses Creates

Uses

Processor

Figure 1.10 How endpoints work with

the heavy lifting. producers, consumers, and an exchange

www.it-ebooks.info

http://www.it-ebooks.info/

20

15

CHAPTER 1 Meeting Camel

CONSUMER

A consumer is the service that receives messages produced by a producer, wraps them
in an exchange, and sends them to be processed. Consumers are the source of the
exchanges being routed in Camel.

Looking back at figure 1.10, we can see where the consumer fits in with other
Camel concepts. To create a new exchange, a consumer will use the endpoint that
wraps the payload being consumed. A processor is then used to initiate the routing of
the exchange in Camel using the routing engine.

In Camel there are two kinds of consumers: event-driven consumers and polling
consumers. The differences between these consumers are important, because they
help solve different problems.

EVENT-DRIVEN CONSUMER
The most familiar consumer is probably
the event-driven consumer, which is —»j[* —»%
illustrated in figure 1.11. .
. K . cend Event driven

This kind of consumer is mostly ender Message consumer
associated with clientserver architec- Receiver
tures and web services. It’s also referred

Figure 1.11 An event-driven consumer waits idle

. R until a message arrives, at which point it wakes up
world. An event-driven consumer listens angd consumes the message.

on a particular messaging channel, usu-
ally a TCP/IP port or a JMS queue, and waits for a client to send messages to it. When a
message arrives, the consumer wakes up and takes the message for processing.

O

Polling
consumer

to as an asynchronous receiver in the EIP

POLLING CONSUMER
The other kind of consumer is the poll-
-5

ing consumer illustrated in figure 1.12.

In contrast to the event-driven con-

sumer, the polling consumer actively Sender Message

goes and fetches messages from a partic- Receiver
ular source, such as an FTP server. The
polling consumer is also known as a syn-

Figure 1.12 A polling consumer actively checks

for new messages.
chronous receiver in EIP lingo, because it

won’t poll for more messages until it has finished processing the current message. A com-
mon flavor of the polling consumer is the scheduled polling consumer, which polls at
scheduled intervals. File, FTP, and email transports all use scheduled polling consumers.

We’ve now covered all of Camel’s core concepts. With this new knowledge, you can
revisit your first Camel ride and see what’s really happening.

Your first Camel ride, revisited

Recall that in your first Camel ride (section 1.2.2), you read files from one directory
(data/inbox) and wrote the results to another directory (data/outbox). Now that you
know the core Camel concepts, you can put this example in perspective.

www.it-ebooks.info

http://www.it-ebooks.info/

1.6

Summary 21

Take another look at the Camel application.

Listing 1.4 Routing files from one folder to another with Apache Camel

public class FileCopierWithCamel {
public static void main(String args[]) throws Exception {
CamelContext context = new DefaultCamelContext () ;
context.addRoutes (new RouteBuilder () {
public void configure() {
from("file:data/inbox?noop=true") Java DSL
.to("file:data/outbox") ; route

}
1K

context.start () ;
Thread.sleep(10000) ;

context.stop() ;

}

In this example, you first create a CamelContext, which is the Camel runtime. You
then add the routing logic using a RouteBuilder and the Java DSL @. By using the
DSL, you can cleanly and concisely let Camel instantiate components, endpoints, con-
sumers, producers, and so on. All you have to focus on is defining the routes that mat-
ter for your integration projects. Under the hood, though, Camel is accessing the
FileComponent, and using it as a factory to create the endpoint and its producer. The
same FileComponent is used to create the consumer side as well.

Summary

In this chapter you met Camel. You saw how Camel simplifies integration by relying
on known EIPs. You also saw Camel’s DSL, which aims to make Camel code self docu-
menting and keeps developers focused on what the glue code does, not how it does it.

We covered Camel’s main features, what Camel is and isn’t, and where it can be
used. We looked at how Camel provides abstractions and an API that work over a large
range of protocols and data formats.

At this point, you should have a good understanding of what Camel does and what
the concepts behind Camel are. Soon you’ll be able to confidently browse Camel
applications and get a good idea of what they do.

In the rest of the book, we’ll explore Camel’s features and give you practical solu-
tions you can apply in everyday integration scenarios. We’ll also explain what’s going
on under Camel’s tough skin. To make sure that you get the main concepts from each
chapter, from now on we’ll present you with a number of best practices and key points
in the summary.

In the next chapter, we’ll investigate routing, which is an essential feature and a
fun one to learn.

www.it-ebooks.info

http://www.it-ebooks.info/

Routing with Camel

This chapter covers

An overview of routing

Introducing the Rider Auto Parts scenario

The basics of FTP and JMS endpoints

Creating routes using the Java DSL

Configuring routes from Spring

Routing using enterprise integration patterns (EIPs)

One of the most important features of Camel is routing; without it, Camel would
essentially be a library of transport connectors. In this chapter, we’ll dive into rout-
ing with Camel.

Routing happens in many aspects of everyday life. When you mail a letter, for
instance, it may be routed through several cities before reaching its final address.
An email you send will be routed through many different computer network sys-
tems before reaching its final destination. In all cases, the router’s function is to
selectively move the message forward.

In the context of enterprise messaging systems, routing is the process by which a
message is taken from an input queue and, based on a set of conditions, sent to one
of several output queues, as shown in figure 2.1. This effectively means that the

22

www.it-ebooks.info

http://www.it-ebooks.info/

2.1

Introducing Rider Auto Parts 23

% outQueuel
—

inQueue
% :) Figure 2.1 A message

_—
] _./:: router consumes

S— " o | | messages from an input
i - channel and, depending on
| SO > —— .
Message router [a set of conditions, sends
the message to one of a
outQueue2 set of output channels.

input and output queues are unaware of the conditions in between them. The condi-
tional logic is decoupled from the message consumer and producer.

In Apache Camel, routing is a more general concept. It’s defined as a step-by-step
movement of the message, which originates from an endpoint in the role of a con-
sumer. The consumer could be receiving the message from an external service, poll-
ing for the message on some system, or even creating the message itself. This message
then flows through a processing component, which could be an enterprise integration
pattern (EIP), a processor, an interceptor, or some other custom creation. The mes-
sage is finally sent to a target endpoint that’s in the role of a producer. A route may
have many processing components that modify the message or send it to another loca-
tion, or it may have none, in which case it would be a simple pipeline.

In this chapter, we’ll first introduce the fictional company that we’ll use as the run-
ning example throughout the book. To support this company’s use case, you’ll learn
how to communicate over FTP and Java Message Service (JMS) using Camel’s end-
points. Following this, we’ll look in depth at the Java-based domain-specific language
(DSL) and the Spring-based configuration format for creating routes. We’ll also give
you a glimpse of how to design and implement solutions to enterprise integration
problems using EIPs and Camel. By the end of the chapter, you’ll be proficient
enough to create useful routing applications with Camel.

To start, let’s look at the example company that we’ll use to demonstrate the con-
cepts throughout the book.

Introducing Rider Auto Parts

Our fictional motorcycle parts business, Rider Auto Parts, supplies parts to motorcycle
manufacturers. Over the years, they’ve changed the way they receive orders several
times. Initially, orders were placed by uploading comma-separated value (CSV) files to
an FTP server. The message format was later changed to XML. Currently they provide a
website through which orders are submitted as XML messages over HTTP.

Rider Auto Parts asks new customers to use the web interface to place orders, but
because of service level agreements (SLAs) with existing customers, they must keep all
the old message formats and interfaces up and running. All of these messages are con-
verted to an internal Plain Old Java Object (POJO) format before processing. A high-
level view of the order processing system is shown in figure 2.2.

www.it-ebooks.info

http://www.it-ebooks.info/

24

2.2

221

CHAPTER 2 Routing with Camel

Rider order
backend

Rider order
frontend

User Rider Auto
Parts web

store

Figure 2.2 A customer has two ways of submitting orders to the Rider Auto Parts order-handling
system: either by uploading the raw order file to an FTP server or by submitting an order through the
Rider Auto Parts web store. All orders are eventually sent via JMS for processing at Rider Auto Parts.

Rider Auto Parts faces a pretty common problem: over years of operation, they have
acquired software baggage in the form of transports and data formats that were popu-
lar at the time. This is no problem for an integration framework like Camel, though.
In this chapter, and throughout the book, you’ll help Rider Auto Parts implement
their current requirements and new functionality using Camel.

As a first assignment, you’ll need to implement the FTP module in the Rider order
frontend system. Later in the chapter, you’ll see how backend services are imple-
mented too. Implementing the FTP module will involve the following steps:

1 Polling the FTP server and downloading new orders
2 Converting the order files to JMS messages
3 Sending the messages to the JMS incomingOrders queue

To complete steps 1 and 3, you’ll need to understand how to communicate over FTP
and JMS using Camel’s endpoints. To complete the entire assignment, you’ll need to
understand routing with the Java DSL. Let’s first take a look at how you can use
Camel’s endpoints.

Understanding endpoints

As you read in chapter 1, an endpoint is an abstraction that models the end of a mes-
sage channel through which a system can send or receive messages. In this section,
we’re going to explain how you can use URIs to configure Camel to communicate over
FTP and JMS. Let’s first look at FTP.

Working with files over FTP

One of the things that make Camel easy to use is the endpoint URI. By specifying a
UR], you can identify the component you want to use and how that component is con-
figured. You can then decide to either send messages to the component configured by
this URI, or to consume messages from it.

Take your first Rider Auto Parts assignment, for example. To download new orders
from the FTP server, you need to do the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding endpoints 25
Connect to the rider.com FTP server on the default FTP port of 21

1
2 Provide a username of “rider” and password of “secret”
3 Change the directory to “orders”

4

Download any new order files

As shown in figure 2.3, you can easily configure Camel to do this by using URI notation.

Camel will first look up the ftp scheme in the component registry, which will
resolve to the FtpComponent. The FtpComponent then works as a factory, creating the
FtpEndpoint based on the remaining context path and options.

The context path of rider.com/orders tells the FtpComponent that it should log
into the FTP server at rider.com on the default FTP port and change the directory to
“orders”. Finally, the only options specified are username and password, which are
used to log in to the FTP server.

TIP For the FTP component, you can also specify the username and pass-
word in the context path of the URI. So the following URI is equivalent to the
one in figure 2.3: ftp:/ /rider:secret@rider.com/orders.

The FtpComponent isn’t part of the camel-core module, so you have to add an addi-
tional dependency to your project. Using Maven you just have to add the following
dependency to the POM:
<dependency>

<grouplds>org.apache.camel</groupIds>

<artifactId>camel-ftp</artifactIds>

<version>2.5.0</version>
</dependency>
Although this endpoint URI would work equally well in a consumer or producer sce-
nario, you’ll be using it to download orders from the FTP server. To do so, you need to
use it in a from node of Camel’s DSL:

from("ftp://rider.com/orders?username=rider&password=secret")

That’s all you need to do to consume files from an FTP server.

The next thing you need to do, as you may recall from figure 2.2, is send the orders
you downloaded from the FTP server to a JMS queue. This process requires a little
more setup, but it’s still easy.

ftp://rider.com/orders?username riderg&password secret

Scheme Context path Options

Figure 2.3 A Camel endpoint URI consists of three parts: a scheme, a context
path, and a list of options.

www.it-ebooks.info

http://www.it-ebooks.info/

26

222

CHAPTER 2 Routing with Camel

Sending to a JMIS queue

Camel provides extensive support for connecting to JMS-enabled providers, and we’ll
cover all the details in chapter 7. For now, though, we’re just going to cover enough so
that you can complete your first task for Rider Auto Parts. Recall that you need to
download orders from an FTP server and send them to a JMS queue.

WHAT IS JMS?

JMS (Java Message Service) is a Java API that allows you to create, send, receive, and
read messages. It also mandates that messaging is asynchronous and has specific ele-
ments of reliability, like guaranteed and once-and-only-once delivery. JMS is the de
facto messaging solution in the Java community.

In JMS, message consumers and producers talk to one another through an inter-
mediary—a JMS destination. As shown in figure 2.4, a destination can be either a
queue or a topic. Queues are strictly point-to-point, where each message has only one
consumer. Topics operate on a publish/subscribe scheme; a single message may be
delivered to many consumers if they have subscribed to the topic.

JMS also provides a ConnectionFactory that clients (like Camel) can use to cre-
ate a connection with a JMS provider. JMS providers are usually referred to as brokers
because they manage the communication between a message producer and a mes-
sage consumer.

HOW TO CONFIGURE CAMEL TO USE A JMS PROVIDER
To connect Camel to a specific JMS provider, you need to configure Camel’s JMS com-
ponent with an appropriate ConnectionFactory.

Apache ActiveMQ is one of the most popular open source JMS providers, and it’s
the primary JMS broker that the Camel team uses to test the JMS component. As such,
we’ll be using it to demonstrate JMS concepts within the book. For more information
on Apache ActiveMQ, we recommend ActiveMQ in Action by Bruce Snyder, Dejan
Bosanac, and Rob Davies, available from Manning Publications.

Client A Sends—> Consumes—y Client B

<—Subscribe
E Client D
E . Delivers —»
Client C Publshes—>| 10PIC
Subscribes
E Client E
Delivers —

Figure 2.4 There are two types of JMS destinations: queues and topics. The queue is a point-to-point
channel, where each message has only one recipient. A topic delivers a copy of the message to all clients
who have subscribed to receive it.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding endpoints 27

So in the case of Apache ActiveMQ, you can create an ActiveMQConnectionFactory
that points to the location of the running ActiveMQ broker:

ConnectionFactory connectionFactory =
new ActiveMQConnectionFactory ("vm://localhost™") ;

The vm://localhost URI means that you should connect to an embedded broker
named “localhost” running inside the current JVM. The vm transport connector in
ActiveMQ creates a broker on demand if one isn’t running already, so it’s very handy
for quickly testing JMS applications; for production scenarios, it’s recommended that
you connect to a broker that’s already running. Furthermore, in production scenarios
we recommend that connection pooling be used when connecting to a JMS broker.
See chapter 7 for details on these alternate configurations.

Next, when you create your CamelContext, you can add the JMS component as
follows:

CamelContext context = new DefaultCamelContext () ;
context .addComponent ("jms",
JmsComponent . jmsComponentAutoAcknowledge (connectionFactory)) ;

The JMS component and the ActiveMQ-specific connection factory aren’t part of the
camel-core module. In order to use these, you’ll need to add some dependencies to
your Maven-based project. For the plain JMS component, all you have to add is this:
<dependency>

<grouplds>org.apache.camel</groupld>

<artifactId>camel-jms</artifactIds>

<version>2.5.0</version>
</dependency>
The connection factory comes directly from ActiveMQ), so you’ll need the following
dependency:
<dependency>

<groupld>org.apache.activemg</groupld>

<artifactIds>activemg-core</artifactIds>

<versions>5.3.2</version>
</dependency>
Now that you’ve configured the JMS component to connect to an actual JMS broker,
it’s time to look at how URIs can be used to specify the destination.

USING URIS TO SPECIFY THE DESTINATION

Once the JMS component is configured, you can start sending and receiving JMS mes-

sages at your leisure. Because you’re using URISs, this is a real breeze to configure.
Let’s say you want to send a JMS message to the queue named incomingOrders.

The URI in this case would be

jms:queue: incomingOrders

This is pretty self-explanatory. The “jms” prefix indicates that you’re using the JMS
component you configured before. By specifying “queue”, the JMS component knows

www.it-ebooks.info

http://www.it-ebooks.info/

28

2.3

CHAPTER 2 Routing with Camel

to send to a queue named incomingOrders. You could even have omitted the queue
qualifier, because the default behavior is to send to a queue rather than a topic.

NOTE Some endpoints can have an intimidating list of endpoint URI proper-
ties. For instance, the JMS component has about 60 options, many of which are
only used in specific JMS scenarios. Camel always tries to provide builtin
defaults that fit most cases, and you can always find out what the default values
are by browsing to the component’s page in the online Camel documentation.
The JMS component is discussed here: http://camel.apache.org/jms.html.

Using Camel’s Java DSL, you can send a message to the incomingOrders queue by
using the to keyword like this:

.to("jms:queue:incomingOrders™")

This can be read as sending to the JMS queue named incomingOrders.
Now that you know the basics of communicating over FTP and JMS with Camel, you
can get back to the routing theme of this chapter and start routing some messages!

Creating routes in Java

In chapter 1, you saw how each CamelContext can contain multiple routes and also
how a RouteBuilder could be used to create a route. It may not have been obvious,
though, that the RouteBuilder isn’t the final route that the CamelContext will use at
runtime; it’s a builder of one or more routes, which are then added to the CamelCon-
text. This is illustrated in figure 2.5.

The addRoutes method of the CamelContext accepts a RoutesBuilder, not just a
RouteBuilder. The RoutesBuilder interface has a single method defined:

void addRoutesToCamelContext (CamelContext context) throws Exception;

This means that you could use your own custom class to build Camel routes. The most
common way to build routes, though, is to use the RouteBuilder class, which imple-
ments RoutesBuilder. The RouteBuilder class also gives you access to Camel’s Java
DSL for route creation.

In the next sections, you’ll learn how to use a RouteBuilder and the Java DSL to
create simple routes. Once you know that, you’ll be well prepared to take on the
Spring DSL in section 2.4 and routing using EIPs in section 2.5.

/CamelContext N

RouteBuilder

routey;
routez;

Route3
RouteBuilder
Figure2.5 RouteBuilders
routes; are used to create routes in
Camel. Each RouteBuilder
K _ / can create multiple routes.

www.it-ebooks.info

http://camel.apache.org/jms.html
http://www.it-ebooks.info/

23.1

Creating routes in Java 29

Using the RouteBuilder

The abstract org.apache.camel.builder.RouteBuilder class in Camel is one that
you’ll see frequently. You’ll need to use it any time you create a route in Java.

To use the RouteBuilder class, you extend a class from it and implement the con-
figure method, like this:

class MyRouteBuilder extends RouteBuilder ({
public void configure() throws Exception {

}
}

You then need to add the class to the CamelContext with the addRoutes method:

CamelContext context = new DefaultCamelContext () ;

context .addRoutes (new MyRouteBuilder()) ;

Alternatively, you can combine the RouteBuilder and CamelContext configuration by
adding an anonymous RouteBuilder class directly into the CamelContext, like this:
CamelContext context = new DefaultCamelContext () ;

context.addRoutes (new RouteBuilder ()
public void configure() throws Exception {

}

1
Within the configure method, you define your routes using the Java DSL. We’ll dis-
cuss the Java DSL in detail in the next section, but you can start a route now to get an
idea of how it works.

In chapter 1, you should have downloaded the source code from the book’s web-
site and set up Apache Maven. If you didn’t do this, please do so now. Change to the
chapter2/ftpjms directory in your terminal, and type this command:

mvn eclipse:eclipse
This will generate an Eclipse project file.

NOTE Eclipse is a popular open source IDE that you can find at http://
eclipse.org. During the book’s development, we used Eclipse 3.5.2.

When the command has completed, you can import this project by selecting File >
Import > Existing Projects into Workspace in the Eclipse menus and selecting the
chapter2/ftpjms directory. For more information on developing Camel projects in
Eclipse, see chapter 11.

NOTE You don’t need an IDE to use Camel, but it does make it a lot easier!
Feel free to skip to the next section if you don’t want to see the IDE-related
setup.

When the ftpjms project is loaded in Eclipse, open the src/main/java/camelinaction/
RouteBuilderExample.java file. As shown in figure 2.6, when you try autocomplete

www.it-ebooks.info

http://eclipse.org
http://eclipse.org
http://www.it-ebooks.info/

30

23.2

CHAPTER 2 Routing with Camel

public class RouteBuilderExample {

public static void main(String args[]) throws Exception {
camelContext context = new DefaultCamelContext();

context.addRoutes(new RouteBuilder() {
public void configure() {

} & from(Endpoint endpeint) : RouteDefinition - RouteBuil(~| Creates a new route from the given URI input
;)) . . . Parameters:
context.| @ from(Endpoint... endpoints) : RouteDefinition - Route T GO
Thread. s o from(String uri) : RouteDefinition - RouteBuilder Returns:
' context.l g from(String... uris) : RouteDefinition - RouteBuild the builder
} @ fromF (String uri, Object... args) : RouteDefinition

@ getClass() : Class<? extends Object>

@ getContext() : CamelContext i

@ getErrorHandlerBuilder() : ErrorHandlerBuilder
@ getRouteCollection() : RoutesDefinition

@ hashCode() : int

@ header(Strina name) : ValueBuilder - Build ipport >

»
Press "Ctrl+ Space’ to show Template Proposals Press Tab' from proposal table or click for focus

Figure 2.6 Use autocomplete to start your route. All routes start with a £rom method.

(Ctrl-space in Eclipse) in the configure method, you’ll be presented with a number of
methods. To start a route, you should use the from method.

The from method accepts an endpoint URI as an argument. You can add a FTP
endpoint URI to connect to Rider Auto Parts’ order server as follows:

from("ftp://rider.com/orders?username=rider&password=secret")

The from method returns a RouteDefinition object, on which you can invoke a num-
ber of different methods that implement EIPs and other messaging concepts.

Congratulations, you’re now using Camel’s Java DSL! Let’s take a closer look at
what’s going on here.

The Java DSL

Domain-specific languages (DSLs) are computer languages that target a specific prob-
lem domain, rather than a general purpose domain like most programming languages.

For example, you have probably used the regular expression DSL to match strings of
textand found it to be a clear and concise way of matching strings. Doing the same string
matching in Java wouldn’t be so easy. The regular expression DSL is an external DSL—it
has a custom syntax and so requires a separate compiler or interpreter to execute.

Internal DSLs, in contrast, use an existing general purpose language, such as Java, in
such a way that the DSL feels like a language from a particular domain. The most obvi-
ous way of doing this is by naming methods and arguments to match concepts from
the domain in question.

Another popular way of implementing internal DSLs is by using fluent interfaces (aka
fluent builders). When using a fluent interface, you build up objects with methods that
perform an operation and then return the current object instance; another method is
then invoked on this object instance, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating routes in Java 31

NOTE For more information on internal DSLs, see Martin Fowler’s “Domain
Specific Language” entry on his bliki (blog plus wiki) at http://www.martin-
fowler.com/bliki/DomainSpecificLanguage.html. He also has an entry on
“Fluent Interfaces” at http://www.martinfowler.com/bliki/FluentInterface.
html. For more information on DSLs in general, we recommend DSLs in Action
by Debasish Ghosh, available from Manning Publications.

Camel’s domain is enterprise integration, so the Java DSL is essentially a set of fluent
interfaces that contain methods named after terms from the EIP book. In the Eclipse
editor, take a look at what is available using autocomplete after a from method in the
RouteBuilder. You should see something like what’s shown in figure 2.7. The screen-
shot shows several EIPs—Pipeline, Enricher, and Recipient List—and there are many
others that we’ll discuss later.

For now, select the to method and finish the route with a semicolon. Each Java
statement that starts with a from method in the RouteBuilder creates a new route.
This new route now completes your first task at Rider Auto Parts—consuming orders
from an FTP server and sending them to the incomingOrders JMS queue.

If you want, you can load up the completed example from the book’s source code,
in chapter2/ftp-jms and open src/main/java/camelinaction/FtpToJMSExample.java.
The code is shown in listing 2.1.

public class RouteBuilderExample {

public static void main(String args[]) throws Exception {
CamelContext context = new DefaultCamelContext();

context.addRoutes (new RouteBuilder() {
@0verride
public void configure() {
// try auto complete in your IDE on the line below
from("ftp://rider.com/orders?username=rider&password=secret").

} @ pipeline(String... uris) : RouteDefinition - ProcessorDefiniti 4

};

context.start();
Thread. sleep(10000);
context.stop();

policy(Policy policy) : PolicyDefinition - ProcessorDefinitic
policy(String ref) : PolicyDefinition - ProcessorDefinition
pollEnrich(String resourceUri) : RouteDefinition - Processa
pollEnrich(String resourceUri, AggregationStrategy aggrec
pollEnrich(String resourceUri, long timeout) : RouteDefinit
pollEnrich(String resourceUri, long timeout, AggregationS
pollEnrichRef(String resourceRef, long timeout, String agg
process(Processor processor) : RouteDefinition - Processo
processRef(String ref) : RouteDefinition - ProcessorDefinit
recipientList() : ExpressionClause<RecipientListDefinition v

>
Press 'Ctrl+Space' to show Template Proposals

® ©¢ ¢ © © © © © © ©

Figure 2.7 After the £rom method, use your IDE’s autocomplete feature to get a list of EIPs
(such as Pipeline, Enricher, and Recipient List) and other useful integration functions.

www.it-ebooks.info

http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://www.martinfowler.com/bliki/FluentInterface
http://www.it-ebooks.info/

CHAPTER 2 Routing with Camel

Listing 2.1 Polling for FTP messages and sending them to the incomingOrders queue

import javax.jms.ConnectionFactory;

import org.apache.activemqg.ActiveMQConnectionFactory;
import org.apache.camel.CamelContext;

import org.apache.camel.builder.RouteBuilder;

import org.apache.camel.component.jms.JmsComponent ;
import org.apache.camel.impl.DefaultCamelContext;

public class FtpToJMSExample {

public static void main(String args[]) throws Exception {
CamelContext context = new DefaultCamelContext () ;

ConnectionFactory connectionFactory =
new ActiveMQConnectionFactory ("vm://localhost") ;
context .addComponent ("jms",
JmsComponent . jmsComponentAutoAcknowledge (connectionFactory)) ;

context .addRoutes (new RouteBuilder () {
public void configure() ({
from("ftp://rider.com/orders" Javastatement
+ "?username=rideré&password=secret") that forms a
.to("jms:incomingOrders") ; route

1
I3
context.start () ;

Thread.sleep(10000) ;

context.stop() ;

NOTE Because you’re consuming from ftp://rider.com, which doesn’t exist,
you can’t run this example. It’s only useful for demonstrating the Java DSL
constructs. For runnable FTP examples, please see chapter 7.

Asyou can see, this listing includes a bit of boilerplate setup and configuration, but the
actual solution to the problem is concisely defined within the configure method as a
single Java statement @. The from method tells Camel to consume messages from an
FTP endpoint, and the to method instructs Camel to send messages to a JMS endpoint.

The flow of messages in this simple route can be viewed as a basic pipeline, where
the output of the consumer is fed into the producer as input. This is depicted in
figure 2.8.

?:] Route %
Consumer Producer — Figure 2.8 The route shown in

) IMS queve Ii.stin.g 2.1 forms a simple
h pipeline. The output of the FTP
FTP server consumer is fed into the input of
Implicit the JMS producer. The payload
@@ type conversion from file to JMS
conversion message is done automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating routes in Java 33

One thing you may have noticed is that we didn’t do any conversion from the FTP file
type to the JMS message type—this was done automatically by Camel’s TypeConverter
facility. You can force type conversions to occur at any time during a route, but often
you don’t have to worry about them at all. Data transformation and type conversion is
covered in detail in chapter 3.

You may be thinking now that although this route is nice and simple, it would be
really nice to see what’s going on in the middle of the route. Fortunately, Camel always
lets the developer stay in control by providing ways to hook into flows or inject behav-
ior into features. There is a pretty simple way of getting access to the message by using
a processor, and we’ll discuss that next.

ADDING A PROCESSOR
The Processor interface in Camel is an important building block of complex routes.
It’s a simple interface, having a single method:

public void process (Exchange exchange) throws Exception;

This gives you full access to the message exchange, letting you do pretty much what-
ever you want with the payload or headers.

All EIPs in Camel are implemented as processors. You can even add a simple pro-
cessor to your route inline, like so:
from("ftp://rider.com/orders?username=rider&password=secret") .
process (new Processor () {

public void process (Exchange exchange) throws Exception {

System.out.println("We just downloaded: "
+ exchange.getIn() .getHeader ("CamelFileName")) ;

}
b
to("jms:incomingOrders") ;
This route will now print out the filename of the order that was downloaded before
sending it to the JMS queue.

By adding this processor into the middle of the route, you’ve effectively added it to
the conceptual pipeline we mentioned earlier, as illustrated in figure 2.9. The output of
the FTP consumer is fed into the processor as input; the processor doesn’t modify the
message payload or headers, so the exchange moves on to the JMS producer as input.

NOTE Many components, like the FileComponent and the FtpComponent, set
useful headers describing the payload on the incoming message. In the previ-
ous example, you used the CamelFileName header to retrieve the filename of
the file that was downloaded via FTP. The component pages of the online
documentation contain information about the headers set for each individual
component. You’ll find information about the FTP component at http://
camel.apache.org/ftp2.html.

Camel’s main method for creating routes is through the Java DSL. It is, after all, built
into the camel-core module. There are other ways of creating routes though, some of
which may better suit your situation. For instance, Camel provides extensions for writ-
ing routes in Groovy, Scala, and, as we’ll discuss next, Spring XML.

www.it-ebooks.info

http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://www.it-ebooks.info/

34

24

24.1

CHAPTER 2 Routing with Camel

Route Figure 2.9 With a processor in
the mix, the output of the FTP
Consumer Processor Producer =) consumer is now fed into the
h J JMS queue processor, and then the output

of the processor is fed into the
FTP server JMS producer.

Creating routes with Spring

Spring is the most popular Inversion of Control (IoC) Java container out there. The
core framework allows to you “wire” beans together to form applications. This wiring
is done through an XML configuration file.

In this section, we’ll give you a quick introduction to creating applications with
Spring. For a more comprehensive view of Spring, we recommend Spring in Action, by
Craig Walls (http://www.manning.com/walls4/).

We’ll then go on to show you how Camel uses Spring to form a replacement or
complementary solution to the Java DSL.

Bean injection and Spring

Creating an application from beans using Spring is pretty simple. All you need are a
few Java beans (classes), a Spring XML configuration file, and an ApplicationCon-
text. The ApplicationContext is similar to the CamelContext, in that it’s the runtime
container for Spring. Let’s look at a simple example.

Consider an application that prints out a greeting followed by your username. In
this application you don’t want the greeting to be hardcoded, so you can use an inter-
face to break this dependency. Consider the following interface:

public interface Greeter {
public String sayHello() ;
}

This interface is implemented by the following classes:

public class EnglishGreeter implements Greeter {
public String sayHello() {
return "Hello " + System.getProperty("user.name") ;
}

}

public class DanishGreeter implements Greeter ({
public String sayHello() {
return "Davs " + System.getProperty ("user.name") ;
}

}

You can now create a greeter application as follows:

public class GreetMeBean ({
private Greeter greeter;

public void setGreeter (Greeter greeter) ({
this.greeter = greeter;
}

www.it-ebooks.info

http://www.manning.com/walls4/
http://www.it-ebooks.info/

Creating routes with Spring 35

public void execute() {
System.out.println(greeter.sayHello()) ;
}

}

This application will output a different greeting depending on how you configure it.

To configure this application using Spring, you could do something like this:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean id="myGreeter" class="camelinaction.EnglishGreeter"/>

<bean id="greetMeBean" class="camelinaction.GreetMeBean">
<property name="greeter" ref="myGreeter"/>
</bean>

</beans>
This XML file instructs Spring to do the following:

1 Create an instance of EnglishGreeter and names the bean myGreeter

2 Create an instance of GreetMeBean and names the bean greetMeBean

3 Set the reference of the greeter property of the GreetMeBean to the bean
named myGreeter

This configuring of beans is called wiring.

In order to load this XML file into Spring, you can use the ClassPathXmlApplica-
tionContext, which is a concrete implementation of the ApplicationContext that’s
provided with the Spring framework. This class loads Spring XML files from a location
specified on the classpath.

Here is the final version of GreetMeBean:

public class GreetMeBean {

public static void main(Stringl[] args)
ApplicationContext context =
new ClassPathXmlApplicationContext ("beans.xml") ;
GreetMeBean bean = (GreetMeBean) context.getBean("greetMeBean") ;
bean.execute () ;

}

The ClassPathXmlApplicationContext you instantiate here loads up the bean defini-
tions you saw previously in the beans.xml file. You then call getBean on the context to
look up the bean with the greetMeBean ID in the Spring registry. All beans defined in
this file are accessible in this way.

To run this example, go to the chapter2/spring directory in the book’s source
code and run this Maven command:

mvn compile exec:java -Dexec.mainClass=camelinaction.GreetMeBean

www.it-ebooks.info

http://www.it-ebooks.info/

36

CHAPTER 2 Routing with Camel

This will output something like the following on the command line:
Hello janstey

If you had wired the DanishGreeter in instead, you’d have seen something like this on
the console:

Davs janstey

This example may seem pretty simple, but it should give you an understanding of
what Spring and, more generally, an IoC container, really is.

So how does Camel fit into this? Essentially, Camel can be configured as if it were
another bean. For instance, you configured the JMS component to connect to an
ActiveMQ broker in section 2.2.2, but you could have done this in Spring by using the
bean terminology, as follows:

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory"s>
<bean class="org.apache.activemg.ActiveMQConnectionFactory">
<property name="brokerURL" value="vm://localhost" />
</bean>
</property>
</bean>
In this case, Camel will know to look for beans of type org.apache.camel.Compo-
nent and add them to the CamelContext automatically—a task you did manually in
section 2.2.2.

But where is the CamelContext defined in Spring? Well, to make things easier on
the eyes, Camel utilizes Spring extension mechanisms to provide custom XML syntax
for Camel concepts within the Spring XML file. To load up a CamelContext in Spring,
you can do the following:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext xmlns="http://camel.apache.org/schema/spring"/>
</beans>

This will automatically start a SpringCamelContext, which is a subclass of the
DefaultCamelContext you used for the Java DSL. Also notice that you had to include
the http://camel.apache.org/schema/spring/camel-spring.xsd XML schema defini-
tion in the XML file—this is needed to import the custom XML elements.

This snippet alone isn’t going to do much for you. You need to tell Camel what
routes to use, as you did when using the Java DSL. The following code uses Spring to
produce the same results as the code in listing 2.1.

www.it-ebooks.info

http://camel.apache.org/schema/spring/camel-spring.xsd
http://www.it-ebooks.info/

24.2

Creating routes with Spring 37

Listing 2.2 A Spring configuration that produces the same results as listing 2.1

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<bean id="jms" class="org.apache.camel.component.jms.JImsComponent">
<property name="connectionFactory">
<bean class="org.apache.activemg.ActiveMQConnectionFactory">
<property name="brokerURL" value="vm://localhost" />
</beans>
</property>
</bean>

<bean id="ftpToJdmsRoute" class="camelinaction.FtpToJMSRoute"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<routeBuilder ref="ftpTodmsRoute"/>
</camelContext>

</beans>

You may have noticed that we’re referring to the camelinaction.FtpToJMSRoute class
as a RouteBuilder. In order to reproduce the Java DSL example in listing 2.1, you have
to factor out the anonymous RouteBuilder into its own named class. The FtpToJMS-
Route class looks like this:

public class FtpToJMSRoute extends RouteBuilder {
public void configure() {
from("ftp://rider.com" +
"/orders?username=rider&password=secret")
.to("jms:incomingOrders") ;

}
}
Now that you know the basics of Spring and how to load Camel inside it, we can go
further by looking at how to write Camel routing rules purely in XML—no Java DSL
required.

The Spring DSL

What we’ve seen of Camel’s integration with Spring is adequate, but it isn’t taking full
advantage of Spring’s methodology of configuring applications using no code. To
completely invert the control of creating applications using Spring XML, Camel pro-
vides custom XML extensions that we call the Spring DSL. The Spring DSL allows you to
do almost everything you can do in the Java DSL.

Let’s continue with the Rider Auto Parts example shown in listing 2.2, but this time
you’ll specify the routing rules defined in the RouteBuilder purely in XML. The fol-
lowing Spring XML does this.

www.it-ebooks.info

http://www.it-ebooks.info/

38

CHAPTER 2 Routing with Camel

Listing 2.3 A Spring DSL example that produces the same results as listing 2.1

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory"s>
<bean class="org.apache.activemg.ActiveMQConnectionFactory">
<property name="brokerURL" value="vm://localhost" />
</bean>
</property>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from
uri="ftp://rider.com/orders?username=rider&password=secret"/>
<to uri="jms:incomingOrders"/>
</route>
</camelContext>

</beans>

In this listing, under the camelContext element you replace routeBuilder with the
route element. Within the route element, you specify the route using elements with
names similar to ones used inside the Java DSL RouteBuilder. This listing is function-
ally equivalent to the Java DSL version in listing 2.1 and the Spring plus Java DSL
combo in listing 2.2.
In the book’s source code, we changed the from method to consume messages
from a local file directory instead. The new route looks like this:
<route>
<from uri="file:src/data?noop=true"/>
<to uri="jms:incomingOrders"/>
</route>
The file endpoint will load order files from the relative src/data directory. The noop
property configures the endpoint to leave the file as is after processing; this option is
very useful for testing. In chapter 7, you’ll also see how Camel allows you to delete or
move the files after processing.
This route won’t display anything interesting yet. You need to add an additional
processing step for testing.

ADDING A PROCESSOR
Adding additional processing steps is simple, as in the Java DSL. Here you’ll add a cus-
tom processor like you did in section 2.3.2.

Because you can’t refer to an anonymous class in Spring XML, you need to factor
out the anonymous processor into the following class:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating routes with Spring 39

public class DownloadLogger implements Processor {
public void process (Exchange exchange) throws Exception
System.out.println("We just downloaded: "
+ exchange.getIn() .getHeader ("CamelFileName")) ;

}

You can now use it in your Spring DSL route as follows:

<bean id="downloadLogger" class="camelinaction.DownloadLogger"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="file:src/data?noop=true"/>
<process ref="downloadLogger"/>
<to uri="jms:incomingOrders"/>
</route>
</camelContext>
Now you’re ready to run the example. Go to the chapter2/spring directory in the

book’s source code and run this Maven command:
mvn clean compile camel:run

Because there is only one message file named messagel.xml in the src/data directory,
this will output something like the following on the command line:

We just downloaded: messagel.xml

What if you wanted to print this message after consuming it from the incomingOrders
queue? To do this, you’ll need to create another route.

USING MULTIPLE ROUTES
You may recall that in the Java DSL each Java statement starting with a from creates a
new route. You can also create multiple routes with the Spring DSL. To do this, simply
add an additional route element within the camelContext element.
For example, move the DownloadLogger bean into a second route, after the order
gets sent to the incomingOrders queue:
<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="file:src/data?noop=true"/>
<to uri="jms:incomingOrders"/>
</routes>
<route>
<from uri="jms:incomingOrders"/>
<process ref="downloadLogger"/>
</route>
</camelContext>
Now you are consuming the message from the incomingOrders queue in the second
route. So, the downloaded message will be printed after the order is sent to the queue.

CHOOSING WHICH DSL TO USE
Which DSL is best to use in a particular scenario is a common question for Camel
users, but it mostly comes down to personal preference. If you like working with

www.it-ebooks.info

http://www.it-ebooks.info/

40

24.3

CHAPTER 2 Routing with Camel

Spring or like defining things in XML, you may prefer a pure Spring approach. If you
want to be hands-on with Java, maybe a pure Java DSL approach is better for you.

In either case, you’ll be able to access nearly all of Camel’s functionality. The Java
DSL is a slightly richer language to work with because you have the full power of the
Java language at your fingertips. Also, some Java DSL features, like value builders (for
building expressions and predicates'), aren’t available in the Spring DSL. On the
other hand, using Spring gives you access to the wonderful object construction capa-
bilities as well as commonly used Spring abstractions for things like database connec-
tions and JMS integration.

A common compromise (and our favorite usage) is to use both Spring and the Java
DSL, which is one of the topics we’ll cover next.

Using Camel and Spring

Whether you write your routes in the Java or Spring DSL, running Camel in a Spring con-

tainer gives you many other benefits. For one, if you’re using the Spring DSL, you don’t

have to recompile any code when you want to change your routing rules. Also, you gain

access to Spring’s portfolio of database connectors, transaction support, and more.
Let’s take a closer look at what other Spring integrations Camel provides.

FINDING ROUTE BUILDERS
Using the Spring CamelContext as a runtime and the Java DSL for route development
is a great way of using Camel. In fact, it’s the most frequent usage of Camel.
You saw before that you can explicitly tell the Spring CamelContext what route
builders to load. You can do this by using the routerBuilder element:
<camelContext xmlns="http://camel.apache.org/schema/spring">
<routeBuilder ref="ftpToJmsRoute"/>
</camelContext>
Being this explicit results in a clean and concise definition of what is being loaded
into Camel.
Sometimes, though, you may need to be a bit more dynamic. This is where the
packageScan and contextScan elements come in:
<camelContext xmlns="http://camel.apache.org/schema/spring">
<packageScan>
<package>camelinaction.routes</package>
</packageScan>
</camelContext>
This packageScan element will load all RouteBuilder classes found in the camelinac-
tion.routes package, including all subpackages.
You can even be a bit more picky about what route builders are included:
<camelContext xmlns="http://camel.apache.org/schema/spring">

<packageScan>
<package>camelinaction.routes</package>

1

See appendix B for more information on expressions and predicates.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating routes with Spring 41

<excludes>** *Test*</excludes>
<includes>** *</includes>
</packageScan>
</camelContext>
In this case, you're loading all route builders in the camelinaction.routes package,
except for ones with “Test” in the class name. The matching syntax is similar to what is
used in Apache Ant’s file pattern matchers.

The contextScan element takes advantage of Spring’s component-scan feature to
load any Camel route builders that are marked with the @org.springframework.
stereotype.Component annotation. Let’s modify the FtpToJMSRoute class to use
this annotation:

@Component
public class FtpToJMSRoute extends SpringRouteBuilder ({

public void configure() {

from("ftp://rider.com" +
"/orders?username=rider&password=secret")
.to("jms:incomingOrders") ;

}

Notice that this version uses the org.apache.camel.spring.SpringRouteBuilder
class, which is an extension of RouteBuilder that contains extra Spring utility func-
tions. You can now enable the component scanning by using the following configura-
tion in your Spring XML file:

<context :component-scan base-package="camelinaction.routes"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<contextScan/>
</camelContext>
This will load up any Spring route builders within the camelinaction.routes pack-
age that have the @Component annotation.

Under the hood, some of Camel’s components, like the JMS component, are built
on top of abstraction libraries from Spring. It makes sense that configuring those
components is easy in Spring.

CONFIGURING COMPONENTS AND ENDPOINTS
You saw in section 2.4.1 that components could be defined in Spring XML and would
be picked up automatically by Camel. For instance, look at the JMS component again:
<bean id="jms" class="org.apache.camel.component.jms.JIJmsComponent">
<property name="connectionFactory"s>
<bean class="org.apache.activemqg.ActiveMQConnectionFactory">
<property name="brokerURL" value="vm://localhost" />
</beans>
</property>
</beans>
The bean id defines what this component will be called. This gives you the flexibility to
give the component a more meaningful name based on the use case. Your application

www.it-ebooks.info

http://www.it-ebooks.info/

42

CHAPTER 2 Routing with Camel

may require the integration of two JMS brokers, for instance. One could be for Apache
ActiveMQ and another could be for SonicMQ:

<bean id="activemg" class="org.apache.camel.component.jms.JImsComponent">

</bean>

<bean id="sonicmg" class="org.apache.camel.component.jms.JmsComponent">

</bean>

You could then use URIs like activemqg:myActiveMQQueue or sonicmg:mySonicQueue.
Endpoints can also be defined using Camel’s Spring XML extensions. For example,

you can break out the FTP endpoint for connecting to Rider Auto Parts’ legacy order
server and see what the route looks like:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<endpoint id="ridersFtp"
uri="ftp://rider.com/orders?username=rider&password=secret"/>
<route>
<from ref="ridersFtp"/>
<to uri="jms:incomingOrders"/>
</route>
</camelContext>

NOTE You may notice that credentials have been added directly into the end-
point URI, which isn’t always the best solution. A better way would be to refer
to credentials that are defined and sufficiently protected elsewhere. In sec-
tion 6.1.6 of chapter 6, you can see how the Camel Properties component or
Spring property placeholders are used to do this.

IMPORTING CONFIGURATION AND ROUTES
A common practice in Spring development is to separate out an application’s wiring
into several XML files. This is mainly done to make the XML more readable; you prob-
ably wouldn’t want to wade through thousands of lines of XML in a single file without
some separation.

Another reason to separate an application into several XML files is the potential for
reuse. For instance, some other application may require a similar JMS setup, so you
can define a second Spring XML file called jms-setup.xml with these contents:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory">
<bean class="org.apache.activemg.ActiveMQConnectionFactory">
<property name="brokerURL" value="vm://localhost" />
</bean>
</propertys>
</bean>
</beans>

www.it-ebooks.info

http://www.it-ebooks.info/

2.5

Routing and EIPs 43

This file could then be imported into the XML file containing the CamelContext by
using the following line:

<import resource="jms-setup.xml"/>

Now the CamelContext can use the JMS component configuration even though it’s
defined in a separate file.

Other useful things to define in separate files are the Spring DSL routes them-
selves. Because route elements need to be defined within a camelContext element, an
additional concept is introduced to define routes. You can define routes within a
routeContext element, as shown here:
<routeContext id="ftpTodms" xmlns="http://camel.apache.org/schema/spring" >

<route>
<from uri="ftp://rider.com/orders?username=rider&password=secret"/>
<to uri="jms:incomingOrders"/>
</route>
</routeContext>
This routeContext element could be in another file or in the same file. You can then
import the routes defined in this routeContext with the routeContextRef element.
You use the routeContextRef element inside a camelContext as follows:
<camelContext xmlns="http://camel.apache.org/schema/spring">
<routeContextRef ref="ftpTodms"/>
</camelContext>
If you import the routeContext into multiple CamelContexts, a new instance of the
route is created in each. In the preceding case, two identical routes, with the same
endpoint URIs, will lead to them competing for the same resource. In this case, only
one route at a time will receive a particular file from FTP. In general, you should take
care when reusing routes in multiple CamelContexts.
ADVANCED CONFIGURATION OPTIONS
There are many other configuration options available when using the Spring Camel-
Context:

= Pluggable bean registries are discussed in chapter 4.

= The Tracer and Delay mechanisms are covered in chapter 12.

= Custom class resolvers, tracing, fault handling and startup are mentioned in

chapter 13.
= The configuration of interceptors is covered in chapter 6.

With these route configuration techniques behind us, you're ready to tackle more
advanced routing topics using Camel’s implementation of the EIPs.

Routing and EIPs

So far we haven’t touched much on the EIPs that Camel was built to implement. This
was intentional. We wanted to make sure you had a good understanding of what
Camel is doing in the simplest cases before moving on to more complex examples.

www.it-ebooks.info

http://www.it-ebooks.info/

44

2.5.1

CHAPTER 2 Routing with Camel

As far as EIPs go, we’ll be looking at the Content-Based Router, Message Filter, Mul-
ticast, Recipient List, and Wire Tap right away. Other patterns will be introduced
throughout the book, and in chapter 8 we’ll be covering the most complex EIPs. The
complete list of EIPs supported by Camel is available from the Camel website (http://
camel.apache.org/enterprise-integration-patterns.html).

For now, let’s start by looking at the most well known EIP, the Content-Based
Router.

Using a content-based router

As the name implies, a Content-Based Router (CBR) is a message router that routes a
message to a destination based on its content. The content could be a message
header, the payload data type, part of the payload itself—pretty much anything in the
message exchange.

To demonstrate, let’s go back to Rider Auto Parts. Some customers have started
uploading orders to the FTP server in the newer XML format rather than CSV. That
means you have two types of messages coming in to the incomingOrders queue. We
didn’t touch on this before, but you need to convert the incoming orders into an
internal POJO format. You obviously need to do different conversions for the differ-
ent types of incoming orders.

As a possible solution, you could use the filename extension to determine whether
a particular order message should be sent to a queue for CSV orders or a queue for
XML orders. This is depicted in figure 2.10.

As you saw earlier, you can use the CamelFileName header set by the FTP consumer
to get the filename.

To do the conditional routing required by the CBR, Camel introduces a few key-
words in the DSL. The choice method creates a CBR processor, and conditions are
added by following choice with a combination of a when method and a predicate.

Camel’s creators could have chosen contentBasedRouter for the method name,
to match the EIP, but they stuck with choice because it reads more naturally. It looks
like this:

if file extension is* .xml”
send to xmlOrders queue

else (E
send to csvOrders queue jms:xmlOrders
—_—

o . 1\
% jms:incomingOrders \‘ > L
f _j
— > —
(S— — \: jms:csvOrders
i
Contentbased N N
router 7 C—)

Figure 2.10 The CBR routes messages based on their content. In this case, the filename
extension (as a message header) is used to determine which queue to route to.

www.it-ebooks.info

http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://www.it-ebooks.info/

Routing and EIPs 45

from("jms:incomingOrders")
.choice ()
.when (predicate)
.to("jms:xmlOrders")
.when (predicate)
.to("jms:csvOrders") ;
You may have noticed that we didn’t fill in the predicates required for each when
method. A predicate in Camel is a simple interface that only has a matches method:

public interface Predicate {
boolean matches (Exchange exchange) ;
}

For example, you can think of a predicate as a Boolean condition in a Java if
statement.

You probably don’t want to look inside the exchange yourself and do a compari-
son. Fortunately, predicates are often built up from expressions, and expressions are
used to extract a result from an exchange based on the expression content. There are
many different expression languages to choose from in Camel, some of which include
Simple, EL, JXPath, Mvel, OGNL, PHP, BeanShell, JavaScript, Groovy, Python, Ruby,
XPath, and XQuery. As you’ll see in chapter 4, you can even use a method call to a
bean as an expression in Camel. In this case, you’ll be using the expression builder
methods that are part of the Java DSL.

Within the RouteBuilder, you can start by using the header method, which returns
an expression that will evaluate to the header value. For example, header ("CamelF-
ileName") will create an expression that will resolve to the value of the CamelFile-
Name header on the incoming exchange. On this expression you can invoke a number
of methods to create a predicate. So, to check whether the filename extension is equal
to .xml, you can use the following predicate:

header ("CamelFileName") .endsWith (" .xml")

The completed CBR is shown here.

Listing 2.4 A complete content-based router

context .addRoutes (new RouteBuilder ()
public void configure() {
from("file:src/data?noop=true") .to("jms:incomingOrders") ;

from("jms:incomingOrders™")

.choice ()
.when (header ("CamelFileName")
.endsWith(".xml")) Content-based
.to("jms:xmlOrders") router
.when (header ("CamelFileName") T
.endsWith(".csv")) t;:ir:l’tll:is
.to("jms:csvOrders") ; message
from("jms:xmlOrders") .process (new Processor () { content

public void process (Exchange exchange) throws Exception {

www.it-ebooks.info

http://www.it-ebooks.info/

46

CHAPTER 2 Routing with Camel

System.out.println("Received XML order: "
+ exchange.getIn() .getHeader ("CamelFileName")) ;

} Test routes that print
P message content

from("jms:csvOrders") .process (new Processor () {
public void process (Exchange exchange) throws Exception {
System.out.println("Received CSV order: "
+ exchange.getIn() .getHeader ("CamelFileName")) ;

}
1
}
1
To run this example, go to the chapter2/cbr directory in the book’s source code and
run this Maven command:

mvn clean compile exec:java -Dexec.mainClass=camelinaction.OrderRouter

This will consume two order files in the chapter2/cbr/src/data directory and output
the following:

Received CSV order: message2.csv

Received XML order: messagel.xml

The output comes from the two routes at the end of the configure method @. These
routes consume messages from the xmlOrders and csvOrders queues and then print
out messages. You use these routes to test that the router @ is working as expected.
More advanced route-testing techniques will be discussed in chapter 6.

USING THE OTHERWISE CLAUSE
One of Rider Auto Parts’ customers sends CSV orders with the .csl extension. Your cur-
rent route only handles .csv and .xml files and will drop all orders with other exten-
sions. This isn’t a good solution, so you need to improve things a bit.

One way to handle the extra extension is to use a regular expression as a predicate
instead of the simple endsWith call. The following route can handle the extra file
extension:

from("jms:incomingOrders™")

.choice ()
.when (header ("CamelFileName") .endsWith (" .xml"))
.to("jms:xmlOrders")
.when (header ("CamelFileName") .regex ("*.* (csv|csl)$"))

.to("jms:csvOrders") ;

This solution still suffers from the same problem, though. Any orders not conforming
to the file extension scheme will be dropped. Really, you should be handling bad
orders that come in so someone can fix the problem. For this you can use the other-
wise clause:

from("jms:incomingOrders")
.choice ()
.when (header ("CamelFileName") .endsWith (" .xml"))

www.it-ebooks.info

http://www.it-ebooks.info/

Routing and EIPs 47

.to("jms:xmlOrders")

.when (header ("CamelFileName") .regex ("".* (csv|csl)$"))
.to("jms:csvOrders")
.otherwise ()

.to("jms:badOrders") ;

Now, all orders not having an extension of .csv, .csl, or .xml are sent to the badOrders
queue for handling.

To run this example, go to the chapter2/cbr directory in the book’s source and
run this command:

mvn clean compile exec:java
-Dexec.mainClass=camelinaction.OrderRouterOtherwise

This will consume four order files in the chapter2/cbr/src/data directory and output

the following:

Received CSV order: message2.csv
Received XML order: messagel.xml
Received bad order: message4.bad
Received CSV order: message3.csl

You can now see that a bad order has been received.

ROUTING AFTER A CBR
The CBR may seem like it’s the end of the route; messages are routed to one of several
destinations, and that’s it. Continuing the flow means you need another route, right?
Well, there are several ways you can continue routing after a CBR. One is by using
another route, like you did in listing 2.4 for printing a test message to the console.
Another way of continuing the flow is by closing the choice block and adding another
processor to the pipeline after that.
You can close the choice block by using the end method:

from("jms:incomingOrders™")
.choice ()
.when (header ("CamelFileName") .endsWith (" .xml"))
.to("jms:xmlOrders")
.when (header ("CamelFileName") .regex ("*.* (csv|csl)$"))
.to("jms:csvOrders")
.otherwise ()
.to("jms:badOrders")
.end ()
.to("jms:continuedProcessing") ;

Here, the choice has been closed and another to has been added to the route. Now,
after each destination with the choice, the message will be routed to the continued-
Processing queue as well. This is illustrated in figure 2.11.

You can also control what destinations are final in the choice block. For instance,
you may not want bad orders continuing through the rest of the route. You’d like
them to be routed to the badOrders queue and stop there. In this case, you can use
the stop method in the DSL:

www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 2 Routing with Camel

jms:xmlOrders

_
| C—)
jms:incomingOrders jms:csvOrders jms:continuedProcessing
> B / 2 B N —
» *— < » y
(S—) - {S— —
Content based jms:badOrders
router
—_—>

’

Figure 2.11 By using the end method, you can route messages to a destination after the CBR.

from("jms:incomingOrders™")
.choice ()
.when (header ("CamelFileName") .endsWith (" .xml"))
.to("jms:xmlOrders")
.when (header ("CamelFileName") .regex ("*.* (csv|csl) $"))
.to("jms:csvOrders")
.otherwise ()
.to("jms:badOrders") .stop ()
.end ()
.to("jms:continuedProcessing") ;

Now, any orders entering into the otherwise block will only be sent to the badOrders
queue—not to the continuedProcessing queue.
Using the Spring DSL, this route looks a bit different:

<route>
<from uri="jms:incomingOrders"/>
<choice>
<when>
<simple>${header.CamelFileName} regex
<to uri="jms:xmlOrders"/>
</when>
<when>
<simple>${header.CamelFileName} regex
<to uri="jms:csvOrders"/>
</when>
<otherwise>
<to uri="jms:badOrders"/>
<stop/>
</otherwises>
</choice>
<to uri="jms:continuedProcessing"/>
</routes>

A

*xml$'</simple>

A

.*(csv|csl)$'</simple>

Other than being in XML rather than Java, there are two main differences to note
here, compared to the Java DSL version:

www.it-ebooks.info

http://www.it-ebooks.info/

2.5.2

Routing and EIPs 49

= You use a Simple expression instead of the Java-based predicate. The Simple
expression language is typically used as a replacement for predicates from the
Java DSL. A complete guide on the Simple expression language can be found in
appendix A.

= You don’t have to use an end() call to end the choice block because XML
requires an explicit end block in the form of the closing element </choice>.

Using message filters

Rider Auto Parts now has a new issue—their QA department has expressed the need
to be able to send test orders into the live web frontend of the order system. Your cur-
rent solution would accept these orders as real and send them to the internal systems
for processing. You’ve suggested that QA should be testing on a development clone of
the real system, but management has shot down this idea, citing a limited budget.
What you need is a solution that will discard these test messages while still operating
on the real orders.

The Message Filter EIP, shown in figure 2.12, provides a nice way of dealing with
this kind of problem. Incoming messages only pass through the filter if a certain con-
dition is met. Messages failing the condition will be dropped.

Let’s see how you can implement this using Camel. Recall that the web frontend
that Rider Auto Parts uses only sends orders in the XML format, so you can place this
filter after the xmlOrders queue, where all orders are XML. Test messages have an
extra test attribute set, so you can use this to do the filtering. A test message looks
like this:

<?xml version="1.0" encoding="UTF-8"?>
<order name="motor" amount="1" customer="foo" test="true"/>

The entire solution is implemented in OrderRouterWithFilter.java, which is included
with the chapter2/filter project in the book’s source distribution. The filter looks like
this:

from("jms:xmlOrders") .filter (xpath (" /order [not (@test)] "))
.process (new Processor () {
public void process (Exchange exchange) throws Exception {
System.out.println("Received XML order: "
+ exchange.getIn() .getHeader ("CamelFileName")) ;
}
I3

To run this example, execute the following Maven command on the command line:

mvn clean compile exec:java
-Dexec.mainClass=camelinaction.OrderRouterWithFilter

Figure 2.12 A Message
— W N Filter allows you to filter out
uninteresting messages based

Real Test Real Real Real on some condition. In this case,
order order order Message filter order order test messages are filtered out.

www.it-ebooks.info

http://www.it-ebooks.info/

50

253

CHAPTER 2 Routing with Camel

This will output the following on the command line:
Received XML order: messagel.xml

You’ll only receive one message after the filter because the test message was filtered out.

You may have noticed that this example filters out the test message with an XPath
expression. XPath expressions are useful for creating conditions based on XML pay-
loads. In this case, the expression will evaluate true for orders that don’t have the
test attribute.

Asyousaw backin section 2.4.2, when the Spring DSL is used, you cannot use an anon-
ymous inner class for a processor. You must name the Processor class and add a bean
entry in the Spring XML file. So a message filter route in the Spring DSL looks like this:
<route>

<from uri="jms:xmlOrders"/>
<filter>
<xpath>/order [not (@test)] </xpath>
<process ref="orderLogger"/>
</filter>
</route>
The flow remains the same as in the Java DSL version of this route, buthere you reference
the processor as orderLogger, which is defined as a bean entry in the Spring XML file.
So far, the EIPs we’ve looked at only sent messages to a single destination. Next
we’ll take a look at how you can send to multiple destinations.

Using multicasting

Often in enterprise applications you’ll need to send a copy of a message to several dif-
ferent destinations for processing. When the list of destinations is known ahead of
time and is static, you can add an element to the route that will consume messages
from a source endpoint and then send the message out to a list of destinations. Bor-
rowing terminology from computer networking, we call this the Multicast EIP.
Currently at Rider Auto Parts, orders are processed in a step-by-step manner.
They’re first sent to accounting for validation of customer standing and then to pro-
duction for manufacture. A bright new manager has suggested that they could
improve the speed of operations by sending orders to accounting and production at
the same time. This would cut out the delay involved when production waits for the
OK from accounting. You’ve been asked to implement this change to the system.
Using a multicast, you could envision the solution shown in figure 2.13.

<i€:] jms:accounting
_—

% jms:xmlOrders
>
_} g jms:production Figure 2.13
i — A multicast sends a
Multicast (— > message to a number
of specified recipients.

www.it-ebooks.info

http://www.it-ebooks.info/

Routing and EIPs 51

With Camel, you can use the multicast method in the Java DSL to implement this
solution:

from("jms:xmlOrders") .multicast () .to("jms:accounting", "jms:production") ;
To run this example, go to the chapter2/multicast directory in the book’s source code
and run this command:

mvn clean compile exec:java
-Dexec.mainClass=camelinaction.OrderRouterWithMulticast

You should see the following output on the command line:

Accounting received order: messagel.xml

Production received order: messagel.xml

These two lines of output are coming from two test routes that consume from the
accounting and production queues and then output text to the console that qualifies
the message.

TIP For dealing with responses from services invoked in a multicast, an
aggregator is used. See more about aggregation in chapter 8.

By default, the multicast sends message copies sequentially. In the preceding example,
a message is sent to the accounting queue and then to the production queue. But
what if you wanted to send them in parallel?

PARALLEL MULTICASTING
Sending messages in parallel using the multicast involves only one extra DSL method:
parallelProcessing. Extending the previous multicast example, you can add the
parallelProcessing method as follows:
from("jms:xmlOrders")

.multicast () .parallelProcessing()

.to("jms:accounting", "jms:production") ;
This will set up the multicast to distribute messages to the destinations in parallel.

A default thread pool size of 10 is used if you don’t specify anything else. If you
want to change this default, you can set the underlying java.util.concurrent.Exec-
utorService that’s used to launch new asynchronous message sends by using the
executorService DSL method. Here’s an example:

ExecutorService executor = Executors.newFixedThreadPool (16) ;

from("jms:xmlOrders")

.multicast () .parallelProcessing() .executorService (executor)

.to("jms:accounting", "jms:production") ;
This code increases the maximum number of threads to 16, in order to handle a
larger number of incoming requests. For more information on the Camel threading
model and thread pools, please see chapter 10.

By default, the multicast will continue sending messages to destinations even if one

fails. In your application, though, you may consider the whole process as failed if one
destination fails. What do you do in this case?

www.it-ebooks.info

http://www.it-ebooks.info/

52

2.5.4

CHAPTER 2 Routing with Camel

STOPPING THE MULTICAST ON EXCEPTION
Our multicast solution at Rider Auto Parts suffers from a problem: if the order failed
to send to the accounting queue, it might take longer to track down the order from
production and bill the customer. To solve this problem, you can take advantage of
the stopOnException feature of the multicast. When enabled, this feature will stop
the multicast on the first exception caught, so you can take any necessary action.

To enable this feature, use the stopOnException method as follows:

from("jms:xmlOrders")

.multicast () .stopOnException ()
.parallelProcessing () .executorService (executor)
.to("jms:accounting", "jms:production") ;

To handle the exception coming back from this route, you’ll need to use Camel’s
error-handling facilities, which are described in detail in chapter 5.
When using the Spring DSL, this route looks a little bit different:

<route>
<from uri="jms:xmlOrders"/>
<multicast stopOnException="true" parallelProcessing="true"
executorServiceRef="executor"s>
<to uri="jms:accounting"/>
<to uri="jms:production"/>
</multicasts>
</route>
The main difference is that the methods used to set flags such as stopOnException in
the Java DSL are now attributes on the multicast element. Also, the executor service

is now specified as a reference to a Spring bean defined as follows:
<bean id="executor" class="java.util.concurrent.Executors"
factory-method="newFixedThreadPool">

<constructor-arg index="0" value="16"/>
</bean>
Now you know how to multicast messages in Camel, but you may be thinking that this
seems like a pretty static solution, because changing the destinations means changing
the route. Let’s see how you can make sending to multiple recipients more dynamic.

Using recipient lists

In the previous section, you implemented a new manager’s suggestion to parallelize
the accounting and production queues so orders could be processed more quickly.
Rider Auto Parts’ top-tier customers first noticed the problem with this approach: now
that all orders are going directly into production, top-tier customers are not getting
priority over the smaller customers. Their orders are taking longer, and they’re losing
business opportunities. Management suggested immediately going back to the old
scheme, but you suggested a simple solution to the problem: by parallelizing only top-
tier customers’ orders, all other orders would have to go to accounting first, thereby
not bogging down production.

www.it-ebooks.info

http://www.it-ebooks.info/

Routing and EIPs 53

— %a:)—»

Recipient list %
Ly —>=)—> Figure 2.14 A recipient
list inspects the incoming
T I message and determines a
—

list of recipients based on
the content of the message.
In this case, the message

Ly —»:)—»\II is only sent to the A, B,

and D destinations.

This solution can be realized by using the Recipient List EIP. As shown in figure 2.14, a
recipient list first inspects the incoming message, then generates a list of desired
recipients based on the message content, and sends the message to those recipients. A
recipient is specified by an endpoint URI. Note that the recipient list is different from
the multicast because the list of recipients is dynamic.

Camel provides a recipientList method for implementing the Recipient List EIP.
For example, the following route will take the list of recipients from a header named
recipients, where each recipient is separated from the next by a comma:

from("jms:xmlOrders")
.recipientList (header ("recipients")) ;
This is useful if you already have some information in the message that can be used to
construct the destination names—you could use an expression to create the list. In
order for the recipient list to extract meaningful endpoint URIs, the expression result
must be iterable. Values that will work are java.util.Collection, java.util.Itera-
tor, Java arrays, org.w3c.dom.NodeList, and, as shown in the example, a String with
comma-separated values.

In the Rider Auto Parts situation, the message doesn’t contain that list. You need
some way of determining whether the message is from a top-tier customer or not. A
simple solution could be to add a custom processor to do this:

from("jms:xmlOrders")
.setHeader ("customer", xpath("/order/@customer"))

.process (new Processor ()
public void process (Exchange exchange) throws Exception
String recipients = "jms:accounting";

String customer =
exchange.getIn() .getHeader ("customer", String.class);

if (customer.equals("honda")) {
recipients += ",jms:production";
exchange.getIn() .setHeader ("recipients", recipients);

}
h

.recipientList (header ("recipients")) ;

www.it-ebooks.info

http://www.it-ebooks.info/

54

CHAPTER 2 Routing with Camel

The processor now sets the recipients header to "jms:accounting, jms:produc-
tion" only if the customer is at the gold level of support. The check for gold-level sup-
port here is greatly simplified—ideally you’d query a database for this check. Any
other orders will be routed only to accounting, which will send them to production
after the checks are complete.

The Spring DSL version of this route follows a very similar layout:
<route>

<from uri="jms:xmlOrders" />
<setHeader headerName="customer">
<xpath>/order/@customer</xpaths>
</setHeader>
<process ref="calculateRecipients" />
<recipientList>
<header>recipients</header>
</recipientList>
</route>
As you may have expected, the anonymous processor specified in the Java DSL route
had to be separated out into a named processor. This processor was then loaded as a
Spring bean and given the name calculateRecipients, which is then referenced in
the process element by using the ref attribute.

It’s common for recipients to not be embedded in the message as headers or parts
of the body, and using a custom processor for this case is perfectly functional, but not
very nice. In using a custom processor, you have to manipulate the exchange and mes-
sage APIs directly. Fortunately, Camel supports a better way of implementing a recipi-
ent list.

RECIPIENT LIST ANNOTATION
Rather than using the recipientList method in the DSL, you can add a @Recipient-
List annotation to a method in a plain Java class (a Java bean). This annotation tells
Camel that the annotated method should be used to generate the list of recipients
from the exchange. This behavior only gets invoked, however, if the class is used with
Camel’s bean integration.

For example, replacing the custom processor you used in the previous section with
an annotated bean results in a greatly simplified route:

from("jms:xmlOrders") .bean(RecipientListBean.class) ;

Now all the logic for calculating the recipients and sending out messages is captured
in the RecipientListBean class, which looks like this:

public class RecipientListBean ({

@RecipientList
public String[] route(@XPath("/order/@customer") String customer)
if (isGoldCustomer (customer))
return new String[] {"jms:accounting", "jms:production"};
} else {

return new String[] {"jms:accounting"};

}

www.it-ebooks.info

http://www.it-ebooks.info/

2.5.5

Routing and EIPs 55

private boolean isGoldCustomer (String customer) {
return customer.equals ("honda") ;
1

}

Notice that the return type of the bean is a list of the desired recipients. Camel will
take this list and send a copy of the message to each destination in the list.

One nice thing about implementing the recipient list this way is that it’s entirely
separated from the route, which makes it a bit easier to read. You also have access to
Camel’s bean-binding annotations, which allow you to extract data from the message
using expressions, so you don’t have to manually explore the exchange. This example
uses the @XPath bean-binding annotation to grab the customer attribute of the order
element in the body. We’ll cover these annotations in chapter 4, which is all about
using beans.

To run this example, go to the chapter2/recipientlist directory in the book’s
source code and run this command:

mvn clean compile exec:java
-Dexec.mainClass=camelinaction.OrderRouterWithRecipientListBean

This will output the following on the command line:

Accounting received order: messagel.xml

Production received order: messagel.xml

Accounting received order: message2.xml

Why do you get this output? Well, you had the following two orders in the src/data
directory:

= messagel.xml

<?xml version="1.0" encoding="UTF-8"?>
<order name="motor" amount="1000" customer="honda"/>

= message2.xml
<?xml version="1.0" encoding="UTF-8"?>
<order name="motor" amount="2" customer="joe's bikes"/>
The first message is from a gold customer, according to the Rider Auto Parts rules, so
it was routed to both accounting and production. The second order is from a smaller
customer, so it went to accounting for verification of the customer’s credit standing.
What this system lacks now is a way to inspect these messages as they’re flowing
through the route, rather than waiting until they reach the end. Let’s see how a wire
tap can help.

Using the wireTap method

Often in enterprise applications it’s useful and necessary to inspect messages as they
flow through a system. For instance, when an order fails, you need a way to look at
which messages were received to determine the cause of the failure.

You could use a simple processor, as you’ve done before, to output information
about a incoming message to the console or append it to a file. Here is a processor
that outputs the message body to the console:

www.it-ebooks.info

http://www.it-ebooks.info/

56

CHAPTER 2 Routing with Camel

from("jms:incomingOrders")

.process (new Processor () {
public void process (Exchange exchange) throws Exception {
System.out.println("Received order: " +

exchange.getIn() .getBody()) ;

3]

This is fine for debugging purposes, but it’s a pretty poor solution for production use.
What if you wanted the message headers, exchange properties, or other data in the
message exchange? Ideally you could copy the whole incoming exchange and send
that to another channel for auditing. As shown in figure 2.15, the Wire Tap EIP
defines such a solution.

By using the wireTap method in the Java DSL, you can send a copy of the exchange
to a secondary destination without affecting the behavior of the rest of the route:

from("jms:incomingOrders")
.wireTap ("jms:orderAudit")

.choice ()
.when (header ("CamelFileName") .endsWith (" .xml"))
.to("jms:xmlOrders")
.when (header ("CamelFileName") .regex ("*.* (csv|csl)$"))
.to("jms:csvOrders")
.otherwise ()

.to("jms:badOrders") ;

The preceding code sends a copy of the exchange to the orderAudit queue, and the
original exchange continues on through the route, as if you hadn’t used a wire tap at
all. Camel doesn’t wait for a response from the wire tap because the wire tap sets the
message exchange pattern (MEP) to InOnly. This means that the message will be sent
to the orderAudit queue in a fire-and-forget fashion—it won’t wait for a reply.

In the Spring DSL, you can configure a wire tap just as easily:
<route>

<from uri="jms:incomingOrders"/>
<wireTap uri="jms:orderAudit"/>

What can you do with a tapped message? A number of things could be done at this
point:

Wire tap

Source - ﬂ— @} >| Destination

@
T Figure 2.15 A wire tap is a fixed recipient list that
d estir?zti on sends a copy of a message traveling from a source to
a destination to a secondary destination.

www.it-ebooks.info

http://www.it-ebooks.info/

2.6

Summary and best practices 57

= You could print the information to the console like you did before. This is use-

ful for simple debugging purposes.

= You could save the message in a persistent store (in a file or database) for

retrieval later.

The wire tap is a pretty useful monitoring tool, but it leaves most of the work up to you.
We’ll discuss some of Camel’s more powerful tracing and auditing tools in chapter 12.

Summary and best practices

In this chapter, we’ve covered one of the core abilities of Camel: routing messages. By

now you should know how to create routes in either the Java or Spring DSL and know

the differences in their configuration. You should also have a good grasp of when to
apply several EIP implementations in Camel and how to use them. With this knowl-
edge, you can create Camel applications that do useful tasks.

Here are some of the key concepts you should take away from this chapter:

Routing occurs in many aspects of everyday life. Whether you’re surfing the Internet,
doing online banking, booking a flight or hotel room, messages are being
routed behind the scenes using some sort of router.

Use Apache Camel for routing messages. Camel is primarily a message router that
allows to you route messages from and to a variety of transports and APIs.
Camel’s DSLs are used to define routing rules. The Java DSL allows you to write in the
popular Java language, which gives you autocompletion of terms in most IDEs.
It also allows you to use the full power of the Java language when writing routes.
It’s considered the main DSL in Camel. The Spring DSL allows you to write rout-
ing rules without any Java code at all.

The Java DSL and Spring CamelContext are a powerful combination. In section 2.4.3
we described our favorite way to write Camel applications, which is to boot up the
CamelContext in Spring and write routing rules in Java DSL RouteBuilders. This
gives you the best of both: the most expressive DSL that Camel has in the Java DSL,
and a more feature-rich and standard container in the Spring CamelContext.
Use enterprise integration patterns (EIPs) to solve integration and routing problems. EIPs
are like design patterns from object oriented programming, but for the enter-
prise integration world.

Use Camel’s built-in EIP implementations rather than creating your own. Camel imple-
ments most EIPs as easy-to-use DSL terms, which allows you to focus on the
actual business problem rather than the integration architecture.

In the coming chapters we’ll build on this foundation to show you things like data

transformation, error handling, testing, sending data over other transports, and more.

In the next chapter, we’ll look at how Camel makes data transformation a breeze.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

Core Camel

In part 1, we guided you through what we consider introductory topics in
Camel. They were topics you absolutely needed to know to use Camel. In this
next part, we’ll cover in depth the core features of Camel. You’ll need many of
these features when using Camel in real-world applications.

In chapter 3 we’ll take a look at the data in the messages being routed by
Camel. In particular, we’ll look at how you can transform this data to other for-
mats using Camel.

Camel has great support for integrating beans into your routing applications.
In chapter 4 we’ll look at the many ways beans can be used in Camel applications.

In complex enterprise systems, lots of things can go wrong. This is why Camel
features an extensive set of error-handling abilities. In chapter 5 we’ll discuss
these in detail.

In chapter 6 we’ll take a look at another important topic in application devel-
opment: testing. We’ll look at the testing facilities shipped with Camel. You can
use these features for testing your own Camel applications or applications based
on other stacks.

Components are the main extension mechanism in Camel. As such, they
include functionality to connect to many different transports, APIs, and other
extensions to Camel’s core. Chapter 7 covers the most heavily used components
that ship with Camel.

The last chapter of this part revisits the important topic of enterprise integra-
tion patterns (EIPs) in Camel. Back in chapter 2, we covered some of the simpler
EIPs; in chapter 8, we’ll look at several of the more complex EIPs.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Transforming
data with Camel

This chapter covers

Transforming data using EIPs and Java

Transforming XML data

Transforming using well-known data formats

Writing your own data formats for transformations
Understanding the Camel type-converter mechanism

In the previous chapter, we covered routing, which is the single most important fea-
ture any integration kit must provide. In this chapter, we’ll take a look at the sec-
ond most important feature: data or message transformation.

Just as in the real world, where people speak different languages, the IT world
speaks different protocols. Software engineers regularly need to act as mediators
between various protocols when IT systems must be integrated. To address this, the
data models used by the protocols must be transformed from one form to another,
adapting to whatever protocol the receiver understands. Mediation and data trans-
formation is a key feature in any integration kit, including Camel.

61

www.it-ebooks.info

http://www.it-ebooks.info/

62

3.1

3.1.1

CHAPTER 3 Transforming data with Camel

In this chapter, you’ll learn all about how Camel can help you with your data trans-
formation challenges. We’ll start with a brief overview of data transformation in Camel
and then look at how you can transform data into any custom format you may have.
Then we’ll look at some Camel components that are specialized for transforming XML
data and other well-known data formats. We’ll end the chapter by looking into Camel’s
type-converter mechanism, which supports implicitly and explicitly type coercing.

After reading this chapter, you’ll know how to tackle any data transformation
you're faced with and which Camel solution to leverage.

Data transformation overview

Camel provides many techniques for data transformation, and we’ll cover them
shortly. But first we’ll start with an overview of data transformation in Camel.
Data transformation is a broad term that covers two types of transformation:

» Data format transformation—The data format of the message body is transformed
from one form to another. For example, a CSV record is formatted as XML.

= Data type transformation—The data type of the message body is transformed
from one type to another. For example a java.lang.String is transformed into
a javax.jms.TextMessage.

Figure 3.1 illustrates the principle of transforming a message body from one form into
another. This transformation can involve any combination of format and type trans-
formations. In most cases, the data transformation you’ll face with Camel is format
transformation, where you have to mediate between two protocols. Camel has a built-
in type-converter mechanism that can automatically convert between types, which
greatly reduces the need for end users to deal with type transformations.

Message Message

Message Message

body » body
Q Transform b i Figure 3.1 Camel

offers many features for
\ Y, \) transforming data from
one form to another.

Camel has many data-transformation features. We’ll introduce them in the following
section, and then look at them one by one. After reading this chapter, you’ll have a
solid understanding of how to use Camel to transform your data.

Data transformation with Camel

In Camel, data transformation typically takes places in the six ways listed in table 3.1.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Erich_Gamma
http://en.wikipedia.org/wiki/Erich_Gamma
http://en.wikipedia.org/wiki/Richard_Helm
http://en.wikipedia.org/wiki/Ralph_Johnson
http://en.wikipedia.org/wiki/John_Vlissides
http://en.wikipedia.org/wiki/John_Vlissides
http://www.it-ebooks.info/

3.2

321

Transforming data using EIPs and Java 63

Table 3.1 Six ways data transformation typically takes place in Camel

Transformation Description

Data transformation in You can explicitly enforce transformation in the route using the Message

routes Translator or the Content Enricher EIPs. This gives you the power to do data
mapping using regular Java code. We Il cover this in section 3.2.

Data transformation Camel provides a range of components for transformation, such as the XSLT

using components component for XML transformation. We’ll dive into this in section 3.3.

Data transformation Data formats are Camel transformers that come in pairs to transform data

using data formats back and forth between well-known formats.

Data transformation Camel provides a range of components for transforming using templates,

using templates such as Apache Velocity. We'll look at this in section 3.5.

Data type transforma- Camel has an elaborate type-converter mechanism that activates on

tion using Camel’s type- | demand. This is convenient when you need to convert from common types

converter mechanism such as java.lang. Integer to java.lang.String or even from
java.io.Fileto java.lang.String. Type converters are covered in
section 3.6.

Message transforma- Camel’s many components adapt to various commonly used protocols and,

tion in component as such, need to be able to transform messages as they travel to and from

adapters those protocols. Often these components use a combination of custom data
transformations and type converters. This happens seamlessly, and only
component writers need to worry about it. We’ll cover writing custom compo-
nents in chapter 11.

In this chapter, we’ll cover the first five of the data transformation methods listed in
table 3.1. We’ll leave the last one for chapter 11.

Transforming data using EIPs and Java

Data mapping is the process of mapping between two distinct data models, and it’s a
key factor in data integration. There are many existing standards for data models, gov-
erned by various organizations or committees. As such, you’ll often find yourself need-
ing to map from a company’s custom data model to a standard data model.

Camel provides great freedom in data mapping because it allows you to use Java
code—you aren’t limited to using a particular data mapping tool that at first might
seem elegant but that turns out to make things impossible.

In this section, we’ll look at how you can map data using a Processor, which is a
Camel API. Camel can also use beans for mapping, which is a good practice, because it
allows your mapping logic to be independent of the Camel APL

Using the Message Translator EIP

The Message Translator EIP is illustrated in figure 3.2.
This pattern covers translating a message from one format to another. It’s the
equivalent of the Adapter pattern from the Gang of Four book.

www.it-ebooks.info

http://www.it-ebooks.info/

64

CHAPTER 3 Transforming data with Camel

Figure 3.2 In the
Message Translator
>< —> EIP, an incoming
message goes

Incoming Translated through a translator
message Message Message and comes out as a
translator translated message.

NOTE The Gang of Four book is Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. See the “Design Patterns” Wikipedia article for more information:
http://en.wikipedia.org/wiki/Design_Patterns_(book).

Camel provides three ways of using this pattern:

= Using a Processor
= Using beans

= Using <transform>

We’ll look at them each in turn.

TRANSFORMING USING A PROCESSOR
The Camel Processor is an interface defined in org.apache.camel.Processor with a
single method:

public void process (Exchange exchange) throws Exception;

The Processor is a low-level API where you work directly on the Camel Exchange
instance. It gives you full access to all Camel’s moving parts from the CamelContext,
which you can obtain Exchange using the getCamelContext method.

Let’s look at an example. At Rider Auto Parts you’ve been asked to generate daily
reports of newly received orders to be outputted to a CSV file. The company uses a cus-
tom format for order entries, but to make things easy, they already have an HTTP ser-
vice that returns a list of orders for whatever date you input. The challenge you face is
mapping the returned data from the HTTP service to a CSV format and writing the
report to a file.

Because you want to get started on a prototype quickly, you decide to use the
Camel Processor.

Listing 3.1 Using a Processor to translate from a custom format to CSV format

import org.apache.camel.Exchange;
import org.apache.camel.Processor;

public class OrderToCsvProcessor implements Processor {

public void process (Exchange exchange) throws Exception { Gets
String custom = exchange.getIn() custom
payload

.getBody (String.class) ;

www.it-ebooks.info

http://en.wikipedia.org/wiki/Design_Patterns_(book)
http://www.it-ebooks.info/

Transforming data using EIPs and Java 65

String id = custom.substring(0, 9);

String customerId = custom.substring (10, 19);
String date = custom.substring (20, 29);
String items = custom.substring(30) ;

String[] itemIds = items.split("e");

StringBuilder csv = new StringBuilder() ; Maps to
csv.append (id.trim()) ; CSV format
csv.append (", ") .append (date.trim()) ;
csv.append (", ") .append (customerId.trim()) ;
for (String item : itemIds) ({

csv.append (", ") .append (item.trim()) ;
} Qj} Replaces payload
exchange.getIn() .setBody (csv.toString()) ; with CSV payload

}

First you grab the custom format payload from the exchange @. It’s a String type, so
you pass String in as the parameter to have the payload returned as a String. Then
you extract data from the custom format to the local variables ®. The custom format
could be anything, but in this example it’s a fixed-length custom format. Then you
map the CSV format by building a string with comma-separated values €. Finally, you
replace the custom payload with your new CSV payload @.
You can use the OrderToCsvProcessor from listing 3.1 in a Camel route as follows:
from("quartz://report?cron=0+0+6+*+*+2?")
.to("http://riders.com/orders/cmd=received&date=yesterday")
.process (new OrderToCsvProcessor ())
.to("file://riders/orders?fileName:report—${header.Date}.csv");
The preceding route uses Quartz to schedule a job to run once a day at 6 a.m. It then
invokes the HTTP service to retrieve the orders received yesterday, which are returned
in the custom format. Next, it uses OrderToCSVProcessor to map from the custom for-
mat to CSV format before writing the result to a file.
The equivalent route in Spring XML is as follows:

<bean id="csvProcessor" class="camelinaction.OrderToCsvProcessor"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="quartz://report?cron=0+0+6+*+*+?"/>
<to uri="http://riders.com/orders/cmd=received&date=yesterday"/>
<process ref="csvProcessor"/>
<to uri="file://riders/orders?fileName=report-${header.Date}.csv"/>
</route>
</camelContext>

You can try this example yourself—we’ve provided a little unit test with the book’s
source code. Go to the chapter3/transform directory, and run these Maven goals:

mvn test -Dtest=0OrderToCsvProcessorTest
mvn test -Dtest=SpringOrderToCsvProcessorTest

After the test runs, a report file is written in the target/orders/received directory.

www.it-ebooks.info

http://www.it-ebooks.info/

66

CHAPTER 3 Transforming data with Camel

Using the getIn and getout methods on exchanges

The Camel Exchange defines two methods for retrieving messages: getIn and
getout. The getIn method returns the incoming message, and the getOut method
accesses the outbound message.

There are two scenarios where the Camel end user will have to decide among using
these methods:

= A read-only scenario, such as when you're logging the incoming message
= A write scenario, such as when you’re transforming the message

In the second scenario, you'd assume getOut should be used. That’s correct accord-
ing to theory, but in practice there’s a common pitfall when using getOut: the incom-
ing message headers and attachments will be lost. This is often not what you want,
so you must copy the headers and attachments from the incoming message to the
outgoing message, which can be tedious. The alternative is to set the changes direct-
ly on the incoming message using getIn, and not to use getout at all. This is the
practice we use in this book.

Using a processor has one disadvantage: you're required to use the Camel API. In the
next section, we’ll look at how to avoid this by using a bean.

TRANSFORMING USING BEANS

Using beans is a great practice because it allows you to use any Java code and library

you wish. Camel imposes no restrictions whatsoever. Camel can invoke any bean you

choose, so you can use existing beans without having to rewrite or recompile them.
Let’s try using a bean instead of a Processor.

Listing 3.2 Using a bean to translate from a custom format to CSV format

public class OrderToCsvBean {

public static String map (String custom) {
String id = custom.substring(0, 9);
String customerId = custom.substring (10, 19);
String date = custom.substring (20, 29); Extracts data to
String items = custom.substring(30) ; local variables
String[] itemIds = items.split("@");

StringBuilder csv = new StringBuilder() ;
csv.append (id.trim()) ;

csv.append (", ") .append (date.trim()) ;

csv.append (", ") .append (customerId.trim()) ;

for (String item : itemIds) ({
csv.append (", ") .append (item.trim()) ;

1 Qj Returns CSV

return csv.toString() ; payload

www.it-ebooks.info

http://www.it-ebooks.info/

Transforming data using EIPs and Java 67

The first noticeable difference between listings 3.1 and 3.2 is that listing 3.2 doesn’t
use any Camel imports. This means your bean is totally independent of the Camel APL
The next difference is that you can name the method signature in listing 3.2—in this
case it’s a static method named map.

The method signature defines the contract, which means that the first parameter,
(String custom), is the message body you’re going to use for translation. The method
returns a String, which means the translated data will be a String type. At runtime,
Camel binds to this method signature. We won’t go into any more details here; we’ll
cover much more about using beans in chapter 4.

The actual mapping @ is the same as with the processor. At the end, you return
the mapping output @.

You can use OrderToCsvBean in a Camel route as shown here:
from("quartz://report?cron=0+0+6+*+*+2")

.to("http://riders.com/orders/cmd=received&date=yesterday")

.bean (new OrderToCsvBean ())
.to("file://riders/orders?fileName=report-3${header.Date}.csv") ;

The equivalent route in Spring XML is as follows:

<bean id="csvBean" class="camelinaction.OrderToCsvBean"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="quartz://report?cron=0+0+6+*+*+?2"/>
<to uri="http://riders.com/orders/cmd=received&date=yesterday"/>
<bean ref="csvBean"/>
<to uri="file://riders/orders?fileName=report-${header.Date}.csv"/>
</routes
</camelContext>

You can try this example from the chapter3/transform directory by using the follow-
ing Maven goals:

mvn test -Dtest=0OrderToCsvBeanTest

mvn test -Dtest=SpringOrderToCsvBeanTest

It will generate a test report file in the target/orders/received directory.

Another advantage of using beans over processors for mappings is that unit testing
is much easier. For example, listing 3.2 doesn’t require the use of Camel at all, as
opposed to listing 3.1 where you need to create and pass in an Exchange instance.

We’ll leave the beans for now, because they’re covered extensively in the next
chapter. But you should keep in mind that beans are very useful for doing message
transformation.

TRANSFORMING USING THE TRANSFORM() METHOD FROM THE JAVA DSL

Transform() is a method in the Java DSL that can be used in Camel routes to trans-
form messages. By allowing the use of expressions, transform() permits great flexibil-
ity, and using expressions directly within the DSL can sometimes save time. Let’s look
at a little example.

www.it-ebooks.info

http://www.it-ebooks.info/

68

CHAPTER 3 Transforming data with Camel

Suppose you need to prepare some text for HTML formatting by replacing all line
breaks with a
 tag. This can be done with a builtin Camel expression that
searches and replaces using regular expressions:
from("direct:start")

.transform(body () .regexReplaceAll ("\n", "
"))

.to("mock:result") ;
What this route does is use the transform() method to tell Camel that the message
should be transformed using an expression. Camel provides what is know as the
Builder pattern to build expressions from individual expressions. This is done by
chaining together method calls, which is the essence of the Builder pattern.

NOTE For more information on the Builder pattern, see the Wikipedia article:
http://en.wikipedia.org/wiki/Builder_pattern.

In this example, you combine body() and regexReplaceAll(). The expression
should be read as follows: take the body and perform a regular expression that
replaces all new lines (\n) with
 tags. Now you’'ve combined two methods that
conform to a compound Camel expression.

You can run this example from chapter3/transform directly by using the following
Maven goal:

mvn test -Dtest=TransformTest

The Direct component

The example here uses the Direct component (http://camel.apache.org/direct) as the
input source for the route (from ("direct:start")). The Direct component provides
direct invocation between a producer and a consumer. It only allows connectivity from
within Camel, so external systems can’t send messages directly to it. This component
is used within Camel to do things such as link routes together or for testing.

Camel also allows you to use custom expressions. This is useful when you need to be in
full control and have Java code at your fingertips. For example, the previous example
could have been implemented as follows:

from("direct:start™")
.transform(new Expression() ({
public <T> T evaluate (Exchange exchange, Class<T> type) {
String body = exchange.getIn() .getBody (String.class);
body = body.replaceAll ("\n", "
");
body = "<body>" + body + "</body>";
return (T) body;

}
h
.to("mock:result") ;
As you can see, this code uses an inlined Camel Expression that allows you to use Java
code in its evaluate method. This follows the same principle as the Camel Processor
you saw before.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Builder_pattern
http://camel.apache.org/direct
http://www.it-ebooks.info/

Transforming data using EIPs and Java 69

Now let’s see how you can transform data using Spring XML.
TRANSFORMING USING <TRANSFORM> FROM SPRING XML
Using <transform> from Spring XML is a bit different than from Java DSL because the
XML DSL isn’t as powerful. In Spring XML, the Builder pattern expressions aren’t
available because with XML you don’t have a real programming language underneath.
What you can do instead is invoke a method on a bean or use scripting languages.

Let’s see how this works. The following route uses a method call on a bean as the
expression: Does the

J transformation

<bean id="htmlBean" class="camelinaction.HtmlBean"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>

ctransforms ﬁ Invokes toHtml
<method bean="htmlBean" method="toHtml"/> method on bean
</transform>
<to uri="mock:result"/>
</route>
</camelContext>
First, you declare a regular spring bean to be used to transform the message 0.
Then, in the route, you use <transform> with a <method> call expression to invoke
the bean @.
The implementation of the htmlBean is very straightforward:
public class HtmlBean
public static String toHtml (String body) {
body = body.replaceAll ("\n", "
");
body = "<body>" + body + "</body>";
return body;

}

You can also use scripting languages as expressions in Camel. For example, you can
use Groovy, MVEL, JavaScript, or Camel’s own scripting language, called Simple
(explained in some detail in appendix A). We won’t go in detail on how to use the
other scripting languages at this point, but the Simple language can be used to build
strings using placeholders. It pretty much speaks for itself—I’'m sure you’ll under-
stand what the following transformation does:
<transform>

<simple>Hello ${body} how are you?</simple>
</transform>
You can try the Spring transformation examples provided in the book’s source code
by running the following Maven goals from the chapter3/transform directory:
mvn test -Dtest= SpringTransformMethodTest
mvn test -Dtest= SpringTransformScriptTest
They’re located in the chapter3/transform directory and are named SpringTrans-
formMethodTest and SpringTransformScriptTest.

www.it-ebooks.info

http://www.it-ebooks.info/

70

3.2.2

CHAPTER 3 Transforming data with Camel

We’re done covering the Message Translator EIP, so let’s look at the related Con-
tent Enricher EIP.

Using the Content Enricher EIP

The Content Enricher EIP is illustrated in figure 3.3. This pattern documents the sce-
nario where a message is enriched with data obtained from another resource.

Enricher

t

Basic

> O] |

message

Resource

Figure 3.3

'

Enriched
message

In the Content Enricher EIP, an

existing message has data added to it from
another source.

To help understand this pattern, we’ll turn back to Rider Auto Parts. It turns out that
the data mapping you did in listing 3.1 wasn’t sufficient. Orders are also piled up on
an FTP server, and your job is to somehow merge this information into the existing
report. Figure 3.4 illustrates the scenario.

HTTP server

(R
e
Quartz
scheduler e @@ il
% Transform
Orders
(Csv) o
(4) u— D —— 5
Content 4——/
enricher
Report T
(CsV)
Camel
\ W

www.it-ebooks.info

Y

FTP server

ﬁ

)

File server

H‘

Figure 3.4

An overview of
the route that
generates the
orders report,

now with the
content enricher
pulling in data from
an FTP server

http://www.it-ebooks.info/

Transforming data using EIPs and Java 71

In figure 3.4, a scheduled consumer using Quartz starts the route every day at 6 a.m.
©. It then pulls data from an HTTP server, which returns orders in a custom
format @), which is then transformed into CSV format €. At this point, you have to
perform the additional content enrichment step O with the data obtained from the
FIP server @. After this, the final report is written to the file server 0.

Before we dig into the code and see how to implement this, we need to take a step
back and look at how the Content Enricher EIP is implemented in Camel. Camel pro-
vides two operations in the DSL for implementing the pattern:

® pollEnrich—This operation merges data retrieved from another source using
a consumer.

= enrich—This operation merges data retrieved from another source using a
producer.

The difference between pollEnrich and enrich

The difference between pollEnrich and enrich is that the former uses a consumer
and the latter a producer to retrieve data from the source. Knowing the difference is
important: the file component can be used with both, but using enrich will write the
message content as a file; using pollEnrich will read the file as the source, which
is most likely the scenario you'll be facing when enriching with files. The HTTP com-
ponent only works with enrich; it allows you to invoke an external HTTP service and
use its reply as the source.

Camel uses the org.apache.camel.processor.AggregationStrategy interface to
merge the result from the source with the original message, as follows:

Exchange aggregate (Exchange oldExchange, Exchange newExchange) ;

This aggregate method is a callback that you must implement. The method has two
parameters: the first, named oldExchange, contains the original exchange; the sec-
ond, newExchange, is the enriched source. Your task is to enrich the message using
Java code and return the merged result. This may sound a bit confusing, so let’s see it
in action.

To solve the problem at Rider Auto Parts, you need to use pollEnrich because it’s
capable of polling a file from an FTP server.

ENRICHING USING POLLENRICH

Listing 3.3 shows how you can use pollEnrich to retrieve the additional orders from
the remote FTP server and aggregate this data with the existing message using Camel’s
AggregationStrategy.

Listing 3.3 Using pollEnrich to merge additional data with an existing message

from("quartz://report?cron=0+0+6+*+*+2")
.to("http://riders.com/orders/cmd=received")
.process (new OrderToCSVProcessor ())
.pollEnrich("ftp://riders.com/orders/?username=rider&password=secret",

www.it-ebooks.info

http://www.it-ebooks.info/

72

CHAPTER 3 Transforming data with Camel

new AggregationStrategy () {
public Exchange aggregate (Exchange oldExchange, Uses pollEnrich
{

Exchange newExchange) to read FTP file
if (newExchange == null) ({
return oldExchange;
1

String http = oldExchange.getIn()

.getBody (String.class) ;
String ftp = newExchange.getIn()

.getBody (String.class) ; Merges d_ata using
String body = http + "\n" + ftp; AggregationStrategy
oldExchange.getIn() .setBody (body) ;

return oldExchange;

1) Whrites

.to("file://riders/orders") ; mnPUttOﬁh

The route is triggered by Quartz to run at 6 a.m. every day. You invoke the HTTP ser-
vice to retrieve the orders and transform them to CSV format using a processor.

At this point, you need to enrich the existing data with the orders from the remote
FTP server. This is done by using pol1Enrich @), which consumes the remote file.

To merge the data, you use AggregationStrategy @. First, you check whether any
data was consumed or not. If newExchange is null, there is no remote file to consume,
and you just return the existing data. If there is a remote file, you merge the data by
concatenating the existing data with the new data and setting it back on the old-
Exchange. Then, you return the merged data by returning the oldExchange. To write
the CSV report file, you use the file component ©.

PollEnrich uses a polling consumer to retrieve messages, and it offers three time-
out modes:

= pollEnrich(timeout = -1)—Polls the message and waits until a message arrives.
This mode will block until a message exists.

= pollEnrich(timeout = 0)—Immediately polls the message if any exists; other-
wise null is returned. It will never wait for messages to arrive, so this mode will
never block. This is the default mode.

® pollEnrich(timeout > 0)—Polls the message, and if no message exists, it will
wait for one, waiting at most until the timeout triggers. This mode will poten-
tially block.

It’s a best practice to either use timeout = 0 or to assign a timeout value when using
pollEnrich to avoid waiting indefinitely if no message arrives.

Enrich and pollEnrich can’t access information in the current exchange
Neither enrich nor pollEnrich can leverage any information from the current ex-
change. This means, for example, that you can’t store a filename header on the ex-
change for pol1Enrich to use to select a particular file. This may change in the future
if the Camel team can find a solution.

www.it-ebooks.info

http://www.it-ebooks.info/

3.3

3.3.1

Transforming XML 73

Now let’s take a quick look at how to use enrich with Spring XML; it’s a bit different
than when using the Java DSL.

ENRICHING USING ENRICH

Enrich is used when you need to enrich the current message with data from another
source using request-response messaging. A prime example would be to enrich the
current message with the reply from a web service call. But we’ll look at another exam-
ple, using Spring XML to enrich the current message using the TCP transport:

<bean id="quoteStrategy" Bean implementing
class="camelinaction.QuoteStrategy"/> AggregationStrategy
<route>

<from uri="activemq:queue:quotes"/>
<enrich url="mina:tcp://riders.com:9876?textline=true&sync=true"
strategyRef="quoteStrategy"/>

<to uri="log:quotes"/>
</routes>
Here you use the Camel mina component for TCP transport, configured to use
request-response messaging by using sync=true option. To merge the original mes-
sage with data from the remote server, <enrich> must refer to an AggregationStrat-
egy. This is done using the strategyRef attribute. As you can see in the example, the
quoteStrategy being referred to is a bean id @, which contains the actual implemen-
tation of the AggregationStrategy, where the merging takes place.

You’ve seen a lot about how to transform data in Camel, using Java code for the

actual transformations. Now let’s take a peek into the XML world and look at the XSLT
component, which is used for transforming XML messages using XSLT stylesheets.

Transforming XML
Camel provides two ways to perform XML transformations:

m XSLT component—For transforming an XML payload into another format using
XSLT stylesheets
= XML marshaling—For marshaling and unmarshaling objects to and from XML

Both of these will be covered in following sections.

Transforming XML with XSLT

XSL Transformations (XSLT) is a declarative XML-based language used to transform
XML documents into other documents. For example, XSLT can be used to transform
XML into HTML for web pages or to transform an XML document into another XML
document with a different structure. XSLT is powerful and versatile, but it’s also a
complex language that takes time and effort to fully understand and master. Think
twice before deciding to pick up and use XSLT.

Camel provides XSLT as a component in camel-spring.jar because it leverages
Spring’s resource loading. This means greater flexibility in loading stylesheets because
Spring enables them to be loaded from various locations, such as the classpath, file
paths, and over HTTP.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 Transforming data with Camel

File XSLT JMS
consumer ;E component QIHE producer
E—
o File 0 Transformed 9

message message

Figure 3.5 A Camel route using an XSLT component to transform an XML document before it’s sent
to a JMS queue

Using the XSLT component is straightforward because it’s just another Camel compo-
nent. The following route shows an example of how you could use it; this route is also
illustrated in figure 3.5.
from("file://rider/inbox")

.to("xslt://camelinaction/transform.xsl")

.to("activemg:queue:transformed")
The file consumer picks up new files and routes them to the XSLT component, which
transforms the payload using the stylesheet. After the transformation, the message is
routed to a JMS producer, which sends the message to the JMS queue. Notice in the
preceding code how the URL for the XSLT component is defined: xslt://camelinac-
tion/transform.xsl. The part after the scheme is the URI location of the stylesheet
to use. Camel will look in the classpath by default.

As mentioned before, the Camel XSLT component leverages Spring to load the

stylesheet. You can prefix the resource name with any of the three prefixes listed in
table 3.2.

Table 3.2 Prefixes supported by the XSLT component for loading stylesheets

Prefix Example Description
<none> xslt://camelinaction/ If no prefix is provided, Camel loads the
transform.xsl resource from the classpath
classpath: | xslt://classpath:com/ Loads the resource from the classpath

mycompany/transform.xml

file: xslt://file:/rider/config/ | Loads the resource from the filesystem
transform.xml

http: xslt://http://rider.com/ Loads the resource from an URL
styles/transform.xsl

Let’s leave the XSLT world now and take a look at how you can do XML-to-object mar-
shaling with Camel.

www.it-ebooks.info

http://www.it-ebooks.info/

3.3.2

Transforming XML 75

Transforming XML with object marshaling

Any software engineer who has worked with XML knows that it’s a challenge to use the
low-level XML API that Java offers. Instead, people often prefer to work with regular Java
objects and use marshaling to transform between Java objects and XML representations.

In Camel, this marshaling process is provided in ready-to-use components known
as data formats. We’ll cover data formats in full detail in section 3.4, but we’ll take a
quick look at the XStream and JAXB data formats here as we cover XML transforma-
tions using marshaling.

TRANSFORMING USING XSTREAM
XStream is a simple library for serializing objects to XML and back again. To use it,
you need camel-xstream.jar on the classpath and the XStream library itself.

Suppose you need to send messages in XML format to a shared JMS queue, which is
then used to integrate two systems. Let’s look at how this can be done.

Listing 3.4 Using XStream to transform a message into XML

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>

<xstream id="myXstream"/> Specifies XStream
</dataFormatss> data format
<route>

<from uri="direct:foo"/> Qf Transforms

<marshal ref="myXstream"/> to XML
<to uri="activemg:queue:foo"/>
</route>
</camelContext>
When using the XML DSL, you can declare the data formats used at the top @ of the
<camelContext>. By doing this, you can share the data formats in multiple routes.
In the first route, where you send messages to a JMS queue, you use marshal @,
which refers to the id from @, so Camel knows that the XStream data format is
being used.
You can also use the XStream data format directly in the route, which can shorten
the syntax a bit, like this:
<route>
<from uri="direct:foo"/>
<marshal><xstream/></marshal>
<to uri="activemqg:queue:foo"/>
</routes
The same route is a bit shorter to write in the Java DSL, because you can do it with one
line per route:

from("direct:foo") .marshal () .xstream() .to("uri:activemg:queue:foo") ;

Yes, using XStream is that simple. And the reverse operation, unmarshaling from XML
to an object, is just as simple:

www.it-ebooks.info

http://www.it-ebooks.info/

76

CHAPTER 3 Transforming data with Camel

<route>
<from uri="activemqg:queue:foo"/>
<unmarshal ref="myXstream"/>
<to uri="direct:handleFoo"/>
</route>
You’ve now seen how easy it is to use XStream with Camel. Let’s take a look at using

JAXB with Camel.

TRANSFORMING USING JAXB

JAXB (Java Architecture for XML Binding) is a standard specification for XML binding,
and it’s provided out of the box in the Java runtime. Like XStream, it allows you to
serialize objects to XML and back again. It’s not as simple, but it does offer more bells
and whistles for controlling the XML output. And because it’s distributed in Java, you
don’t need any special JAR files on the classpath.

Unlike XStream, JAXB requires that you do a bit of work to declare the binding
between Java objects and the XML form. This is often done using annotations. Sup-
pose you define a model bean to represent an order, as shown in listing 3.5, and you
want to transform this into XML before sending it to a JMS queue. Then you want to
transform it back to the order bean again when consuming from the JMS queue. This
can be done as shown in listings 3.5 and 3.6.

Listing 3.5 Annotating a bean with JAXB so it can be transformed to and from XML

package com.acme.order;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement PurchaseOrd I
urchasevraer class
@XmlAccessorType (XmlAccessType.FIELD) .

7P P is JAXB annotated

public class PurchaseOrder {
@XmlAttribute
private String name;
@XmlAttribute
private double price;
@XmlAttribute
private double amount;

}
Listing 3.5 shows how to use JAXB annotations to decorate your model object (omit-
ting the usual getters and setters). First you define @Xm1RootElement @ as a class-level
annotation to indicate that this class is an XML element. Then you define the @Xml-
AccessorType to let JAXB access fields directly. To expose the fields of this model
object as XML attributes, you mark them with the @XmlAttribute annotation.

Using JAXB, you should be able to marshal a model object into an XML representa-
tion like this:

<purchaseOrder name="Camel in Action" price="4995" amount="1"/>

www.it-ebooks.info

http://www.it-ebooks.info/

3.4

Transforming with data formats 77

Listing 3.6 shows how you can use JAXB in routes to transform the PurchaseOrder
object to XML before it’s sent to a JMS queue, and then back again from XML to the
PurchaseOrder object when consuming from the same JMS queue.

Listing 3.6 Using JAXB to serialize objects to and from XML

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>
<jaxb id="jaxb" contextPath="camelinaction"/> Declares JAXB
</dataFormatss> data format
<route>
<from uri="direct:order"/> ﬁ Transforms from
<marshal ref="jaxb"/> model to XML
<to uri="activemqg:queue:order"/>
</route>
<route>
<from uri="activemq:queue:order"/> ﬁ Transforms from
<unmarshal ref="jaxb"/> XML to model

<to uri="direct:doSomething"/>
</route>

</camelContext>
First you need to declare the JAXB data format @. Note that a contextPath attribute
is also defined on the JAXB data format—this is a package name that instructs JAXB to
look in this package for classes that are JAXB-annotated.

The first route then marshals to XML @ and the second route unmarshals to trans-
form the XML back into the PurchaseOrder object @.

You can try this example by running the following Maven goal from the chapter3/
order directory:

mvn test -Dtest=PurchaseOrderJaxbTest

NOTE To tell JAXB which classes are JAXB-annotated, you need to drop a spe-
cial jaxb.index file into the context path. It’s a plain text file in which each
line lists the class name. In the preceding example, the file contains a single
line with the text PurchaseOrder.

That’s the basis of using XML object marshaling with XStream and JAXB. Both of them
are implemented in Camel via data formats that are capable of transforming back and
forth between various well-known formats.

Transforming with data formats
In Camel, data formats are pluggable transformers that can transform messages from
one form to another and vice versa. Each data format is represented in Camel as an
interface in org.apace.camel.spi.DataFormat containing two methods:
= marshal—For marshaling a message into another form, such as marshaling Java
objects to XML, CSV, EDI, HL7, or other well-known data models
= unmarshal—For performing the reverse operation, which turns data from well-
known formats back into a message

www.it-ebooks.info

http://www.it-ebooks.info/

78

34.1

Message

Message
body

Class

Attribute
Attribute

=

marshal

-

unmarshal

CHAPTER 3 Transforming data with Camel

Message

Message
body

Figure 3.6 An
object is marshaled
to a binary represen-
tation; unmarshal
can be used to get

010011010101...

the object back.

You may already have realized that these two functions are opposites, meaning that

one is capable of reversing what the other has done, as illustrated in figure 3.6.

We touched on data formats in section 3.3, where we covered XML transformations.

This section will cover data formats in more depth and using other data types than XML,

such as CSV and JSON. We’ll even look at how you can create your own data formats.
We’ll start our journey by briefly looking at the data formats Camel provides out of

the box.

Data formats provided with Camel

Camel provides data formats for a range of well-known data models, as listed in table 3.3.

Table 3.3 Data formats provided out of the box with Camel

Data format

Bindy

Castor

Crypto

Ccsv

Flatpack
GZip

HL7

JAXB

Jackson

Protobuf

SOAP

CSV, FIX,

XML
Any

CSv

Csv
Any

HL7

XML

JSON

XML

XML

Data model

fixed length

Artifact

camel-bindy

camel-castor

camel-crypto

camel-csv

camel-flatpack

camel-gzip

camel-hl7

camel-jaxb

camel-jackson

camel-protobuf

camel-soap

Description

Binds various data models to model objects using
annotations

Uses Castor for XML binding to and from Java objects

Encrypts and decrypts data using the Java Cryptogra-
phy Extension

Transforms to and from CSV using the Apache Com-
mons CSV library

Transforms to and from CSV using the FlatPack library

Compresses and decompresses files (compatible
with the popular gzip/gunzip tools)

Transforms to and from HL7, which is a well-known
data format in the health care industry

Uses the JAXB 2.x standard for XML binding to and
from Java objects

Transforms to and from JSON using the ultra-fast
Jackson library

Transforms to and from XML using the Google Proto-
col Buffers library

Transforms to and from SOAP

www.it-ebooks.info

http://www.it-ebooks.info/

3.4.2

Transforming with data formats 79

Table 3.3 Data formats provided out of the box with Camel (continued)

Data format Data model Artifact Description

Serialization | Object camel-core Uses Java Object Serialization to transform objects to
and from a serialized stream

TidyMarkup | HTML camel-tagsoup Tidies up HTML by parsing ugly HTML and returning it
as pretty well-formed HTML

XmIBeans XML camel-xmlbeans Uses XmIBeans for XML binding to and from Java
objects

XMLSecurity | XML camel-xmlsecurity | Facilitates encryption and decryption of XML docu-
ments

XStream XML camel-xstream Uses XStream for XML binding to and from Java
objects

XStream JSON camel-xstream Transforms to and from JSON using the XStream
library

Zip Any camel-core Compresses and decompresses messages; it's most
effective when dealing with large XML- or text-based
payloads

As you can see, Camel provides 18 data formats out of the box. We’ve picked 3 to
cover in the following section. They’re among the most commonly used, and what you
learn about those will also apply for the remainder of the data formats. You can read
more about all these data formats at the Camel website (http://camel.apache.org/
data-format.html).

Using Camel’s CSV data format

The camel-csv data format is capable of transforming to and from CSV format. It lever-
ages Apache Commons CSV to do the actual work.

Suppose you need to consume CSV files, split out each row, and send it to a JMS
queue. Sounds hard to do, but it’s possible with little effort in a Camel route:
from("file://rider/csvfiles™")

.unmarshal () .csv ()

.split(body()) .to("activemg:queue.csv.record") ;
All you have to do is unmarshal the CSV files, which will read the file line by line and
store all lines in the message body as a java.util.List<List> type. Then you use the
splitter to split up the body, which will break the java.util.List<List<String>>into
rows (each row represented as another List<String> containing the fields) and send
each row to the JMS queue. You may not want to send each row as a List type to the JMS
queue, so you can transform the row before sending, perhaps using a processor.

The same example in Spring XML is a bit different, as shown here:
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="file://rider/csvfiles"/>
<unmarshal><csv/></unmarshal>

www.it-ebooks.info

http://camel.apache.org/data-format.html
http://camel.apache.org/data-format.html
http://www.it-ebooks.info/

80

3.4.3

CHAPTER 3 Transforming data with Camel

<split>
<simple>body</simple>
<to uri="activemg:queue.csv.record"/>
</split>
</route>
</camelContext>
The noticeable difference is how you tell <split> that it should split up the message
body. To do this youneed to provide <split>with an Expression, which is what the split-
ter should iterate when it performs the splitting. To do so, you can use Camel’s built-in
expression language called Simple (see appendix A), which knows how to do that.

NOTE The Splitter EIP is fully covered in section 8.1 of this book.

This example is in the source code for the book in the chapter3/order directory. You
can try the examples by running the following Maven goals:

mvn test -Dtest=PurchaseOrderCsvTest
mvn test -Dtest=PurchaseOrderCsvSpringTest

At first, the data types that the CSV data format uses may seem a bit confusing. They’re
listed in table 3.4.

Table 3.4 Data types that camel-csv uses when transforming to and from CSV format

Operation From type To type Description

marshal Map<String, OutputStream Contains a single row in CSV
Objects> format

marshal List<Map<String, | OutputStream Contains multiple rows in
Object>> CSV format where each row

is separated by \n (newline)

unmarshal | InputStream List<List<String>> Contains a List of rows
where each row is another
List of fields

One problem with camel-csv is that it uses generic data types, such as Maps or Lists,
to represent CSV records. Often you’ll already have model objects to represent your
data in memory. Let’s look at how you can use model objects with the camel-bindy
component.

Using Camel’s Bindy data format

The two existing CSV-related data formats (camel-csv and camelflatpack) are older
libraries that don’t take advantage of the new features in Java 1.5, such as annotations
and generics. In light of this deficiency, Charles Moulliard stepped up and wrote the
camel-bindy component to take advantage of these new possibilities. It’s capable of
binding CSV, FIX, and fixed-length formats to existing model objects using annota-
tions. This is similar to what JAXB does for XML.

www.it-ebooks.info

http://www.it-ebooks.info/

Transforming with data formats 81

Suppose you have a model object that represents a purchase order. By annotating
the model object with camel-bindy annotations, you can easily transform messages
between CSV and Java model objects.

Listing 3.7 Model object annotated for CSV transformation

package camelinaction.bindy;

import java.math.BigDecimal;
import org.apache.camel.dataformat.bindy.annotation.CsvRecord;
import org.apache.camel.dataformat.bindy.annotation.DataField;

@CsvRecord (separator = ",", crlf = "UNIX") Maps to
public class PurchaseOrder { CSV record

@DataField(pos = 1)
private String name;

@DataField(pos = 2, precision = 2) Maps to column
private BigDecimal price; in CSV record

@DataField(pos = 3)
private int amount;

}
First you mark the class with the @CsvRecord annotation @ to indicate that it repre-
sents a record in CSV format. Then you annotate the fields with @DataField according
to the layout of the CSV record @. Using the pos attribute, you can dictate the order
in which they’re outputted in CSV; pos starts with a value of 1. For numeric fields, you
can additionally declare precision, which in this example is set to 2, indicating that
the price should use two digits for cents. Bindy also has attributes for fine-grained lay-
out of the fields, such as pattern, trim, and length. You can use pattern to indicate a
data pattern, trim to trim the input, and length to restrict a text description to a cer-
tain number of characters.

Before we look at how to use Bindy in Camel routes, we need to take a step back
and look at the data types Bindy expects to use. They’re listed in table 3.5.

Table 3.5 Data types that Bindy uses when transforming to and from CSV format

Operation From type To type Output description
marshal List<Map<String, | OutputStream Contains multiple rows in CSV for-
Object>> mat where each row is separated

by a \n (newline)

unmarshal | InputStream List<Map<String, | Contains a List of rows where
Objects>> each row contains 1..n data mod-
els contained in a Map

The important thing to notice in table 3.5 is that Bindy uses a Map<String, Object> to
represent a CSV row. At first, this may seem odd. Why doesn’t it just use a single model
object for that? The answer is that you can have multiple model objects with the CSV

www.it-ebooks.info

http://www.it-ebooks.info/

82

CHAPTER 3 Transforming data with Camel

record being scattered across those objects. For example, you could have fields 1 to 3
in one model object, fields 4 to 9 in another, and fields 10 to 12 in a third.
The map entry <String, Objects> is distilled as follows:

= Mapkey (String) —Mustcontain the fully qualified classname of the model object
® Map value (Object)—Must contain the model object

If this seems a bit confusing, don’t worry. The following example should make it clearer.

Listing 3.8 Using Bindy to transform a model object to CSV format

public class PurchaseOrderBindyTest extends TestCase

public void testBindy() throws Exception {
CamelContext context = new DefaultCamelContext () ;
context.addRoutes (createRoute()) ;
context.start () ;

MockEndpoint mock = context.getEndpoint ("mock:result",
MockEndpoint.class) ;
mock.expectedBodiesReceived ("Camel in Action,49.95,1\n");

PurchaseOrder order = new PurchaseOrder () ; Creates model
order.setAmount (1) ; object as usual
order.setPrice (new BigDecimal ("49.95")) ;

order.setName ("Camel in Action") ;

ProducerTemplate template = context.createProducerTemplate () ;
template.sendBody ("direct:toCsv", order) ;
b Starts test

mock.assertIsSatisfied() ;

}

public RouteBuilder createRoute() {
return new RouteBuilder() ({
public void configure() throws Exception {
from("direct:toCsv") Transforms
.marshal () .bindy (BindyType.Csv, model object
"camelinaction.bindy") to CSV

.to("mock:result") ;

}i

}

In this listing, you first create and populate the order model using regular Java set-
ters @. Then you send the order model to the route by sending it to the
direct:toCsv endpoint @ that is used in the route. The route will then marshal the
order model to CSV using Bindy ©. Notice how Bindy is configured to use CSV
mode via BindyType.Csv. To let Bindy know how to map to order model object, you
need to provide a package name that will be scanned for classes annotated with
Bindy annotations. This is the same solution JAXB offers.

NOTE Listing 3.8 uses MockEndpoint to easily test that the CSV record is as
expected. Chapter 6 will covered testing with Camel, and you’ll learn all
about using MockEndpoints.

www.it-ebooks.info

http://www.it-ebooks.info/

3.4.4

Transforming with data formats 83

You can try this example from the chapter3/order directory using the following
Maven goal:

mvn test -Dtest=PurchaseOrderBindyTest

The source code for the book also contains a reverseexample of how to use Bindy to trans-
form a CSV record into a Java object. You can try it by using the following Maven goal:

mvn test -Dtest=PurchaseOrderUnmarshalBindyTest

CSV is only one of the well-known data formats that Bindy supports. Bindy is equally
capable of working with fixed-length and FIX data formats, both of which follow the
same principles as CSV.

It’s now time to leave CSV and look at a more modern format: JSON.

Using Camel’s JSON data format

JSON (JavaScript Object Notation) is a data-interchange format, and Camel provides two
components that support the JSON data format: camel-xstream and cameljackson. In
this section, we’ll focus on cameljackson because Jackson is a very popular JSON library.

Back at Rider Auto Parts, you now have to implement a new service that returns
order summaries rendered in JSON format. Doing this with Camel is fairly easy,
because Camel has all the ingredients needed to brew this service. Listing 3.9 shows
how you could ramp up a prototype.

Listing 3.9 An HTTP service that returns order summaries rendered in JSON format

<bean id="orderService" class="camelinaction.OrderServiceBean"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<dataFormats>
<json id="json" library="Jackson"/> Sets up JSON
</dataFormats> data format

<route>
<from uri="jetty://http://0.0.0.0:8080/order"/>
<bean ref="orderService" method="lookup"/> Invokes bean to
<marshal ref="json"/> retrieve data for reply
</route>
</camelContext>

First you need to set up the JSON data format and specify that the Jackson library
should be used @. Then you define a route that exposes the HTTP service using the
Jetty endpoint. This example exposes the Jetty endpoint directly in the URI. By using
http://0.0.0.0:8080/0rder, you tell Jetty that any client can reach this service on
port 8080. Whenever a request hits this HTTP service, it’s routed to the orderService
bean @ and the lookup method is invoked on that bean. The result of this bean invo-
cation is then marshaled to JSON format and returned back to the HTTP client.
The order service bean could have a method signature such as this:

public PurchaseOrder lookup (@Header (name = "id") String id)

www.it-ebooks.info

http://www.it-ebooks.info/

84

3.4.5

CHAPTER 3 Transforming data with Camel

This signature allows you to implement the lookup logic as you wish. You’ll learn
more about the @Header annotation in section 4.5.3, when we cover how bean param-
eter binding works in Camel.

Notice that the service bean can return a POJO that the JSON library is capable of
marshaling. For example, suppose you used the PurchaseOrder from listing 3.7, and
had JSON output as follows:

{"name":"Camel in Action","amount":1.0,"price":49.95}

The HTTP service itself can be invoked by an HTTP Get request with the id of the
order as a parameter: http://0.0.0.0:8080/order/service?id=123.

Notice how easy it is with Camel to bind the HTTP id parameter as the String id
parameter with the help of the @Header annotation.

You can try this example yourself from chapter3/order directory by using the fol-
lowing Maven goal.

mvn test -Dtest=PurchaseOrderJSONTest

So far we’ve used data formats with their default settings. But what if you need to con-
figure the data format, such as to use another splitter character with the CSV data for-
mat? That’s the topic of the next section.

Configuring Camel data formats

In section 3.4.2, you used the CSV data format, but this data format offers many addi-
tional settings. This listing shows how you can configure the CSV data format.

Listing 3.10 Configuring the CSV data format

public void configure() {

CSvVConfig custom = new CSVConfig() ;
custom.setDelimiter(';"') ;
custom. setEndTrimmed (true) ;
custom.addField (new CSVField("id")) ;
custom.addField (new CSVField ("customerId")) ; Configures custom
custom.addField (new CSVField("date")) ; CSV data format
custom.addField (new CSVField("item")) ;
custom.addField (new CSVField ("amount")) ;
custom.addField (new CSVField("description")) ;
CsvDataFormat myCsv = new CsvDataFormat () ; Creates custom
myCsv.setConfig (custom) ; CSV data format
myCsv.setAutogenColumns (false) ;
from("direct:toCsv") Qj Uses CSV

.marshal (myCsv) data format

.to("file://acme/outbox/csv") ;

}

Configuring data formats in Camel is done using regular Java code; you use the API
that the data format provides. In listing 3.10, the CSV data format offers a cSvVConfig
object @ that is used to set the semicolon as a delimiter and to specify the order of the

www.it-ebooks.info

http://www.it-ebooks.info/

3.4.6

Transforming with data formats 85

fields. The data format itself is then created @ and set to use the configuration. The
use of the data format stays the same, so all you need to do is refer to it from the
marshal @ or unmarshal methods. This same principle applies to all data formats in
Camel. You can configure them using the APIs they provide.

Now that you know how to use data formats, let’s look at how you can write your
own data format.

Writing your own data format

You may find yourself needing to transform data to and from a custom data format. In
this section, we’ll look at how you can develop a data format that can reverse strings.

Developing your own data format is fairly easy, because Camel provides a single API
you must implement: org.apache.camel.spi.DataFormat. Let’s look at how you
could implement a string-reversing data format.

Listing 3.11 Developing a custom data format that can reverse strings

package camelinaction;

import java.io.InputStream;
import java.io.OutputStream;

import org.apache.camel.Exchange;
import org.apache.camel.spi.DataFormat;

public class ReverseDataFormat implements DataFormat ManhdSt?
reverse string
public void marshal (Exchange exchange,

Object graph, OutputStream stream) throws Exception {
byte[] bytes = exchange.getContext () .getTypeConverter ()
.mandatoryConvertTo (byte[] .class, graph);
String body = reverseBytes (bytes);
stream.write (body.getBytes()) ;

} ﬁ Unmarshals to
public Object unmarshal (Exchange exchange, unreverse string
InputStream stream) throws Exception {
byte[] bytes = exchange.getContext () .getTypeConverter ()
.mandatoryConvertTo (byte[] .class, stream);
String body = reverseBytes (bytes);
return body;

}

private static String reverseBytes (byte[] data) {
StringBuilder sb = new StringBuilder (data.length) ;
for (int i = data.length - 1; i >= 0; i--) {
char ch = (char) datali];
sb.append (ch) ;

}

return sb.toString() ;

}

The custom data format must implement the DataFormat interface, which forces you
to develop two methods: marshal @ and unmarshal @. That’s no surprise, as they’re

www.it-ebooks.info

http://www.it-ebooks.info/

86

3.5

CHAPTER 3 Transforming data with Camel

the same methods you use in the route. The marshal method @ needs to output the
result to the OutputStream. To do this, you need to get the message payload as a
bytel[], and then reverse it with a helper method. Then you write that data to the
OutputStream. Note that you use the Camel type converters to return the message
payload as a byte [1. This is very powerful and saves you from doing a manual typecast
in Java or trying to convert the payload yourself.

The unmarshal method @ is nearly the same. You use the Camel type-converter
mechanism again to provide the message payload as a byte []. unmarshal also reverses
the bytes to get the data back in its original order. Note that in this method you return
the data instead of writing it to a stream.

TIP As a best practice, use the Camel type converters instead of typecasting
or converting between types yourself. We’ll cover Camel’s type converters in
section 3.6.

To use this new data format in a route, all you have to do is define it as a Spring bean
and refer to it from <marshal> and <unmarshal> as follows:

<bean id="reverse" class="camelinaction.ReverseDataFormat"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:marshal"/>
<marshal ref="reverse"/>
<to uri="log:marshal"/>
</routes>

<route>
<from uri="direct:unmarshal"/>
<unmarshal ref="reverse"/>
<to uri="log:unmarshal"/>
</route>
</camelContexts>
You’ll find this example in the chapter3/order directory, and you can try it by using

the following Maven goal:
mvn test -Dtest=ReverseDataFormatTest

You’ve now learned all about data formats and even how to develop your own. It’s
time to say goodbye to data formats and take a look at how you can use templating
with Camel for data transformation. Templating is extremely useful when you need to
generate automatic reply emails.

Transforming with templates
Camel provides slick integration with two different template languages:
= Apache Velocity—Probably the best known templating language (http://camel.
apache.org/velocity.html)

» FreeMarker—Another popular templating language that may be a bit more
advanced than Velocity (http://camel.apache.org/freemarker.html)

www.it-ebooks.info

http://camel.apache.org/velocity.html
http://camel.apache.org/velocity.html
http://camel.apache.org/freemarker.html
http://www.it-ebooks.info/

3.5.1

Transforming with templates 87

These two templating languages are fairly similar to use, so we’ll only discuss Velocity
here.

Using Apache Velocity

Rider Auto Parts has implemented a new order system that must send an email reply
when a customer has submitted an order. Your job is to implement this feature.
The reply email could look like this:

Dear customer
Thank you for ordering X piece(s) of XXX at a cost of XXX.
This is an automated email, please do not reply.

There are three pieces of information in the email that must be replaced at runtime
with real values. What you need to do is adjust the email to use the Velocity template
language, and then place it into the source repository as src/test/resources/email.vm:

Dear customer

Thank you for ordering ${body.amount} piece(s) of ${body.name} at a cost of
${body.price}.

This is an automated email, please do not reply.

Notice that we’ve inserted ${ } placeholders in the template, which instructs Velocity
to evaluate and replace them at runtime. Camel prepopulates the Velocity context
with a number of entities that are then available to Velocity. Those entities are listed in
table 3.6.

NOTE The entities in table 3.6 also apply for other templating languages,
such as FreeMarker.

Table 3.6 Entities prepopulated in the Velocity context and that are available at runtime

Entity Type Description

camelContext | org.apache.camel.CamelContext | The CamelContext.
exchange org.apache.camel .Exchange The current exchange.

in org.apache.camel .Message The input message. This can clash
with a reserved word in some lan-
guages; use request instead.

request org.apache.camel .Message The input message.

body java.lang.Object The input message body.

headers java.util.Map The input message headers.
response org.apache.camel .Message The output message.

out org.apache.camel .Message The output message. This can clash

with a reserved word in some lan-
guages; use response instead.

www.it-ebooks.info

http://www.it-ebooks.info/

88

3.6

3.6.1

CHAPTER 3 Transforming data with Camel

Using Velocity in a Camel route is as simple as this:

from("direct:sendMail")

.setHeader ("Subject", constant ("Thanks for ordering"))

.setHeader ("From", constant ("donotreplye@riders.com"))

.to("velocity://rider/mail.vm")

.to("smtp://mail.riders.com?user=camel&password=secret") ;
All you have to do is route the message to the Velocity endpoint that’s configured with
the template you want to use, which is the rider/mail.vm file that’s loaded from the
classpath by default. All the template components in Camel leverage the Spring
resource loader, which allows you to load templates from the classpath, file paths, and
other such locations. You can use the same prefixes listed in table 3.2.

You can try this example by going to the chapter3/order directory in the book’s

source code and running the following Maven goal:

mvn test -Dtest=PurchaseOrderVelocityTest

TIP For more details on the Camel Velocity component, consult the online
documentation (http://camel.apache.org/velocity.html).

We’ll now leave data transformation and look at type conversion. Camel has a powerful
type-converter mechanism that removes all need for boilerplate type-converter code.

About Camel type converters

Camel provides a built-in type-converter system that automatically converts between
well-known types. This system allows Camel components to easily work together with-
out having type mismatches. And from the Camel user’s perspective, type conversions
are built into the API in many places without being invasive. For example, you used it
in listing 3.1:

String custom = exchange.getIn() .getBody(String.class) ;

The getBody method is passed the type you want to have returned. Under the covers,
the type-converter system converts the returned type to a String if needed.

In this section, we’ll take a look at the insides of the type-converter system. We’ll
explain how Camel scans the classpath on startup to register type converters dynami-
cally. We’ll also show how you can use it from a Camel route, and how to build your
own type converters.

How the Camel type-converter mechanism works

To understand the type-converter system, you first need to know what a type converter
in Camel is. Figure 3.7 illustrates the relationship between the TypeConverterRegis-
try and the TypeConverters it holds.

TypeConverter

i >~—>
Registry TypeConverter

Figure 3.7
The TypeConverterRegistry
contains many TypeConverters

www.it-ebooks.info

http://camel.apache.org/velocity.html
http://www.it-ebooks.info/

About Camel type converters 89

The TypeConverterRegistry is where all the type converters are registered when
Camel is started. At runtime, Camel uses the TypeConverterRegistry’s lookup
method to look up a suitable TypeConverter:

TypeConverter lookup (Class<?> toType, Class<?> fromType) ;

By using the TypeConverter, Camel can then convert one type to another using
TypeConverter’s convertTo method, which is defined as follows:

<T> T convertTo (Class<T> type, Object value) ;

NOTE Camel implements about 150 or more type converters out of the box,
which are capable of converting to and from the most commonly used types.

LOADING TYPE CONVERTERS INTO THE REGISTRY

On startup, Camel loads all the type converters into the TypeConverterRegistry by
using a classpath-scanning solution. This allows Camel to pick up not only type con-
verters from camel-core but also from any of the other Camel components, including
your Camel applications—you’ll see this in section 3.6.3 when you build your own
type converter.

To scan and load the type converters, Camel uses org.apache.camel.impl.con-
verter.AnnotationTypeConverterLoader. To avoid scanning zillions of classes, it
reads a service discovery file in the META-INF folder: META-INF/services/org/apache/
camel/TypeConverter. This is a plain text file that has a list of packages that contain
Camel type converters. The special file is needed to avoid scanning every possible JAR
and all their packages, which would be time consuming. This special file tells Camel
whether or not the JAR file contains type converters. For example, the file in camel-
core contains the following three entries:
org.apache.camel.converter
org.apache.camel.component .bean
org.apache.camel.component.file
The AnnotationTypeConverterLoader will scan those packages and their subpack-
ages for classes that have been annotated with @Converter, and it searches within
them for public methods that are annotated with eConverter. Each of those methods
is considered a type converter.

This is best illustrated with an example. The following code is a snippet from
IOConverter class from camel-core JAR:

@Converter
public final class IOConverter {

@Converter

public static InputStream toInputStream(URL url) throws IOException {
return url.openStream() ;

1

}

Camel will go over each method annotated with @Converter and look at the method sig-
nature. The first parameter is the from type, and the return type is the fo type—in this
example you have a TypeConverter that can convert from a URL to an InputStream. By

www.it-ebooks.info

http://www.it-ebooks.info/

90

3.6.2

3.6.3

CHAPTER 3 Transforming data with Camel

doing this, Camel loads all the built-in type converters, including those from the Camel
components in use.

Now that you know how the Camel type converters are loaded, let’s look at using
them.

Using Camel type converters

As we mentioned, the Camel type converters are used throughout Camel, often auto-
matically. But you might want to use them to force a specific type to be used in a route,
such as before sending data back to a caller or a JMS destination. Let’s look at how to
do that.

Suppose you need to route files to a JMS queue using javax.jmx.TextMessage. To
do so, you can convert each file to a String, which forces the JMS component to use
TextMessage. This is easy to do in Camel—you use the convertBodyTo method, as
shown here:
from("file://riders/inbox")

.convertBodyTo (String.class)
.to("activemg:queue:inbox") ;

If you’re using Spring XML, you provide the type as an attribute instead, like this:

<route>
<from uri="file://riders/inbox"/>
<convertBodyTo type="java.lang.String"/>
<to uri="activemqg:queue:inbox"/>
</routes>

You can omit the java.lang. prefix on the type, which can shorten the syntax a bit:
<convertBodyTo type="String"/>.

Another reason for using convertBodyTo is to read files using a fixed encoding
such as UTF-8. This is done by passing in the encoding as the second parameter:
from("file://riders/inbox")

.convertBodyTo (String.class, "UTF-8")
.to("activemqg:queue:inbox") ;

TIP If you have trouble with a route because of the payload or its type, try
using .convertBodyTo (String.class) at the start of the route to convert to a
String type, which is a well-supported type. If the payload cannot be con-
verted to the desired type, a NoTypeConversionAvailableException excep-
tion is thrown.

That’s all there is to using type converters in Camel routes. Before we wrap up this
chapter, though, let’s take a look at how you can write your own type converter.

Writing your own type converter

Writing your own type converter is easy in Camel. You already saw what a type con-
verter looks like in section 3.6.1, when we looked at how type converters work.

www.it-ebooks.info

http://www.it-ebooks.info/

About Camel type converters 91

Suppose you wanted to write a custom type converter that can convert a byte[]
into a PurchaseOrder model object (an object you used in listing 3.7). As you saw ear-
lier, you need to create a @Converter class containing the type-converter method.

Listing 3.12 A custom type converter to convert frombyte [] to PurchaseOrder type

@Converter Grabs
public final class PurchaseOrderConverter TypeConverter
to reuse

@Converter

public static PurchaseOrder toPurchaseOrder (byte[] data,
Exchange exchange) {
TypeConverter converter = exchange.getContext ()

.getTypeConverter() ;
String s = converter.convertTo(String.class, data);
if (s == null || s.length() < 30) {

throw new IllegalArgumentException("data is invalid");

}

s = s.replaceAll ("##START##", "");
s = s.replaceAll ("H##END##", "");

String name = s.substring(0, 9).trim();

String s2 = s.substring (10, 19).trim();

BigDecimal price = new BigDecimal (s2) ; /i) Converts
price.setScale(2); from String to
PurchaseOrder

String s3 = s.substring(20).trim();
Integer amount = converter
.convertTo (Integer.class, s3);

return new PurchaseOrder (name, price, amount) ;

}

In listing 3.12, the Exchange gives you access to the CamelContext and thus to the par-
ent TypeConverter @), which you use in this method to convert between strings and
numbers. The rest of the code is the logic for parsing the custom protocol and return-
ing the PurchaseOrder @. Notice how you can use the converter to easily convert
between well-known types.

All you need to do now is add the service discovery file, named TypeConverter, in
the META-INF directory. As explained previously, this file contains one line identifying
each package to be scanned for @Converter classes.

If you cat the magic file, you’ll see this:
cat src/main/resources/META-INF/services/org/apache/camel/TypeConverter
camelinaction
This example can be found in the chapter3/converter directory of the book’s source
code, which you can try using the following Maven goal:

mvn test -Dtest=PurchaseOrderConverterTest

And that completes this chapter on transforming data with Camel.

www.it-ebooks.info

http://www.it-ebooks.info/

92

3.7

CHAPTER 3 Transforming data with Camel

Summary and best practices

Data transformation is the cornerstone of any integration kit; it bridges the gap
between different data types and formats. It’s also essential in today’s industry because
more and more disparate systems need to be integrated to support the ever-changing
businesses and world we live in.

This chapter covered many of the possibilities Camel offers for data transforma-
tion. You learned how to format messages using EIPs and beans. You also learned that
Camel provides special support for transforming XML documents using XSLT compo-
nents and XML-capable data formats. Camel provides data formats for well-known
data models, which you learned to use, and it even allows you to build your own data
formats. We also took a look into the templating world, which can be used to format
data in specialized cases, such as generating email bodies. Finally, we looked at how
the Camel type-converter mechanism works and learned that it’s used internally to
help all the Camel components work together. You learned how to use it in routes and
how to write your own converters.

Here are a few key tips you should take away from this chapter:

» Data transformation is often required. Integrating IT systems often requires you to
use different data formats when exchanging data. Camel can act as the media-
tor and has strong support for transforming data in any way possible. Use the
various features in Camel to aid with your transformation needs.

» Java is powerful. Using Java code isn’t a worse solution than using a fancy mapping
tool. Don’t underestimate the power of the Java language. Even if it takes 50 lines
of grunt boilerplate code to get the job done, you have a solution that can easily
be maintained by fellow engineers.

m Prefer to use beans over processors. If you’re using Java code for data transforma-
tion, you can use beans or processors. Processors are more dependent on the
Camel API, whereas beans allow loose coupling. We’ll cover how to use beans
in chapter 4.

In the preceding two chapters, we’ve covered two crucial features of integration Kkits:
routing and transformation. The next chapter dives into the world of beans, and
you’ll see how Camel can easily adapt to and leverage your existing beans. This allows
a higher degree of reuse and loose coupling, so you can keep your business and inte-
gration logic clean and apart from Camel and other middleware APIs.

www.it-ebooks.info

http://www.it-ebooks.info/

Using beans with Camel

This chapter covers

Understanding the Service Activator EIP
How Camel looks up beans using registries
How Camel selects bean methods to invoke

Bean parameter binding with single and
multiple parameters

If you've been developing software for five years or longer, you’ve likely worked
with different component models, such as CORBA, EJB, JBI, SCA, and lately OSGi.
Some of these models, especially the earlier ones, imposed a great deal on the pro-
gramming model, dictating what you could and couldn’t do, and they often
required complex packaging and deployment models. This left the everyday engi-
neer with a lot of concepts to learn and master. In some cases, much more time was
spent working around the restrictive programming and deployment models than
on the business application itself.

Because of this growing complexity and the resulting frustrations, a simpler,
more pragmatic programming model arose from the open source community: the
POJO model. Later this was formalized as the Spring Framework.

The Spring Framework has opened the door to the enterprise, proving
that the POJO programming model and a lightweight container indeed meet the

93

www.it-ebooks.info

http://www.it-ebooks.info/

94

4.1

411

CHAPTER 4 Using beans with Camel

expectations of today’s businesses. In fact, the simple programming model and light-
weight container concept proved superior to the heavyweight and over-complex
enterprise application and integration servers that were used before.

So what does this have to do with Camel? Well, Camel doesn’t mandate using a spe-
cific component or programming model. It doesn’t mandate a heavy specification
that you must learn and understand to be productive. Camel doesn’t require you to
repackage any of your existing libraries or require you to use the Camel API to fulfill
your integration needs. Camel is on the same page as the Spring Framework, with
both of them being lightweight containers favoring the POJO programming model.

In fact, Camel recognizes the power of the POJO programming model and goes
great lengths to work with your beans. By using beans, you fulfill an important goal in
the software industry, which is to reduce coupling. Camel not only offers reduced cou-
pling with beans, but you get the same loose coupling with Camel routes. For exam-
ple, three teams can work simultaneously on their own sets of routes, which can easily
be combined into one system.

We’ll start this chapter by showing you how not to use beans with Camel, which will
make it clearer how you should use beans. After that, we’ll take a look at the theory
behind the Service Activator EIP and dive inside Camel to see how this pattern is
implemented. Finally, we’ll look at the bean-binding process, which gives you fine-
grained control over binding information to the parameters on the invoked method
from within Camel and the currently routed message. It may sound confusing at first,
but don’t worry—it will make sense shortly.

Using beans the hard way and the easy way

In this section, we’ll walk through an example that shows how not to use beans with

Camel—the hard way to use beans. Then we’ll look at how to use beans the easy way.
Suppose you have an existing bean that offers an operation (a service) you need to

use in your integration application. For example, HelloBean offers the hello method

as its service:

public class HelloBean {

public String hello(String name)
return "Hello " + name;
}

}

Let’s look at some different ways you could use this bean in your application.

Invoking a bean from pure Java

By using a Camel Processor, you can invoke a bean from Java code.

Listing 4.1 Using a Processor to invoke the hello method on the HelloBean

public class InvokeWithProcessorRoute extends RouteBuilder ({

public void configure() throws Exception {

from("direct:hello") qgf? Uses a
.process (new Processor () { processor

www.it-ebooks.info

http://www.it-ebooks.info/

4.1.2

Using beans the hard way and the easy way 95

public void process (Exchange exchange) throws Exception {
String name = exchange.getIn() .getBody (String.class) ;

HelloBean hello = new HelloBean() ; Invokes
String answer = hello.hello (name) ; HelloBean
exchange.getOut () .setBody (answer) ;

}
3N

}
Listing 4.1 shows a RouteBuilder, which defines the route. You use an inlined Camel
Processor @), which gives you the process method, in which you can work on the
message with Java code. First, you must extract the message body from the input mes-
sage, which is the parameter you’ll use when you invoke the bean later. Then you
need to instantiate the bean and invoke it @. Finally you must set the output from the
bean on the output message.

Now that you’ve done it the hard way using the Java DSL, let’s take a look at using
Spring XML.

Invoking a bean defined in Spring

You’ll often use Spring as a bean container and define beans using its XML files. List-
ings 4.2 and 4.3 show how to revise listing 4.1 to work with a Spring bean this way.

Listing 4.2 Setting up Spring to use a Camel route that uses the HelloBean

<bean id="helloBean" class="camelinaction.HelloBean"/> QAA" Defines HelloBean
<bean id="route" class="camelinaction.InvokeWithProcessorSpringRoute"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<routeBuilder ref="route"/>
</camelContext>

First you define HelloBean in the Spring XML file with the id helloBean @. You still
want to use the Java DSL to build the route, so you need to declare a bean that con-
tains the route. Finally, you define a CamelContext, which is the way you get Spring
and Camel to work together.

Now let’s take a closer look at the route.

Listing 4.3 A Camel route using a Processor to invoke HelloBean

public class InvokeWithProcessorSpringRoute extends RouteBuilder ({

@Autowired Injects
private HelloBean hello; HelloBean

public void configure() throws Exception {
from("direct:hello")
.process (new Processor () {
public void process (Exchange exchange) throws Exception {
String name = exchange.getIn() .getBody(String.class) ;

String answer = hello.hello(name);
exchange.getOut () . setBody (answer) ; Invokes
99 ' Y ' HelloBean

www.it-ebooks.info

http://www.it-ebooks.info/

96

4.1.3

CHAPTER 4 Using beans with Camel

1
IF;

}

The route in listing 4.3 is nearly identical to the route in listing 4.1. The difference is
that now the bean is injected using the Spring @Autowired annotation @, and instead
of instantiating the bean, you use the injected bean directly @.

You can try these examples on your own; they’re in the chapter4/bean directory of
the book’s source code. Run Maven with these goals to try the last two examples:
mvn test -Dtest=InvokeWithProcessorTest
mvn test -Dtest=InvokeWithProcessorSpringTest
So far you’ve seen two examples of using beans with a Camel route, and there’s a bit of
plumbing to get it all to work. Here are some reasons why it’s hard to work with beans:

= You must use Java code to invoke the bean.

= You must use the Camel Processor, which clutters the route, making it harder
to understand what happens (route logic is mixed in with implementation
logic).

= You must extract data from the Camel message and pass it to the bean, and you
must move any response from the bean back into the Camel message.

= You must instantiate the bean yourself, or have it dependency-injected.

Now let’s look at the easy way of doing it.

Using beans the easy way

Suppose you were to define the Camel route in the Spring XML file instead of using a
RouteBuilder class. The following snippet shows how this might be done:

<bean id="helloBean" class="camelinaction.HelloBean"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/> J Insert something
< What goes here » here to use beans

</routes>
</camelContext>
First you define the bean as a Spring bean, and then you define the Camel route with
the direct:start input. At @ you want to invoke HelloBean, but you're in trouble—
this is XML, and you can’t add Java code in the XML file.
In Camel, the easy way to use beans is to use the <bean> tag at @:

<bean ref="helloBean" method="hello"/>
That gives you the following route:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>

www.it-ebooks.info

http://www.it-ebooks.info/

4.2

The Service Activator pattern 97

<bean ref="helloBean" method="hello"/>
</route>
</camelContext>
Camel offers the same solution when using the Java DSL. You can simplify the route in
listing 4.3 like this:

public void configure() throws Exception {
from("direct:hello") .beanRef ("helloBean", "hello");
}

That’s a staggering reduction from eight lines of code to one. And on top of that, the
one code line is much easier to understand. It’s all high-level abstraction, containing
no low-level code details, which were required when using inlined Processors.

You could even omit the hello method, because the bean only has a single
method:

public void configure() throws Exception {
from("direct:hello") .beanRef ("helloBean") ;

}
Using the <bean> tag is an elegant solution for working with beans. Without using that
tag, you had to use a Camel Processor to invoke the bean, which is a tedious solution.

TIP In the Java DSL, you don’t have to preregister the bean in the registry.
Instead, you can provide the class name of the bean, and Camel will instanti-
ate the bean on startup. The previous example could be written simply as
from("direct:hello") .bean (HelloBean.class) ;.

Now let’s look at how you can work with beans in Camel from the EIP perspective.

The Service Activator pattern

The Service Activator pattern is an enterprise pattern described in Hohpe and Woolf’s
Enterprise Integration Patternsbook (http://www.enterpriseintegrationpatterns.com/). It
describes a service that can be invoked easily from both messaging and non-messaging
services. Figure 4.1 illustrates this principle.

Figure 4.1 shows a service activator component that invokes a service based on an
incoming request and returns an outbound reply. The service activator acts as a medi-
ator between the requester and the POJO service. The requester sends a request to the
service activator @), which is responsible for adapting the request to a format the
POJO service understands (mediating) and passing the request on to the service @.

\ 4

Request Service POJO Figure 4.1 The

activator (3] service service activator

< mediates between
the requestor and
the POJO service.

Requester

www.it-ebooks.info

http://www.enterpriseintegrationpatterns.com/
http://www.it-ebooks.info/

98

4.3

CHAPTER 4 Using beans with Camel

The POJO service then returns a reply to the service activator €, which passes it back
(requiring no translation on the way